File size: 34,035 Bytes
88d205f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e22c34
 
 
 
 
 
 
 
 
 
88d205f
 
 
 
 
 
 
 
1e22c34
88d205f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e22c34
88d205f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

"""
Report Generator Service

This module provides functionality for generating comprehensive code review reports
in various formats based on the analysis results.
"""

import os
import json
import logging
import datetime
from pathlib import Path
import markdown
import csv

logger = logging.getLogger(__name__)

class ReportGenerator:
    """
    Service for generating code review reports in various formats.
    """
    
    def __init__(self, output_dir="reports"):
        """
        Initialize the ReportGenerator.
        
        Args:
            output_dir (str): Directory to save generated reports.
        """
        # Use absolute path for output directory
        if not os.path.isabs(output_dir):
            # Get the absolute path relative to the project root
            project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..'))
            self.output_dir = os.path.join(project_root, output_dir)
        else:
            self.output_dir = output_dir
            
        os.makedirs(self.output_dir, exist_ok=True)
        logger.info(f"Initialized ReportGenerator with output directory: {self.output_dir}")
    
    def generate_report(self, repo_name, results, format_type="all"):
        """
        Generate a report based on the analysis results.
        
        Args:
            repo_name (str): Name of the repository.
            results (dict): Analysis results.
            format_type (str): Report format type (json, html, csv, or all).
        
        Returns:
            dict: Paths to the generated reports.
        """
        timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
        report_name = f"{repo_name}_{timestamp}"
        report_paths = {}
        
        # Create report content
        report_content = self._create_report_content(repo_name, results)
        
        # Generate reports in requested formats
        if format_type in ["json", "all"]:
            json_path = self._generate_json_report(report_name, report_content)
            report_paths["json"] = json_path
        
        if format_type in ["html", "all"]:
            html_path = self._generate_html_report(report_name, report_content)
            report_paths["html"] = html_path
        
        if format_type in ["csv", "all"]:
            csv_path = self._generate_csv_report(report_name, report_content)
            report_paths["csv"] = csv_path
        
        logger.info(f"Generated {len(report_paths)} report(s) for {repo_name}")
        return report_paths
    
    def _create_report_content(self, repo_name, results):
        """
        Create the content for the report.
        
        Args:
            repo_name (str): Name of the repository.
            results (dict): Analysis results.
        
        Returns:
            dict: Structured report content.
        """
        # Extract repository info and metrics
        repo_info = results.get("repository_info", {})
        total_files = repo_info.get("file_count", 0)
        repo_size = repo_info.get("size_bytes", 0)
        
        # Extract code analysis results
        code_analysis = results.get("code_analysis", {})
        total_code_issues = sum(len(lang_result.get("issues", [])) for lang_result in code_analysis.values())
        critical_code_issues = sum(1 for lang_result in code_analysis.values()
                                 for issue in lang_result.get("issues", [])
                                 if issue.get("severity", "").lower() == "critical")
        
        # Extract security scan results
        security_scan = results.get("security", {})
        total_vulnerabilities = sum(len(lang_result.get("vulnerabilities", []))
                                   for lang_result in security_scan.get("vulnerabilities_by_language", {}).values())
        critical_vulnerabilities = len(security_scan.get("critical_vulnerabilities", []))
        
        # Extract performance analysis results
        performance_analysis = results.get("performance", {})
        total_performance_issues = sum(len(lang_result.get("issues", []))
                                      for lang_result in performance_analysis.get("issues_by_language", {}).values())
        performance_hotspots = len(performance_analysis.get("hotspots", []))
        
        # Calculate overall score and rating
        max_score = 100
        deductions = {
            "code_issues": total_code_issues * 2,
            "critical_code_issues": critical_code_issues * 5,
            "vulnerabilities": total_vulnerabilities * 3,
            "critical_vulnerabilities": critical_vulnerabilities * 10,
            "performance_issues": total_performance_issues * 2,
            "performance_hotspots": performance_hotspots * 3
        }
        overall_score = max(0, max_score - sum(deductions.values()))
        
        quality_ratings = [
            (95, "Excellent"),
            (85, "Very Good"),
            (75, "Good"),
            (65, "Fair"),
            (0, "Poor")
        ]
        quality_rating = next(rating for threshold, rating in quality_ratings if overall_score >= threshold)
        
