File size: 34,035 Bytes
88d205f 1e22c34 88d205f 1e22c34 88d205f 1e22c34 88d205f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Report Generator Service
This module provides functionality for generating comprehensive code review reports
in various formats based on the analysis results.
"""
import os
import json
import logging
import datetime
from pathlib import Path
import markdown
import csv
logger = logging.getLogger(__name__)
class ReportGenerator:
"""
Service for generating code review reports in various formats.
"""
def __init__(self, output_dir="reports"):
"""
Initialize the ReportGenerator.
Args:
output_dir (str): Directory to save generated reports.
"""
# Use absolute path for output directory
if not os.path.isabs(output_dir):
# Get the absolute path relative to the project root
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..'))
self.output_dir = os.path.join(project_root, output_dir)
else:
self.output_dir = output_dir
os.makedirs(self.output_dir, exist_ok=True)
logger.info(f"Initialized ReportGenerator with output directory: {self.output_dir}")
def generate_report(self, repo_name, results, format_type="all"):
"""
Generate a report based on the analysis results.
Args:
repo_name (str): Name of the repository.
results (dict): Analysis results.
format_type (str): Report format type (json, html, csv, or all).
Returns:
dict: Paths to the generated reports.
"""
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
report_name = f"{repo_name}_{timestamp}"
report_paths = {}
# Create report content
report_content = self._create_report_content(repo_name, results)
# Generate reports in requested formats
if format_type in ["json", "all"]:
json_path = self._generate_json_report(report_name, report_content)
report_paths["json"] = json_path
if format_type in ["html", "all"]:
html_path = self._generate_html_report(report_name, report_content)
report_paths["html"] = html_path
if format_type in ["csv", "all"]:
csv_path = self._generate_csv_report(report_name, report_content)
report_paths["csv"] = csv_path
logger.info(f"Generated {len(report_paths)} report(s) for {repo_name}")
return report_paths
def _create_report_content(self, repo_name, results):
"""
Create the content for the report.
Args:
repo_name (str): Name of the repository.
results (dict): Analysis results.
Returns:
dict: Structured report content.
"""
# Extract repository info and metrics
repo_info = results.get("repository_info", {})
total_files = repo_info.get("file_count", 0)
repo_size = repo_info.get("size_bytes", 0)
# Extract code analysis results
code_analysis = results.get("code_analysis", {})
total_code_issues = sum(len(lang_result.get("issues", [])) for lang_result in code_analysis.values())
critical_code_issues = sum(1 for lang_result in code_analysis.values()
for issue in lang_result.get("issues", [])
if issue.get("severity", "").lower() == "critical")
# Extract security scan results
security_scan = results.get("security", {})
total_vulnerabilities = sum(len(lang_result.get("vulnerabilities", []))
for lang_result in security_scan.get("vulnerabilities_by_language", {}).values())
critical_vulnerabilities = len(security_scan.get("critical_vulnerabilities", []))
# Extract performance analysis results
performance_analysis = results.get("performance", {})
total_performance_issues = sum(len(lang_result.get("issues", []))
for lang_result in performance_analysis.get("issues_by_language", {}).values())
performance_hotspots = len(performance_analysis.get("hotspots", []))
# Calculate overall score and rating
max_score = 100
deductions = {
"code_issues": total_code_issues * 2,
"critical_code_issues": critical_code_issues * 5,
"vulnerabilities": total_vulnerabilities * 3,
"critical_vulnerabilities": critical_vulnerabilities * 10,
"performance_issues": total_performance_issues * 2,
"performance_hotspots": performance_hotspots * 3
}
overall_score = max(0, max_score - sum(deductions.values()))
quality_ratings = [
(95, "Excellent"),
(85, "Very Good"),
(75, "Good"),
(65, "Fair"),
(0, "Poor")
]
quality_rating = next(rating for threshold, rating in quality_ratings if overall_score >= threshold)
# Extract language breakdown
language_breakdown = {}
for language in code_analysis.keys():
if code_analysis[language].get("status") != "error":
language_breakdown[language] = {
"files": len([f for f in code_analysis[language].get("issues", []) if "file" in f]),
"lines": code_analysis[language].get("total_lines", 0),
"percentage": code_analysis[language].get("percentage", 0),
"issues": len(code_analysis[language].get("issues", []))
}
# Extract AI review results
ai_review = results.get("ai_review", {})
# Calculate summary metrics
summary_metrics = self._calculate_summary_metrics(results)
# Create report structure
report = {
"metadata": {
"repository_name": repo_name,
"report_date": datetime.datetime.now().isoformat(),
"repository_info": repo_info,
},
"summary": {
"metrics": summary_metrics,
"language_breakdown": language_breakdown,
"executive_summary": ai_review.get("summary", "No AI review summary available."),
},
"code_quality": {
"issues_by_language": code_analysis,
"top_issues": self._extract_top_issues(code_analysis),
},
"security": {
"vulnerabilities_by_language": security_scan,
"critical_vulnerabilities": self._extract_critical_vulnerabilities(security_scan),
},
"performance": {
"issues_by_language": performance_analysis.get("language_results", {}),
"hotspots": performance_analysis.get("hotspots", []),
},
"ai_review": {
"file_reviews": ai_review.get("reviews", {}),
"summary": ai_review.get("summary", "No AI review summary available."),
},
"recommendations": self._generate_recommendations(results),
}
return report
def _calculate_summary_metrics(self, results):
"""
Calculate summary metrics from the analysis results.
