#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Performance Analyzer Service This module provides functionality for analyzing code performance across different languages. """ import os import re import logging import subprocess import json import concurrent.futures from collections import defaultdict logger = logging.getLogger(__name__) class PerformanceAnalyzer: """ Service for analyzing code performance across different languages. """ def __init__(self): """ Initialize the PerformanceAnalyzer. """ logger.info("Initialized PerformanceAnalyzer") self.analyzers = { 'Python': self._analyze_python_performance, 'JavaScript': self._analyze_javascript_performance, 'TypeScript': self._analyze_typescript_performance, 'Java': self._analyze_java_performance, 'Go': self._analyze_go_performance, 'Rust': self._analyze_rust_performance, } # Initialize performance patterns for different languages self._init_performance_patterns() def _init_performance_patterns(self): """ Initialize performance patterns for different languages. """ # Python performance patterns self.python_patterns = [ { 'name': 'Inefficient list comprehension', 'pattern': r'\[.*?for.*?in.*?for.*?in.*?\]', 'severity': 'medium', 'description': 'Nested list comprehensions can be inefficient for large datasets.', 'suggestion': 'Consider using itertools or breaking into separate operations.', }, { 'name': 'String concatenation in loop', 'pattern': r'for.*?\+\=\s*[\'\"](.*?)[\'\"]', 'severity': 'medium', 'description': 'String concatenation in loops is inefficient in Python.', 'suggestion': 'Use string join() or a list of strings with join() at the end.', }, { 'name': 'Global variable in loop', 'pattern': r'global\s+\w+.*?for\s+\w+\s+in', 'severity': 'medium', 'description': 'Modifying global variables in loops can be inefficient.', 'suggestion': 'Use local variables and return values instead.', }, { 'name': 'Inefficient dict/list access in loop', 'pattern': r'for.*?in.*?:\s*.*?\[.*?\]\s*=', 'severity': 'medium', 'description': 'Repeatedly accessing dictionary or list elements in a loop can be inefficient.', 'suggestion': 'Consider using a local variable to store the accessed element.', }, { 'name': 'Using range(len())', 'pattern': r'for\s+\w+\s+in\s+range\(len\(', 'severity': 'low', 'description': 'Using range(len()) is less readable than using enumerate().', 'suggestion': 'Use enumerate() instead of range(len()).', }, { 'name': 'Inefficient regular expression', 'pattern': r're\.compile\([\'\"].*?[\+\*].*?[\'\"]\)', 'severity': 'medium', 'description': 'Complex regular expressions can be inefficient.', 'suggestion': 'Simplify the regular expression or use more specific patterns.', }, { 'name': 'Large memory allocation', 'pattern': r'\[.*?for.*?in\s+range\(\d{7,}\)\]', 'severity': 'high', 'description': 'Creating large lists in memory can cause performance issues.', 'suggestion': 'Use generators or iterators instead of creating large lists.', }, { 'name': 'Inefficient database query in loop', 'pattern': r'for.*?in.*?:\s*.*?\.execute\(', 'severity': 'high', 'description': 'Executing database queries in a loop can be very inefficient.', 'suggestion': 'Use batch operations or join queries instead of querying in a loop.', }, ] # JavaScript performance patterns self.javascript_patterns = [ { 'name': 'DOM manipulation in loop', 'pattern': r'for\s*\(.*?\)\s*\{.*?document\..*?\}', 'severity': 'high', 'description': 'Manipulating the DOM inside loops can cause performance issues.', 'suggestion': 'Batch DOM updates or use DocumentFragment.', }, { 'name': 'Inefficient array manipulation', 'pattern': r'for\s*\(.*?\)\s*\{.*?splice\(.*?\}', 'severity': 'medium', 'description': 'Using splice() in loops can be inefficient for large arrays.', 'suggestion': 'Consider using filter() or other array methods.', }, { 'name': 'Creating functions in loops', 'pattern': r'for\s*\(.*?\)\s*\{.*?function\s*\(.*?\)\s*\{.*?\}.*?\}', 'severity': 'medium', 'description': 'Creating functions inside loops can lead to performance issues.', 'suggestion': 'Define the function outside the loop and reference it.', }, { 'name': 'Inefficient string concatenation', 'pattern': r'for\s*\(.*?\)\s*\{.*?\+\=\s*[\'\"](.*?)[\'\"].*?