        # Extract language breakdown
        language_breakdown = {}
        for language in code_analysis.keys():
            if code_analysis[language].get("status") != "error":
                language_breakdown[language] = {
                    "files": len([f for f in code_analysis[language].get("issues", []) if "file" in f]),
                    "lines": code_analysis[language].get("total_lines", 0),
                    "percentage": code_analysis[language].get("percentage", 0),
                    "issues": len(code_analysis[language].get("issues", []))
                }
        
        # Extract AI review results
        ai_review = results.get("ai_review", {})
        
        # Calculate summary metrics
        summary_metrics = self._calculate_summary_metrics(results)
        
        # Create report structure
        report = {
            "metadata": {
                "repository_name": repo_name,
                "report_date": datetime.datetime.now().isoformat(),
                "repository_info": repo_info,
            },
            "summary": {
                "metrics": summary_metrics,
                "language_breakdown": language_breakdown,
                "executive_summary": ai_review.get("summary", "No AI review summary available."),
            },
            "code_quality": {
                "issues_by_language": code_analysis,
                "top_issues": self._extract_top_issues(code_analysis),
            },
            "security": {
                "vulnerabilities_by_language": security_scan,
                "critical_vulnerabilities": self._extract_critical_vulnerabilities(security_scan),
            },
            "performance": {
                "issues_by_language": performance_analysis.get("language_results", {}),
                "hotspots": performance_analysis.get("hotspots", []),
            },
            "ai_review": {
                "file_reviews": ai_review.get("reviews", {}),
                "summary": ai_review.get("summary", "No AI review summary available."),
            },
            "recommendations": self._generate_recommendations(results),
        }
        
        return report
    
    def _calculate_summary_metrics(self, results):
        """
        Calculate summary metrics from the analysis results.
        
        Args:
            results (dict): Analysis results.
        
        Returns:
            dict: Summary metrics.
        """
        metrics = {
            "total_files": results.get("repository_info", {}).get("file_count", 0),
            "repository_size": results.get("repository_info", {}).get("size", 0),
        }
        
        # Count code quality issues
        code_analysis = results.get("code_analysis", {})
        total_issues = 0
        critical_issues = 0
        for language, language_results in code_analysis.items():
            total_issues += language_results.get("issue_count", 0)
            for issue in language_results.get("issues", []):
                if issue.get("severity", "").lower() in ["critical", "high"]:
                    critical_issues += 1
        
        metrics["total_code_issues"] = total_issues
        metrics["critical_code_issues"] = critical_issues
        
        # Count security vulnerabilities
        security_scan = results.get("security_scan", {})
        total_vulnerabilities = 0
        critical_vulnerabilities = 0
        for language, language_results in security_scan.items():
            total_vulnerabilities += language_results.get("vulnerability_count", 0)
            for vuln in language_results.get("vulnerabilities", []):
                if vuln.get("severity", "").lower() in ["critical", "high"]:
                    critical_vulnerabilities += 1
        
        metrics["total_vulnerabilities"] = total_vulnerabilities
        metrics["critical_vulnerabilities"] = critical_vulnerabilities
        
        # Count performance issues
        performance_analysis = results.get("performance_analysis", {})
        total_performance_issues = 0
        for language, language_results in performance_analysis.get("language_results", {}).items():
            total_performance_issues += language_results.get("issue_count", 0)
        
        metrics["total_performance_issues"] = total_performance_issues
        metrics["performance_hotspots"] = len(performance_analysis.get("hotspots", []))
        
        # Calculate overall score (0-100)
        # This is a simple scoring algorithm that can be refined
        base_score = 100
        deductions = 0
        
        # Deduct for code issues (more weight for critical issues)
        if metrics["total_files"] > 0:
            code_issue_ratio = metrics["total_code_issues"] / metrics["total_files"]
            deductions += min(30, code_issue_ratio * 100)
            deductions += min(20, (metrics["critical_code_issues"] / metrics["total_files"]) * 200)
        