Args:
results (dict): Analysis results.
Returns:
dict: Summary metrics.
"""
metrics = {
"total_files": results.get("repository_info", {}).get("file_count", 0),
"repository_size": results.get("repository_info", {}).get("size", 0),
}
# Count code quality issues
code_analysis = results.get("code_analysis", {})
total_issues = 0
critical_issues = 0
for language, language_results in code_analysis.items():
total_issues += language_results.get("issue_count", 0)
for issue in language_results.get("issues", []):
if issue.get("severity", "").lower() in ["critical", "high"]:
critical_issues += 1
metrics["total_code_issues"] = total_issues
metrics["critical_code_issues"] = critical_issues
# Count security vulnerabilities
security_scan = results.get("security_scan", {})
total_vulnerabilities = 0
critical_vulnerabilities = 0
for language, language_results in security_scan.items():
total_vulnerabilities += language_results.get("vulnerability_count", 0)
for vuln in language_results.get("vulnerabilities", []):
if vuln.get("severity", "").lower() in ["critical", "high"]:
critical_vulnerabilities += 1
metrics["total_vulnerabilities"] = total_vulnerabilities
metrics["critical_vulnerabilities"] = critical_vulnerabilities
# Count performance issues
performance_analysis = results.get("performance_analysis", {})
total_performance_issues = 0
for language, language_results in performance_analysis.get("language_results", {}).items():
total_performance_issues += language_results.get("issue_count", 0)
metrics["total_performance_issues"] = total_performance_issues
metrics["performance_hotspots"] = len(performance_analysis.get("hotspots", []))
# Calculate overall score (0-100)
# This is a simple scoring algorithm that can be refined
base_score = 100
deductions = 0
# Deduct for code issues (more weight for critical issues)
if metrics["total_files"] > 0:
code_issue_ratio = metrics["total_code_issues"] / metrics["total_files"]
deductions += min(30, code_issue_ratio * 100)
deductions += min(20, (metrics["critical_code_issues"] / metrics["total_files"]) * 200)
# Deduct for security vulnerabilities (heavy weight for critical vulnerabilities)
if metrics["total_files"] > 0:
deductions += min(30, (metrics["total_vulnerabilities"] / metrics["total_files"]) * 150)
deductions += min(40, (metrics["critical_vulnerabilities"] / metrics["total_files"]) * 300)
# Deduct for performance issues
if metrics["total_files"] > 0:
deductions += min(20, (metrics["total_performance_issues"] / metrics["total_files"]) * 80)
deductions += min(10, (metrics["performance_hotspots"] / metrics["total_files"]) * 100)
metrics["overall_score"] = max(0, min(100, base_score - deductions))
# Determine quality rating based on score
if metrics["overall_score"] >= 90:
metrics["quality_rating"] = "Excellent"
elif metrics["overall_score"] >= 80:
metrics["quality_rating"] = "Good"
elif metrics["overall_score"] >= 70:
metrics["quality_rating"] = "Satisfactory"
elif metrics["overall_score"] >= 50:
metrics["quality_rating"] = "Needs Improvement"
else:
metrics["quality_rating"] = "Poor"
return metrics
def _extract_top_issues(self, code_analysis, limit=10):
"""
Extract the top code quality issues from the analysis results.
