ZahirJS commited on
Commit
92e3c6f
·
verified ·
1 Parent(s): 7e3e635

Update sample_data.py

Browse files
Files changed (1) hide show
  1. sample_data.py +0 -475
sample_data.py CHANGED
@@ -479,481 +479,6 @@ WBS_DIAGRAM_JSON = """
479
 
480
  """
481
 
482
- CONCEPT_MAP_JSON = """
483
- {
484
- "central_node": "Artificial Intelligence (AI)",
485
- "nodes": [
486
- {
487
- "id": "ml_fundamental",
488
- "label": "Machine Learning",
489
- "relationship": "is essential for",
490
- "subnodes": [
491
- {
492
- "id": "dl_branch",
493
- "label": "Deep Learning",
494
- "relationship": "for example",
495
- "subnodes": [
496
- {
497
- "id": "cnn_example",
498
- "label": "CNNs",
499
- "relationship": "for example"
500
- },
501
- {
502
- "id": "rnn_example",
503
- "label": "RNNs",
504
- "relationship": "for example"
505
- }
506
- ]
507
- },
508
- {
509
- "id": "rl_branch",
510
- "label": "Reinforcement Learning",
511
- "relationship": "for example",
512
- "subnodes": [
513
- {
514
- "id": "qlearning_example",
515
- "label": "Q-Learning",
516
- "relationship": "example"
517
- },
518
- {
519
- "id": "pg_example",
520
- "label": "Policy Gradients",
521
- "relationship": "example"
522
- }
523
- ]
524
- }
525
- ]
526
- },
527
- {
528
- "id": "ai_types",
529
- "label": "Types",
530
- "relationship": "formed by",
531
- "subnodes": [
532
- {
533
- "id": "agi_type",
534
- "label": "AGI",
535
- "relationship": "this is",
536
- "subnodes": [
537
- {
538
- "id": "strong_ai",
539
- "label": "Strong AI",
540
- "relationship": "provoked by",
541
- "subnodes": [
542
- {
543
- "id": "human_intel",
544
- "label": "Human-level Intel.",
545
- "relationship": "of"
546
- }
547
- ]
548
- }
549
- ]
550
- },
551
- {
552
- "id": "ani_type",
553
- "label": "ANI",
554
- "relationship": "this is",
555
- "subnodes": [
556
- {
557
- "id": "weak_ai",
558
- "label": "Weak AI",
559
- "relationship": "provoked by",
560
- "subnodes": [
561
- {
562
- "id": "narrow_tasks",
563
- "label": "Narrow Tasks",
564
- "relationship": "of"
565
- }
566
- ]
567
- }
568
- ]
569
- }
570
- ]
571
- },
572
- {
573
- "id": "ai_capabilities",
574
- "label": "Capabilities",
575
- "relationship": "change",
576
- "subnodes": [
577
- {
578
- "id": "data_proc",
579
- "label": "Data Processing",
580
- "relationship": "can",
581
- "subnodes": [
582
- {
583
- "id": "big_data",
584
- "label": "Big Data",
585
- "relationship": "as",
586
- "subnodes": [
587
- {
588
- "id": "analysis_example",
589
- "label": "Data Analysis",
590
- "relationship": "example"
591
- },
592
- {
593
- "id": "prediction_example",
594
- "label": "Prediction",
595
- "relationship": "example"
596
- }
597
- ]
598
- }
599
- ]
600
- },
601
- {
602
- "id": "decision_making",
603
- "label": "Decision Making",
604
- "relationship": "can be",
605
- "subnodes": [
606
- {
607
- "id": "automation",
608
- "label": "Automation",
609
- "relationship": "as",
610
- "subnodes": [
611
- {
612
- "id": "robotics_example",
613
- "label": "Robotics",
614
- "relationship": "Example"},
615
- {
616
- "id": "autonomous_example",
617