        # Deduct for security vulnerabilities (heavy weight for critical vulnerabilities)
        if metrics["total_files"] > 0:
            deductions += min(30, (metrics["total_vulnerabilities"] / metrics["total_files"]) * 150)
            deductions += min(40, (metrics["critical_vulnerabilities"] / metrics["total_files"]) * 300)
        
        # Deduct for performance issues
        if metrics["total_files"] > 0:
            deductions += min(20, (metrics["total_performance_issues"] / metrics["total_files"]) * 80)
            deductions += min(10, (metrics["performance_hotspots"] / metrics["total_files"]) * 100)
        
        metrics["overall_score"] = max(0, min(100, base_score - deductions))
        
        # Determine quality rating based on score
        if metrics["overall_score"] >= 90:
            metrics["quality_rating"] = "Excellent"
        elif metrics["overall_score"] >= 80:
            metrics["quality_rating"] = "Good"
        elif metrics["overall_score"] >= 70:
            metrics["quality_rating"] = "Satisfactory"
        elif metrics["overall_score"] >= 50:
            metrics["quality_rating"] = "Needs Improvement"
        else:
            metrics["quality_rating"] = "Poor"
        
        return metrics
    
    def _extract_top_issues(self, code_analysis, limit=10):
        """
        Extract the top code quality issues from the analysis results.
        
        Args:
            code_analysis (dict): Code analysis results.
            limit (int): Maximum number of issues to extract.
        
        Returns:
            list: Top code quality issues.
        """
        all_issues = []
        
        for language, language_results in code_analysis.items():
            for issue in language_results.get("issues", []):
                # Add language to the issue
                issue["language"] = language
                all_issues.append(issue)
        
        # Sort issues by severity and then by line count if available
        severity_order = {"critical": 0, "high": 1, "medium": 2, "low": 3, "info": 4}
        
        def issue_sort_key(issue):
            severity = issue.get("severity", "").lower()
            severity_value = severity_order.get(severity, 5)
            return (severity_value, -issue.get("line_count", 0))
        
        sorted_issues = sorted(all_issues, key=issue_sort_key)
        
        return sorted_issues[:limit]
    
    def _extract_critical_vulnerabilities(self, security_scan, limit=10):
        """
        Extract critical security vulnerabilities from the scan results.
        
        Args:
            security_scan (dict): Security scan results.
            limit (int): Maximum number of vulnerabilities to extract.
        
        Returns:
            list: Critical security vulnerabilities.
        """
        all_vulnerabilities = []
        
        for language, language_results in security_scan.items():
            for vuln in language_results.get("vulnerabilities", []):
                # Add language to the vulnerability
                vuln["language"] = language
                all_vulnerabilities.append(vuln)
        
        # Sort vulnerabilities by severity
        severity_order = {"critical": 0, "high": 1, "medium": 2, "low": 3, "info": 4}
        
        def vuln_sort_key(vuln):
            severity = vuln.get("severity", "").lower()
            severity_value = severity_order.get(severity, 5)
            return severity_value
        
        sorted_vulnerabilities = sorted(all_vulnerabilities, key=vuln_sort_key)
        
        return sorted_vulnerabilities[:limit]
    
    def _generate_recommendations(self, results):
        """
        Generate recommendations based on the analysis results.
        
        Args:
            results (dict): Analysis results.
        
        Returns:
            dict: Recommendations categorized by priority.
        """
        recommendations = {
            "high_priority": [],
            "medium_priority": [],
            "low_priority": [],
        }
        
        # Extract critical security vulnerabilities as high priority recommendations
        security_scan = results.get("security_scan", {})
        for language, language_results in security_scan.items():
            for vuln in language_results.get("vulnerabilities", []):
                if vuln.get("severity", "").lower() in ["critical", "high"]:
                    recommendations["high_priority"].append({
                        "type": "security",
                        "language": language,
                        "issue": vuln.get("issue", "Unknown vulnerability"),
                        "description": vuln.get("description", ""),
                        "file": vuln.get("file", ""),
                        "line": vuln.get("line", ""),
                        "recommendation": vuln.get("recommendation", "Fix this security vulnerability."),
                    })
        