Args:
code_analysis (dict): Code analysis results.
limit (int): Maximum number of issues to extract.
Returns:
list: Top code quality issues.
"""
all_issues = []
for language, language_results in code_analysis.items():
for issue in language_results.get("issues", []):
# Add language to the issue
issue["language"] = language
all_issues.append(issue)
# Sort issues by severity and then by line count if available
severity_order = {"critical": 0, "high": 1, "medium": 2, "low": 3, "info": 4}
def issue_sort_key(issue):
severity = issue.get("severity", "").lower()
severity_value = severity_order.get(severity, 5)
return (severity_value, -issue.get("line_count", 0))
sorted_issues = sorted(all_issues, key=issue_sort_key)
return sorted_issues[:limit]
def _extract_critical_vulnerabilities(self, security_scan, limit=10):
"""
Extract critical security vulnerabilities from the scan results.
Args:
security_scan (dict): Security scan results.
limit (int): Maximum number of vulnerabilities to extract.
Returns:
list: Critical security vulnerabilities.
"""
all_vulnerabilities = []
for language, language_results in security_scan.items():
for vuln in language_results.get("vulnerabilities", []):
# Add language to the vulnerability
vuln["language"] = language
all_vulnerabilities.append(vuln)
# Sort vulnerabilities by severity
severity_order = {"critical": 0, "high": 1, "medium": 2, "low": 3, "info": 4}
def vuln_sort_key(vuln):
severity = vuln.get("severity", "").lower()
severity_value = severity_order.get(severity, 5)
return severity_value
sorted_vulnerabilities = sorted(all_vulnerabilities, key=vuln_sort_key)
return sorted_vulnerabilities[:limit]
def _generate_recommendations(self, results):
"""
Generate recommendations based on the analysis results.
Args:
results (dict): Analysis results.
Returns:
dict: Recommendations categorized by priority.
"""
recommendations = {
"high_priority": [],
"medium_priority": [],
"low_priority": [],
}
# Extract critical security vulnerabilities as high priority recommendations
security_scan = results.get("security_scan", {})
for language, language_results in security_scan.items():
for vuln in language_results.get("vulnerabilities", []):
if vuln.get("severity", "").lower() in ["critical", "high"]:
recommendations["high_priority"].append({
"type": "security",
"language": language,
"issue": vuln.get("issue", "Unknown vulnerability"),
"description": vuln.get("description", ""),
"file": vuln.get("file", ""),
"line": vuln.get("line", ""),
"recommendation": vuln.get("recommendation", "Fix this security vulnerability."),
})
# Extract critical code quality issues as medium priority recommendations
code_analysis = results.get("code_analysis", {})
for language, language_results in code_analysis.items():
for issue in language_results.get("issues", []):
if issue.get("severity", "").lower() in ["critical", "high"]:
recommendations["medium_priority"].append({
"type": "code_quality",
"language": language,
"issue": issue.get("issue", "Unknown issue"),
"description": issue.get("description", ""),
"file": issue.get("file", ""),
"line": issue.get("line", ""),
"recommendation": issue.get("recommendation", "Address this code quality issue."),
})
# Extract performance hotspots as medium priority recommendations
performance_analysis = results.get("performance_analysis", {})
for hotspot in performance_analysis.get("hotspots", []):
recommendations["medium_priority"].append({
"type": "performance",
"language": hotspot.get("language", ""),
"issue": "Performance Hotspot",
"description": f"File contains {hotspot.get('issue_count', 0)} performance issues",
"file": hotspot.get("file", ""),
"recommendation": "Optimize this file to improve performance.",
})
# Extract other performance issues as low priority recommendations
for language, language_results in performance_analysis.get("language_results", {}).items():
for issue in language_results.get("issues", []):
# Skip issues that are already part of hotspots
if any(hotspot.get("file", "") == issue.get("file", "") for hotspot in performance_analysis.get("hotspots", [])):
continue
recommendations["low_priority"].append({
"type": "performance",
"language": language,
"issue": issue.get("issue", "Unknown issue"),
"description": issue.get("description", ""),
"file": issue.get("file", ""),
"line": issue.get("line", ""),
"recommendation": issue.get("recommendation", "Consider optimizing this code."),
})
# Extract AI review suggestions as recommendations
ai_review = results.get("ai_review", {})
for file_path, review in ai_review.get("reviews", {}).items():
for suggestion in review.get("suggestions", []):
priority = "medium_priority"
if "security" in suggestion.get("section", "").lower():
priority = "high_priority"
elif "performance" in suggestion.get("section", "").lower():
priority = "low_priority"
recommendations[priority].append({
"type": "ai_review",
"language": "", # AI review doesn't specify language
"issue": suggestion.get("section", "AI Suggestion"),
"description": suggestion.get("description", ""),
"file": file_path,
"line": suggestion.get("line", ""),
"recommendation": suggestion.get("details", ""),
})
# Limit the number of recommendations in each category
limit = 15
recommendations["high_priority"] = recommendations["high_priority"][:limit]
recommendations["medium_priority"] = recommendations["medium_priority"][:limit]
recommendations["low_priority"] = recommendations["low_priority"][:limit]
return recommendations
def _generate_json_report(self, report_name, report_content):
"""
Generate a JSON report.