\}', 'severity': 'medium', 'description': 'String concatenation in loops can be inefficient.', 'suggestion': 'Use array join() or template literals.', }, { 'name': 'Using eval()', 'pattern': r'eval\(', 'severity': 'high', 'description': 'Using eval() is slow and can introduce security vulnerabilities.', 'suggestion': 'Avoid using eval() and use safer alternatives.', }, { 'name': 'Inefficient event handling', 'pattern': r'addEventListener\([\'\"].*?[\'\"],\s*function', 'severity': 'medium', 'description': 'Anonymous functions in event listeners can lead to memory leaks.', 'suggestion': 'Use named functions for event handlers to allow proper cleanup.', }, ] # TypeScript performance patterns (extends JavaScript patterns) self.typescript_patterns = self.javascript_patterns + [ { 'name': 'Inefficient type assertion', 'pattern': r'<.*?>\s*\(.*?\)', 'severity': 'low', 'description': 'Excessive type assertions can impact runtime performance.', 'suggestion': 'Use proper typing and interfaces instead of frequent type assertions.', }, { 'name': 'Complex type definitions', 'pattern': r'type\s+\w+\s*=\s*\{[^\}]{500,}\}', 'severity': 'medium', 'description': 'Overly complex type definitions can slow down the TypeScript compiler.', 'suggestion': 'Break complex types into smaller, reusable interfaces.', }, ] # Java performance patterns self.java_patterns = [ { 'name': 'Inefficient string concatenation', 'pattern': r'for\s*\(.*?\)\s*\{.*?\+\=\s*[\'\"](.*?)[\'\"].*?\}', 'severity': 'medium', 'description': 'String concatenation in loops is inefficient in Java.', 'suggestion': 'Use StringBuilder or StringBuffer instead.', }, { 'name': 'Creating objects in loops', 'pattern': r'for\s*\(.*?\)\s*\{.*?new\s+\w+\(.*?\).*?\}', 'severity': 'medium', 'description': 'Creating objects inside loops can lead to excessive garbage collection.', 'suggestion': 'Create objects outside the loop or use object pooling.', }, { 'name': 'Inefficient collection iteration', 'pattern': r'for\s*\(int\s+i\s*=\s*0.*?i\s*<\s*\w+\.size\(\).*?\)', 'severity': 'low', 'description': 'Calling size() in each iteration can be inefficient for some collections.', 'suggestion': 'Store the size in a variable before the loop.', }, { 'name': 'Using boxed primitives in performance-critical code', 'pattern': r'(Integer|Boolean|Double|Float|Long)\s+\w+\s*=', 'severity': 'low', 'description': 'Using boxed primitives can be less efficient than primitive types.', 'suggestion': 'Use primitive types (int, boolean, etc.) in performance-critical code.', }, { 'name': 'Inefficient exception handling', 'pattern': r'try\s*\{.*?\}\s*catch\s*\(Exception\s+\w+\)\s*\{', 'severity': 'medium', 'description': 'Catching generic exceptions can hide issues and impact performance.', 'suggestion': 'Catch specific exceptions and handle them appropriately.', }, ] # Go performance patterns self.go_patterns = [ { 'name': 'Inefficient string concatenation', 'pattern': r'for\s+.*?\{.*?\+\=\s*[\'\"](.*?)[\'\"].*?\}', 'severity': 'medium', 'description': 'String concatenation in loops can be inefficient.', 'suggestion': 'Use strings.Builder for string concatenation in loops.', }, { 'name': 'Inefficient slice operations', 'pattern': r'for\s+.*?\{.*?append\(.*?\}', 'severity': 'medium', 'description': 'Repeatedly appending to a slice can cause multiple allocations.', 'suggestion': 'Pre-allocate slices with make() when the size is known.', }, { 'name': 'Mutex in hot path', 'pattern': r'func\s+\(.*?\)\s+\w+\(.*?\)\s+\{.*?Lock\(\).*?Unlock\(\)', 'severity': 'medium', 'description': 'Using mutexes in frequently called functions can impact performance.', 'suggestion': 'Consider using atomic operations or redesigning for less contention.', }, { 'name': 'Inefficient map iteration', 'pattern': r'for\s+\w+,\s*_\s*:=\s*range', 'severity': 'low', 'description': 'Iterating over maps when only keys are needed can be inefficient.', 'suggestion': 'Use a slice for ordered data when possible.', }, ] # Rust performance patterns self.rust_patterns = [ { 'name': 'Inefficient string operations', 'pattern': r'for\s+.*?\{.*?\.push_str\(.*?\}', 'severity': 'medium', 'description': 'Repeatedly pushing to strings can be inefficient.', 'suggestion': 'Use string concatenation with the format! macro or String::with_capacity().', }, { 'name': 'Excessive cloning', 'pattern': r'\.clone\(\)', 'severity': 'medium', 'description': 'Excessive cloning can impact performance.', 'suggestion': 'Use references or ownership transfer where possible.', }, { 'name': 'Inefficient vector operations', 'pattern': r'for\s+.