        # Extract critical code quality issues as medium priority recommendations
        code_analysis = results.get("code_analysis", {})
        for language, language_results in code_analysis.items():
            for issue in language_results.get("issues", []):
                if issue.get("severity", "").lower() in ["critical", "high"]:
                    recommendations["medium_priority"].append({
                        "type": "code_quality",
                        "language": language,
                        "issue": issue.get("issue", "Unknown issue"),
                        "description": issue.get("description", ""),
                        "file": issue.get("file", ""),
                        "line": issue.get("line", ""),
                        "recommendation": issue.get("recommendation", "Address this code quality issue."),
                    })
        
        # Extract performance hotspots as medium priority recommendations
        performance_analysis = results.get("performance_analysis", {})
        for hotspot in performance_analysis.get("hotspots", []):
            recommendations["medium_priority"].append({
                "type": "performance",
                "language": hotspot.get("language", ""),
                "issue": "Performance Hotspot",
                "description": f"File contains {hotspot.get('issue_count', 0)} performance issues",
                "file": hotspot.get("file", ""),
                "recommendation": "Optimize this file to improve performance.",
            })
        
        # Extract other performance issues as low priority recommendations
        for language, language_results in performance_analysis.get("language_results", {}).items():
            for issue in language_results.get("issues", []):
                # Skip issues that are already part of hotspots
                if any(hotspot.get("file", "") == issue.get("file", "") for hotspot in performance_analysis.get("hotspots", [])):
                    continue
                
                recommendations["low_priority"].append({
                    "type": "performance",
                    "language": language,
                    "issue": issue.get("issue", "Unknown issue"),
                    "description": issue.get("description", ""),
                    "file": issue.get("file", ""),
                    "line": issue.get("line", ""),
                    "recommendation": issue.get("recommendation", "Consider optimizing this code."),
                })
        
        # Extract AI review suggestions as recommendations
        ai_review = results.get("ai_review", {})
        for file_path, review in ai_review.get("reviews", {}).items():
            for suggestion in review.get("suggestions", []):
                priority = "medium_priority"
                if "security" in suggestion.get("section", "").lower():
                    priority = "high_priority"
                elif "performance" in suggestion.get("section", "").lower():
                    priority = "low_priority"
                
                recommendations[priority].append({
                    "type": "ai_review",
                    "language": "",  # AI review doesn't specify language
                    "issue": suggestion.get("section", "AI Suggestion"),
                    "description": suggestion.get("description", ""),
                    "file": file_path,
                    "line": suggestion.get("line", ""),
                    "recommendation": suggestion.get("details", ""),
                })
        
        # Limit the number of recommendations in each category
        limit = 15
        recommendations["high_priority"] = recommendations["high_priority"][:limit]
        recommendations["medium_priority"] = recommendations["medium_priority"][:limit]
        recommendations["low_priority"] = recommendations["low_priority"][:limit]
        
        return recommendations
    
    def _generate_json_report(self, report_name, report_content):
        """
        Generate a JSON report.
        
        Args:
            report_name (str): Name of the report.
            report_content (dict): Report content.
        
        Returns:
            str: Path to the generated report.
        """
        report_path = os.path.join(self.output_dir, f"{report_name}.json")
        
        with open(report_path, "w", encoding="utf-8") as f:
            json.dump(report_content, f, indent=2, ensure_ascii=False)
        
        logger.info(f"Generated JSON report: {report_path}")
        return report_path
    
    def _generate_html_report(self, report_name, report_content):
        """
        Generate an HTML report.
        
        Args:
            report_name (str): Name of the report.
            report_content (dict): Report content.
        