Args:
report_name (str): Name of the report.
report_content (dict): Report content.
Returns:
str: Path to the generated report.
"""
report_path = os.path.join(self.output_dir, f"{report_name}.json")
with open(report_path, "w", encoding="utf-8") as f:
json.dump(report_content, f, indent=2, ensure_ascii=False)
logger.info(f"Generated JSON report: {report_path}")
return report_path
def _generate_html_report(self, report_name, report_content):
"""
Generate an HTML report.
Args:
report_name (str): Name of the report.
report_content (dict): Report content.
Returns:
str: Path to the generated report.
"""
report_path = os.path.join(self.output_dir, f"{report_name}.html")
# Convert report content to markdown
md_content = self._convert_to_markdown(report_content)
# Convert markdown to HTML
html_content = markdown.markdown(md_content, extensions=["tables", "fenced_code"])
# Add CSS styling
html_content = f"""
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Code Review Report: {report_content['metadata']['repository_name']}</title>
<style>
body {{font-family: Arial, sans-serif; line-height: 1.6; max-width: 1200px; margin: 0 auto; padding: 20px;}}
h1, h2, h3, h4 {{color: #333; margin-top: 30px;}}
h1 {{border-bottom: 2px solid #333; padding-bottom: 10px;}}
h2 {{border-bottom: 1px solid #ccc; padding-bottom: 5px;}}
table {{border-collapse: collapse; width: 100%; margin: 20px 0;}}
th, td {{text-align: left; padding: 12px; border-bottom: 1px solid #ddd;}}
th {{background-color: #f2f2f2;}}
tr:hover {{background-color: #f5f5f5;}}
.metric-card {{background-color: #f9f9f9; border-radius: 5px; padding: 15px; margin: 10px 0; box-shadow: 0 2px 4px rgba(0,0,0,0.1);}}
.metric-value {{font-size: 24px; font-weight: bold; color: #333;}}
.metric-label {{font-size: 14px; color: #666;}}
.severity-critical {{color: #d9534f; font-weight: bold;}}
.severity-high {{color: #f0ad4e; font-weight: bold;}}
.severity-medium {{color: #5bc0de; font-weight: bold;}}
.severity-low {{color: #5cb85c; font-weight: bold;}}
.metrics-container {{display: flex; flex-wrap: wrap; gap: 20px; justify-content: space-between;}}
.metric-card {{flex: 1; min-width: 200px;}}
pre {{background-color: #f5f5f5; padding: 15px; border-radius: 5px; overflow-x: auto;}}
code {{font-family: Consolas, Monaco, 'Andale Mono', monospace; font-size: 14px;}}
.recommendation {{background-color: #f9f9f9; border-left: 4px solid #5bc0de; padding: 10px; margin: 10px 0;}}
.high-priority {{border-left-color: #d9534f;}}
.medium-priority {{border-left-color: #f0ad4e;}}
.low-priority {{border-left-color: #5cb85c;}}
</style>
</head>
<body>
{html_content}
</body>
</html>
"""
with open(report_path, "w", encoding="utf-8") as f:
f.write(html_content)
logger.info(f"Generated HTML report: {report_path}")
return report_path
def _generate_csv_report(self, report_name, report_content):
"""
Generate a CSV report with issues and recommendations.
Args:
report_name (str): Name of the report.
report_content (dict): Report content.
Returns:
str: Path to the generated report.