*?\{.*?\.push\(.*?\}', 'severity': 'medium', 'description': 'Repeatedly pushing to vectors can cause multiple allocations.', 'suggestion': 'Pre-allocate vectors with Vec::with_capacity() when the size is known.', }, { 'name': 'Box allocation in loops', 'pattern': r'for\s+.*?\{.*?Box::new\(.*?\}', 'severity': 'medium', 'description': 'Allocating boxes in loops can be inefficient.', 'suggestion': 'Allocate memory outside the loop when possible.', }, ] def analyze_repository(self, repo_path, languages): """ Analyze code performance in a repository for the specified languages using parallel processing. Args: repo_path (str): The path to the repository. languages (list): A list of programming languages to analyze. Returns: dict: A dictionary containing performance analysis results for each language. """ logger.info(f"Analyzing performance in repository at {repo_path} for languages: {languages}") results = {} # Define a function to analyze a single language def analyze_language(language): if language in self.analyzers: try: logger.info(f"Analyzing {language} code performance in {repo_path}") return language, self.analyzers[language](repo_path) except Exception as e: logger.error(f"Error analyzing {language} code performance: {e}") return language, { 'status': 'error', 'error': str(e), 'issues': [], } else: logger.warning(f"No performance analyzer available for {language}") return language, { 'status': 'not_supported', 'message': f"Performance analysis for {language} is not supported yet.", 'issues': [], } # Use ThreadPoolExecutor to analyze languages in parallel with concurrent.futures.ThreadPoolExecutor(max_workers=min(len(languages), 5)) as executor: # Submit all language analysis tasks future_to_language = {executor.submit(analyze_language, language): language for language in languages} # Process results as they complete for future in concurrent.futures.as_completed(future_to_language): language = future_to_language[future] try: lang, result = future.result() results[lang] = result logger.info(f"Completed performance analysis for {lang}") except Exception as e: logger.error(f"Exception occurred during performance analysis of {language}: {e}") results[language] = { 'status': 'error', 'error': str(e), 'issues': [], } # Identify hotspots (files with multiple performance issues) hotspots = self._identify_hotspots(results) return { 'language_results': results, 'hotspots': hotspots, } def _identify_hotspots(self, results): """ Identify performance hotspots across all languages. Args: results (dict): Performance analysis results for each language. Returns: list: A list of hotspot files with multiple performance issues. """ # Count issues per file across all languages file_issue_count = defaultdict(int) file_issues = defaultdict(list) for language, language_result in results.items(): for issue in language_result.get('issues', []): file_path = issue.get('file', '') if file_path: file_issue_count[file_path] += 1 file_issues[file_path].append(issue) # Identify hotspots (files with multiple issues) hotspots = [] for file_path, count in sorted(file_issue_count.items(), key=lambda x: x[1], reverse=True): if count >= 2: # Files with at least 2 issues are considered hotspots hotspots.append({ 'file': file_path, 'issue_count': count, 'issues': file_issues[file_path], }) return hotspots[:10] # Return top 10 hotspots def _analyze_python_performance(self, repo_path): """ Analyze Python code for performance issues. Args: repo_path (str): The path to the repository. Returns: dict: Performance analysis results for Python code. """ logger.info(f"Analyzing Python code performance in {repo_path}") # Find Python files python_files = [] for root, _, files in os.walk(repo_path): for file in files: if file.endswith('.py'): python_files.append(os.path.join(root, file)) if not python_files: return { 'status': 'no_files', 'message': 'No Python files found in the repository.', 'issues': [], } # Analyze each Python file issues = [] for file_path in python_files: try: with open(file_path, 'r', encoding='utf-8', errors='ignore') as f: content = f.read() # Check for performance patterns for pattern in self.python_patterns: matches = re.finditer(pattern['pattern'], content) for match in matches: line_number = content[:match.start()].count('\n') + 1 code_snippet = match.group(0) issues.append({ 'file': file_path, 