        Returns:
            str: Path to the generated report.
        """
        report_path = os.path.join(self.output_dir, f"{report_name}.html")
        
        # Convert report content to markdown
        md_content = self._convert_to_markdown(report_content)
        
        # Convert markdown to HTML
        html_content = markdown.markdown(md_content, extensions=["tables", "fenced_code"])
        
        # Add CSS styling
        html_content = f"""
        <!DOCTYPE html>
        <html>
        <head>
            <meta charset="utf-8">
            <meta name="viewport" content="width=device-width, initial-scale=1">
            <title>Code Review Report: {report_content['metadata']['repository_name']}</title>
            <style>
                body {{font-family: Arial, sans-serif; line-height: 1.6; max-width: 1200px; margin: 0 auto; padding: 20px;}}
                h1, h2, h3, h4 {{color: #333; margin-top: 30px;}}
                h1 {{border-bottom: 2px solid #333; padding-bottom: 10px;}}
                h2 {{border-bottom: 1px solid #ccc; padding-bottom: 5px;}}
                table {{border-collapse: collapse; width: 100%; margin: 20px 0;}}
                th, td {{text-align: left; padding: 12px; border-bottom: 1px solid #ddd;}}
                th {{background-color: #f2f2f2;}}
                tr:hover {{background-color: #f5f5f5;}}
                .metric-card {{background-color: #f9f9f9; border-radius: 5px; padding: 15px; margin: 10px 0; box-shadow: 0 2px 4px rgba(0,0,0,0.1);}}
                .metric-value {{font-size: 24px; font-weight: bold; color: #333;}}
                .metric-label {{font-size: 14px; color: #666;}}
                .severity-critical {{color: #d9534f; font-weight: bold;}}
                .severity-high {{color: #f0ad4e; font-weight: bold;}}
                .severity-medium {{color: #5bc0de; font-weight: bold;}}
                .severity-low {{color: #5cb85c; font-weight: bold;}}
                .metrics-container {{display: flex; flex-wrap: wrap; gap: 20px; justify-content: space-between;}}
                .metric-card {{flex: 1; min-width: 200px;}}
                pre {{background-color: #f5f5f5; padding: 15px; border-radius: 5px; overflow-x: auto;}}
                code {{font-family: Consolas, Monaco, 'Andale Mono', monospace; font-size: 14px;}}
                .recommendation {{background-color: #f9f9f9; border-left: 4px solid #5bc0de; padding: 10px; margin: 10px 0;}}
                .high-priority {{border-left-color: #d9534f;}}
                .medium-priority {{border-left-color: #f0ad4e;}}
                .low-priority {{border-left-color: #5cb85c;}}
            </style>
        </head>
        <body>
            {html_content}
        </body>
        </html>
        """
        
        with open(report_path, "w", encoding="utf-8") as f:
            f.write(html_content)
        
        logger.info(f"Generated HTML report: {report_path}")
        return report_path
    

    
    def _generate_csv_report(self, report_name, report_content):
        """
        Generate a CSV report with issues and recommendations.
        
        Args:
            report_name (str): Name of the report.
            report_content (dict): Report content.
        
        Returns:
            str: Path to the generated report.
        """
        report_path = os.path.join(self.output_dir, f"{report_name}.csv")
        
        # Collect all issues and recommendations
        rows = []
        
        # Add code quality issues
        for language, language_results in report_content["code_quality"]["issues_by_language"].items():
            for issue in language_results.get("issues", []):
                rows.append({
                    "Type": "Code Quality",
                    "Language": language,
                    "Severity": issue.get("severity", ""),
                    "Issue": issue.get("issue", ""),
                    "Description": issue.get("description", ""),
                    "File": issue.get("file", ""),
                    "Line": issue.get("line", ""),
                    "Recommendation": issue.get("recommendation", ""),
                })
        
        # Add security vulnerabilities
        for language, language_results in report_content["security"]["vulnerabilities_by_language"].items():
            for vuln in language_results.get("vulnerabilities", []):
                rows.append({
                    "Type": "Security",
                    "Language": language,
                    "Severity": vuln.get("severity", ""),
                    "Issue": vuln.get("issue", ""),
                    "Description": vuln.get("description", ""),
                    "File": vuln.get("file", ""),
                    "Line": vuln.get("line", ""),
                    "Recommendation": vuln.get("recommendation", ""),
                })
        