"""
report_path = os.path.join(self.output_dir, f"{report_name}.csv")
# Collect all issues and recommendations
rows = []
# Add code quality issues
for language, language_results in report_content["code_quality"]["issues_by_language"].items():
for issue in language_results.get("issues", []):
rows.append({
"Type": "Code Quality",
"Language": language,
"Severity": issue.get("severity", ""),
"Issue": issue.get("issue", ""),
"Description": issue.get("description", ""),
"File": issue.get("file", ""),
"Line": issue.get("line", ""),
"Recommendation": issue.get("recommendation", ""),
})
# Add security vulnerabilities
for language, language_results in report_content["security"]["vulnerabilities_by_language"].items():
for vuln in language_results.get("vulnerabilities", []):
rows.append({
"Type": "Security",
"Language": language,
"Severity": vuln.get("severity", ""),
"Issue": vuln.get("issue", ""),
"Description": vuln.get("description", ""),
"File": vuln.get("file", ""),
"Line": vuln.get("line", ""),
"Recommendation": vuln.get("recommendation", ""),
})
# Add performance issues
for language, language_results in report_content["performance"]["issues_by_language"].items():
for issue in language_results.get("issues", []):
rows.append({
"Type": "Performance",
"Language": language,
"Severity": issue.get("severity", "Medium"),
"Issue": issue.get("issue", ""),
"Description": issue.get("description", ""),
"File": issue.get("file", ""),
"Line": issue.get("line", ""),
"Recommendation": issue.get("recommendation", ""),
})
# Add AI review suggestions
for file_path, review in report_content["ai_review"]["file_reviews"].items():
for suggestion in review.get("suggestions", []):
rows.append({
"Type": "AI Review",
"Language": "",
"Severity": "",
"Issue": suggestion.get("section", ""),
"Description": suggestion.get("description", ""),
"File": file_path,
"Line": suggestion.get("line", ""),
"Recommendation": suggestion.get("details", ""),
})
# Write to CSV
with open(report_path, "w", newline="", encoding="utf-8") as f:
fieldnames = ["Type", "Language", "Severity", "Issue", "Description", "File", "Line", "Recommendation"]
writer = csv.DictWriter(f, fieldnames=fieldnames)
writer.writeheader()
writer.writerows(rows)
logger.info(f"Generated CSV report: {report_path}")
return report_path
def _convert_to_markdown(self, report_content):
"""
Convert report content to markdown format.
Args:
report_content (dict): Report content.
Returns:
str: Markdown formatted report.
"""
md = []
# Title and metadata
md.append(f"# Code Review Report: {report_content['metadata']['repository_name']}")
md.append(f"**Report Date:** {report_content['metadata']['report_date']}")
md.append("")
# Repository info
repo_info = report_content['metadata']['repository_info']
md.append("## Repository Information")
md.append(f"**Branch:** {repo_info.get('branch', 'N/A')}")
md.append(f"**Commit:** {repo_info.get('commit', 'N/A')}")
md.append(f"**Remote URL:** {repo_info.get('remote_url', 'N/A')}")
md.append(f"**Size:** {repo_info.get('size', 0)} bytes")
md.append(f"**File Count:** {repo_info.get('file_count', 0)}")
md.append("")
# Summary metrics
md.append("## Executive Summary")
metrics = report_content['summary']['metrics']
md.append(f"**Overall Score:** {metrics.get('overall_score', 0)}/100")
md.append(f"**Quality Rating:** {metrics.get('quality_rating', 'N/A')}")
md.append("")
md.append("### Key Metrics")
md.append("| Metric | Value |")
md.append("| ------ | ----- |")
md.append(f"| Total Files | {metrics.get('total_files', 0)} |")
md.append(f"| Code Quality Issues | {metrics.get('total_code_issues', 0)} |")
md.append(f"| Critical Code Issues | {metrics.get('critical_code_issues', 0)} |")
md.append(f"| Security Vulnerabilities | {metrics.get('total_vulnerabilities', 0)} |")
md.append(f"| Critical Vulnerabilities | {metrics.get('critical_vulnerabilities', 0)} |")
md.append(f"| Performance Issues | {metrics.get('total_performance_issues', 0)} |")
md.append(f"| Performance Hotspots | {metrics.get('performance_hotspots', 0)} |")
md.append("")
# Language breakdown
md.append("### Language Breakdown")
language_breakdown = report_content['summary']['language_breakdown']
md.append("| Language | Files | Lines | Percentage |")
md.append("| -------- | ----- | ----- | ---------- |")
for language, stats in language_breakdown.items():
md.append(f"| {language} | {stats.get('files', 0)} | {stats.get('lines', 0)} | {stats.get('percentage', 0)}% |")
md.append("")
# Executive summary from AI review
md.append("### Executive Summary")
md.append(report_content['summary']['executive_summary'])
md.append("")
# Code quality issues
md.append("## Code Quality Analysis")
md.append("### Top Issues")
top_issues = report_content['code_quality']['top_issues']
if top_issues:
md.append("| Severity | Language | Issue | File | Line |")
md.append("| -------- | -------- | ----- | ---- | ---- |")
for issue in top_issues:
md.append(f"| {issue.get('severity', 'N/A')} | {issue.get('language', 'N/A')} | {issue.get('issue', 'N/A')} | {issue.get('file', 'N/A')} | {issue.get('line', 'N/A')} |")
else:
md.append("No code quality issues found.")