'line': line_number, 'code': code_snippet, 'issue': pattern['name'], 'description': pattern['description'], 'suggestion': pattern['suggestion'], 'severity': pattern['severity'], 'language': 'Python', }) except Exception as e: logger.error(f"Error analyzing Python file {file_path}: {e}") # Group issues by severity issues_by_severity = defaultdict(list) for issue in issues: severity = issue.get('severity', 'unknown') issues_by_severity[severity].append(issue) return { 'status': 'success', 'issues': issues, 'issues_by_severity': dict(issues_by_severity), 'issue_count': len(issues), 'files_analyzed': len(python_files), } def _analyze_javascript_performance(self, repo_path): """ Analyze JavaScript code for performance issues. Args: repo_path (str): The path to the repository. Returns: dict: Performance analysis results for JavaScript code. """ logger.info(f"Analyzing JavaScript code performance in {repo_path}") # Find JavaScript files js_files = [] for root, _, files in os.walk(repo_path): if 'node_modules' in root: continue for file in files: if file.endswith(('.js', '.jsx')): js_files.append(os.path.join(root, file)) if not js_files: return { 'status': 'no_files', 'message': 'No JavaScript files found in the repository.', 'issues': [], } # Analyze each JavaScript file issues = [] for file_path in js_files: try: with open(file_path, 'r', encoding='utf-8', errors='ignore') as f: content = f.read() # Check for performance patterns for pattern in self.javascript_patterns: matches = re.finditer(pattern['pattern'], content) for match in matches: line_number = content[:match.start()].count('\n') + 1 code_snippet = match.group(0) issues.append({ 'file': file_path, 'line': line_number, 'code': code_snippet, 'issue': pattern['name'], 'description': pattern['description'], 'suggestion': pattern['suggestion'], 'severity': pattern['severity'], 'language': 'JavaScript', }) except Exception as e: logger.error(f"Error analyzing JavaScript file {file_path}: {e}") # Group issues by severity issues_by_severity = defaultdict(list) for issue in issues: severity = issue.get('severity', 'unknown') issues_by_severity[severity].append(issue) return { 'status': 'success', 'issues': issues, 'issues_by_severity': dict(issues_by_severity), 'issue_count': len(issues), 'files_analyzed': len(js_files), } def _analyze_typescript_performance(self, repo_path): """ Analyze TypeScript code for performance issues. Args: repo_path (str): The path to the repository. Returns: dict: Performance analysis results for TypeScript code. """ logger.info(f"Analyzing TypeScript code performance in {repo_path}") # Find TypeScript files ts_files = [] for root, _, files in os.walk(repo_path): if 'node_modules' in root: continue for file in files: if file.endswith(('.ts', '.tsx')): ts_files.append(os.path.join(root, file)) if not ts_files: return { 'status': 'no_files', 'message': 'No TypeScript files found in the repository.', 'issues': [], } # Analyze each TypeScript file issues = [] for file_path in ts_files: try: with open(file_path, 'r', encoding='utf-8', errors='ignore') as f: content = f.read() # Check for performance patterns for pattern in self.typescript_patterns: matches = re.finditer(pattern['pattern'], content) for match in matches: line_number = content[:match.start()].count('\n') + 1 code_snippet = match.group(0) issues.append({ 'file': file_path, 'line': line_number, 'code': code_snippet, 'issue': pattern['name'], 'description': pattern['description'], 'suggestion': pattern['suggestion'], 'severity': pattern['severity'], 'language': 'TypeScript', }) except Exception as e: logger.error(f"Error analyzing TypeScript file {file_path}: {e}") # Group issues by severity issues_by_severity = defaultdict(list) for issue in issues: severity = issue.get('severity', 'unknown') issues_by_severity[severity].append(issue) return { 'status': 'success', 'issues': issues, 'issues_by_severity': dict(issues_by_severity), 'issue_count': len(issues), 'files_analyzed': len(ts_files), } def _analyze_java_performance(self, repo_path): """ Analyze Java code for performance issues. Args: repo_path (str): The path to the repository. Returns: dict: Performance analysis results for Java code. """ logger.info(f"Analyzing Java code performance in {repo_path}") # Find Java files java_files = [] for root, _, files in os.walk(repo_path): for file in files: if