        # Add performance issues
        for language, language_results in report_content["performance"]["issues_by_language"].items():
            for issue in language_results.get("issues", []):
                rows.append({
                    "Type": "Performance",
                    "Language": language,
                    "Severity": issue.get("severity", "Medium"),
                    "Issue": issue.get("issue", ""),
                    "Description": issue.get("description", ""),
                    "File": issue.get("file", ""),
                    "Line": issue.get("line", ""),
                    "Recommendation": issue.get("recommendation", ""),
                })
        
        # Add AI review suggestions
        for file_path, review in report_content["ai_review"]["file_reviews"].items():
            for suggestion in review.get("suggestions", []):
                rows.append({
                    "Type": "AI Review",
                    "Language": "",
                    "Severity": "",
                    "Issue": suggestion.get("section", ""),
                    "Description": suggestion.get("description", ""),
                    "File": file_path,
                    "Line": suggestion.get("line", ""),
                    "Recommendation": suggestion.get("details", ""),
                })
        
        # Write to CSV
        with open(report_path, "w", newline="", encoding="utf-8") as f:
            fieldnames = ["Type", "Language", "Severity", "Issue", "Description", "File", "Line", "Recommendation"]
            writer = csv.DictWriter(f, fieldnames=fieldnames)
            writer.writeheader()
            writer.writerows(rows)
        
        logger.info(f"Generated CSV report: {report_path}")
        return report_path
    
    def _convert_to_markdown(self, report_content):
        """
        Convert report content to markdown format.
        
        Args:
            report_content (dict): Report content.
        
        Returns:
            str: Markdown formatted report.
        """
        md = []
        
        # Title and metadata
        md.append(f"# Code Review Report: {report_content['metadata']['repository_name']}")
        md.append(f"**Report Date:** {report_content['metadata']['report_date']}")
        md.append("")
        
        # Repository info
        repo_info = report_content['metadata']['repository_info']
        md.append("## Repository Information")
        md.append(f"**Branch:** {repo_info.get('branch', 'N/A')}")
        md.append(f"**Commit:** {repo_info.get('commit', 'N/A')}")
        md.append(f"**Remote URL:** {repo_info.get('remote_url', 'N/A')}")
        md.append(f"**Size:** {repo_info.get('size', 0)} bytes")
        md.append(f"**File Count:** {repo_info.get('file_count', 0)}")
        md.append("")
        
        # Summary metrics
        md.append("## Executive Summary")
        metrics = report_content['summary']['metrics']
        md.append(f"**Overall Score:** {metrics.get('overall_score', 0)}/100")
        md.append(f"**Quality Rating:** {metrics.get('quality_rating', 'N/A')}")
        md.append("")
        md.append("### Key Metrics")
        md.append("| Metric | Value |")
        md.append("| ------ | ----- |")
        md.append(f"| Total Files | {metrics.get('total_files', 0)} |")
        md.append(f"| Code Quality Issues | {metrics.get('total_code_issues', 0)} |")
        md.append(f"| Critical Code Issues | {metrics.get('critical_code_issues', 0)} |")
        md.append(f"| Security Vulnerabilities | {metrics.get('total_vulnerabilities', 0)} |")
        md.append(f"| Critical Vulnerabilities | {metrics.get('critical_vulnerabilities', 0)} |")
        md.append(f"| Performance Issues | {metrics.get('total_performance_issues', 0)} |")
        md.append(f"| Performance Hotspots | {metrics.get('performance_hotspots', 0)} |")
        md.append("")
        
        # Language breakdown
        md.append("### Language Breakdown")
        language_breakdown = report_content['summary']['language_breakdown']
        md.append("| Language | Files | Lines | Percentage |")
        md.append("| -------- | ----- | ----- | ---------- |")
        for language, stats in language_breakdown.items():
            md.append(f"| {language} | {stats.get('files', 0)} | {stats.get('lines', 0)} | {stats.get('percentage', 0)}% |")
        md.append("")
        
        # Executive summary from AI review
        md.append("### Executive Summary")
        md.append(report_content['summary']['executive_summary'])
        md.append("")
        