md.append("")
# Security vulnerabilities
md.append("## Security Analysis")
md.append("### Critical Vulnerabilities")
critical_vulnerabilities = report_content['security']['critical_vulnerabilities']
if critical_vulnerabilities:
md.append("| Severity | Language | Vulnerability | File | Line |")
md.append("| -------- | -------- | ------------- | ---- | ---- |")
for vuln in critical_vulnerabilities:
md.append(f"| {vuln.get('severity', 'N/A')} | {vuln.get('language', 'N/A')} | {vuln.get('issue', 'N/A')} | {vuln.get('file', 'N/A')} | {vuln.get('line', 'N/A')} |")
else:
md.append("No critical security vulnerabilities found.")
md.append("")
# Performance analysis
md.append("## Performance Analysis")
md.append("### Performance Hotspots")
hotspots = report_content['performance']['hotspots']
if hotspots:
md.append("| Language | File | Issue Count |")
md.append("| -------- | ---- | ----------- |")
for hotspot in hotspots:
md.append(f"| {hotspot.get('language', 'N/A')} | {hotspot.get('file', 'N/A')} | {hotspot.get('issue_count', 0)} |")
else:
md.append("No performance hotspots found.")
md.append("")
# Recommendations
md.append("## Recommendations")
# High priority recommendations
md.append("### High Priority")
high_priority = report_content['recommendations']['high_priority']
if high_priority:
for i, rec in enumerate(high_priority, 1):
md.append(f"**{i}. {rec.get('issue', 'Recommendation')}**")
md.append(f"- **Type:** {rec.get('type', 'N/A')}")
md.append(f"- **File:** {rec.get('file', 'N/A')}")
if rec.get('line'):
md.append(f"- **Line:** {rec.get('line')}")
md.append(f"- **Description:** {rec.get('description', 'N/A')}")
md.append(f"- **Recommendation:** {rec.get('recommendation', 'N/A')}")
md.append("")
else:
md.append("No high priority recommendations.")
md.append("")
# Medium priority recommendations
md.append("### Medium Priority")
medium_priority = report_content['recommendations']['medium_priority']
if medium_priority:
for i, rec in enumerate(medium_priority, 1):
md.append(f"**{i}. {rec.get('issue', 'Recommendation')}**")
md.append(f"- **Type:** {rec.get('type', 'N/A')}")
md.append(f"- **File:** {rec.get('file', 'N/A')}")
if rec.get('line'):
md.append(f"- **Line:** {rec.get('line')}")
md.append(f"- **Description:** {rec.get('description', 'N/A')}")
md.append(f"- **Recommendation:** {rec.get('recommendation', 'N/A')}")
md.append("")
else:
md.append("No medium priority recommendations.")
md.append("")
# Low priority recommendations
md.append("### Low Priority")
low_priority = report_content['recommendations']['low_priority']
if low_priority:
for i, rec in enumerate(low_priority, 1):
md.append(f"**{i}. {rec.get('issue', 'Recommendation')}**")
md.append(f"- **Type:** {rec.get('type', 'N/A')}")
md.append(f"- **File:** {rec.get('file', 'N/A')}")
if rec.get('line'):
md.append(f"- **Line:** {rec.get('line')}")
md.append(f"- **Description:** {rec.get('description', 'N/A')}")
md.append(f"- **Recommendation:** {rec.get('recommendation', 'N/A')}")
md.append("")
else:
md.append("No low priority recommendations.")
return "\n".join(md) |