file.endswith('.java'): java_files.append(os.path.join(root, file)) if not java_files: return { 'status': 'no_files', 'message': 'No Java files found in the repository.', 'issues': [], } # Analyze each Java file issues = [] for file_path in java_files: try: with open(file_path, 'r', encoding='utf-8', errors='ignore') as f: content = f.read() # Check for performance patterns for pattern in self.java_patterns: matches = re.finditer(pattern['pattern'], content) for match in matches: line_number = content[:match.start()].count('\n') + 1 code_snippet = match.group(0) issues.append({ 'file': file_path, 'line': line_number, 'code': code_snippet, 'issue': pattern['name'], 'description': pattern['description'], 'suggestion': pattern['suggestion'], 'severity': pattern['severity'], 'language': 'Java', }) except Exception as e: logger.error(f"Error analyzing Java file {file_path}: {e}") # Group issues by severity issues_by_severity = defaultdict(list) for issue in issues: severity = issue.get('severity', 'unknown') issues_by_severity[severity].append(issue) return { 'status': 'success', 'issues': issues, 'issues_by_severity': dict(issues_by_severity), 'issue_count': len(issues), 'files_analyzed': len(java_files), } def _analyze_go_performance(self, repo_path): """ Analyze Go code for performance issues. Args: repo_path (str): The path to the repository. Returns: dict: Performance analysis results for Go code. """ logger.info(f"Analyzing Go code performance in {repo_path}") # Find Go files go_files = [] for root, _, files in os.walk(repo_path): for file in files: if file.endswith('.go'): go_files.append(os.path.join(root, file)) if not go_files: return { 'status': 'no_files', 'message': 'No Go files found in the repository.', 'issues': [], } # Analyze each Go file issues = [] for file_path in go_files: try: with open(file_path, 'r', encoding='utf-8', errors='ignore') as f: content = f.read() # Check for performance patterns for pattern in self.go_patterns: matches = re.finditer(pattern['pattern'], content) for match in matches: line_number = content[:match.start()].count('\n') + 1 code_snippet = match.group(0) issues.append({ 'file': file_path, 'line': line_number, 'code': code_snippet, 'issue': pattern['name'], 'description': pattern['description'], 'suggestion': pattern['suggestion'], 'severity': pattern['severity'], 'language': 'Go', }) except Exception as e: logger.error(f"Error analyzing Go file {file_path}: {e}") # Group issues by severity issues_by_severity = defaultdict(list) for issue in issues: severity = issue.get('severity', 'unknown') issues_by_severity[severity].append(issue) return { 'status': 'success', 'issues': issues, 'issues_by_severity': dict(issues_by_severity), 'issue_count': len(issues), 'files_analyzed': len(go_files), } def _analyze_rust_performance(self, repo_path): """ Analyze Rust code for performance issues. Args: repo_path (str): The path to the repository. Returns: dict: Performance analysis results for Rust code. """ logger.info(f"Analyzing Rust code performance in {repo_path}") # Find Rust files rust_files = [] for root, _, files in os.walk(repo_path): for file in files: if file.endswith('.rs'): rust_files.append(os.path.join(root, file)) if not rust_files: return { 'status': 'no_files', 'message': 'No Rust files found in the repository.', 'issues': [], } # Analyze each Rust file issues = [] for file_path in rust_files: try: with open(file_path, 'r', encoding='utf-8', errors='ignore') as f: content = f.read() # Check for performance patterns for pattern in self.rust_patterns: matches = re.finditer(pattern['pattern'], content) for match in matches: line_number = content[:match.start()].count('\n') + 1 code_snippet = match.group(0) issues.append({ 'file': file_path, 'line': line_number, 'code': code_snippet, 'issue': pattern['name'], 'description': pattern['description'], 'suggestion': pattern['suggestion'], 'severity': pattern['severity'], 'language': 'Rust', }) except Exception as e: logger.error(f"Error analyzing Rust file {file_path}: {e}") # Group issues by severity issues_by_severity = defaultdict(list) for issue in issues: severity = issue.get('severity', 'unknown') issues_by_severity[severity].append(issue) return { 'status': 'success', 'issues': issues, 'issues_by_severity': dict(issues_by_severity), 'issue_count': len(issues), 'files_analyzed': len(rust_files), }