        # Code quality issues
        md.append("## Code Quality Analysis")
        md.append("### Top Issues")
        top_issues = report_content['code_quality']['top_issues']
        if top_issues:
            md.append("| Severity | Language | Issue | File | Line |")
            md.append("| -------- | -------- | ----- | ---- | ---- |")
            for issue in top_issues:
                md.append(f"| {issue.get('severity', 'N/A')} | {issue.get('language', 'N/A')} | {issue.get('issue', 'N/A')} | {issue.get('file', 'N/A')} | {issue.get('line', 'N/A')} |")
        else:
            md.append("No code quality issues found.")
        md.append("")
        
        # Security vulnerabilities
        md.append("## Security Analysis")
        md.append("### Critical Vulnerabilities")
        critical_vulnerabilities = report_content['security']['critical_vulnerabilities']
        if critical_vulnerabilities:
            md.append("| Severity | Language | Vulnerability | File | Line |")
            md.append("| -------- | -------- | ------------- | ---- | ---- |")
            for vuln in critical_vulnerabilities:
                md.append(f"| {vuln.get('severity', 'N/A')} | {vuln.get('language', 'N/A')} | {vuln.get('issue', 'N/A')} | {vuln.get('file', 'N/A')} | {vuln.get('line', 'N/A')} |")
        else:
            md.append("No critical security vulnerabilities found.")
        md.append("")
        
        # Performance analysis
        md.append("## Performance Analysis")
        md.append("### Performance Hotspots")
        hotspots = report_content['performance']['hotspots']
        if hotspots:
            md.append("| Language | File | Issue Count |")
            md.append("| -------- | ---- | ----------- |")
            for hotspot in hotspots:
                md.append(f"| {hotspot.get('language', 'N/A')} | {hotspot.get('file', 'N/A')} | {hotspot.get('issue_count', 0)} |")
        else:
            md.append("No performance hotspots found.")
        md.append("")
        
        # Recommendations
        md.append("## Recommendations")
        
        # High priority recommendations
        md.append("### High Priority")
        high_priority = report_content['recommendations']['high_priority']
        if high_priority:
            for i, rec in enumerate(high_priority, 1):
                md.append(f"**{i}. {rec.get('issue', 'Recommendation')}**")
                md.append(f"- **Type:** {rec.get('type', 'N/A')}")
                md.append(f"- **File:** {rec.get('file', 'N/A')}")
                if rec.get('line'):
                    md.append(f"- **Line:** {rec.get('line')}")
                md.append(f"- **Description:** {rec.get('description', 'N/A')}")
                md.append(f"- **Recommendation:** {rec.get('recommendation', 'N/A')}")
                md.append("")
        else:
            md.append("No high priority recommendations.")
        md.append("")
        
        # Medium priority recommendations
        md.append("### Medium Priority")
        medium_priority = report_content['recommendations']['medium_priority']
        if medium_priority:
            for i, rec in enumerate(medium_priority, 1):
                md.append(f"**{i}. {rec.get('issue', 'Recommendation')}**")
                md.append(f"- **Type:** {rec.get('type', 'N/A')}")
                md.append(f"- **File:** {rec.get('file', 'N/A')}")
                if rec.get('line'):
                    md.append(f"- **Line:** {rec.get('line')}")
                md.append(f"- **Description:** {rec.get('description', 'N/A')}")
                md.append(f"- **Recommendation:** {rec.get('recommendation', 'N/A')}")
                md.append("")
        else:
            md.append("No medium priority recommendations.")
        md.append("")
        
        # Low priority recommendations
        md.append("### Low Priority")
        low_priority = report_content['recommendations']['low_priority']
        if low_priority:
            for i, rec in enumerate(low_priority, 1):
                md.append(f"**{i}. {rec.get('issue', 'Recommendation')}**")
                md.append(f"- **Type:** {rec.get('type', 'N/A')}")
                md.append(f"- **File:** {rec.get('file', 'N/A')}")
                if rec.get('line'):
                    md.append(f"- **Line:** {rec.get('line')}")
                md.append(f"- **Description:** {rec.get('description', 'N/A')}")
                md.append(f"- **Recommendation:** {rec.get('recommendation', 'N/A')}")
                md.append("")
        else:
            md.append("No low priority recommendations.")
        
        return "\n".join(md)