- "label": "Autonomous Vehicles",
618
- "relationship": "of one"
619
- }
620
- ]
621
- }
622
- ]
623
- },
624
- {
625
- "id": "problem_solving",
626
- "label": "Problem Solving",
627
- "relationship": "can",
628
- "subnodes": [
629
- {
630
- "id": "optimization",
631
- "label": "Optimization",
632
- "relationship": "as is",
633
- "subnodes": [
634
- {
635
- "id": "algorithms_example",
636
- "label": "Algorithms",
637
- "relationship": "for example"
638
- }
639
- ]
640
- }
641
- ]
642
- }
643
- ]
644
- }
645
- ]
646
- }
647
- """
648
-
649
- SYNOPTIC_CHART_JSON = """
650
- {
651
- "central_node": "AI Project Lifecycle",
652
- "nodes": [
653
- {
654
- "id": "phase1",
655
- "label": "I. Problem Definition & Data Acquisition",
656
- "relationship": "Starts with",
657
- "subnodes": [
658
- {
659
- "id": "sub1_1",
660
- "label": "1. Problem Formulation",
661
- "relationship": "Involves",
662
- "subnodes": [
663
- {"id": "sub1_1_1", "label": "1.1. Identify Business Need", "relationship": "e.g."},
664
- {"id": "sub1_1_2", "label": "1.2. Define KPIs", "relationship": "e.g."}
665
- ]
666
- },
667
- {
668
- "id": "sub1_2",
669
- "label": "2. Data Collection",
670
- "relationship": "Followed by",
671
- "subnodes": [
672
- {"id": "sub1_2_1", "label": "2.1. Source Data", "relationship": "from"},
673
- {"id": "sub1_2_2", "label": "2.2. Data Cleaning", "relationship": "includes"}
674
- ]
675
- }
676
- ]
677
- },
678
- {
679
- "id": "phase2",
680
- "label": "II. Model Development",
681
- "relationship": "Proceeds to",
682
- "subnodes": [
683
- {
684
- "id": "sub2_1",
685
- "label": "1. Feature Engineering",
686
- "relationship": "Comprises",
687
- "subnodes": [
688
- {"id": "sub2_1_1", "label": "1.1. Feature Selection", "relationship": "e.g."},
689
- {"id": "sub2_1_2", "label": "1.2. Feature Transformation", "relationship": "e.g."}
690
- ]
691
- },
692
- {
693
- "id": "sub2_2",
694
- "label": "2. Model Training",
695
- "relationship": "Involves",
696
- "subnodes": [
697
- {"id": "sub2_2_1", "label": "2.1. Algorithm Selection", "relationship": "uses"},
698
- {"id": "sub2_2_2", "label": "2.2. Hyperparameter Tuning", "relationship": "optimizes"}
699
- ]
700
- }
701
- ]
702
- },
703
- {
704
- "id": "phase3",
705
- "label": "III. Evaluation & Deployment",
706
- "relationship": "Culminates in",
707
- "subnodes": [
708
- {
709
- "id": "sub3_1",
710
- "label": "1. Model Evaluation",
711
- "relationship": "Includes",
712
- "subnodes": [
713
- {"id": "sub3_1_1", "label": "1.1. Performance Metrics", "relationship": "measures"},
714
- {"id": "sub3_1_2", "label": "1.2. Bias & Fairness Audits", "relationship": "ensures"}
715
- ]
716
- },
717
- {
718
- "id": "sub3_2",
719
- "label": "2. Deployment & Monitoring",
720
- "relationship": "Requires",
721
- "subnodes": [
722
- {"id": "sub3_2_1", "label": "2.1. API/Integration Development", "relationship": "for"},
723
- {"id": "sub3_2_2", "label": "2.2. Continuous Monitoring", "relationship": "ensures"}
724
- ]
725
- }
726
- ]
727
- }
728
- ]
729
- }
730
- """
731
-
732
- RADIAL_DIAGRAM_JSON = """
733
- {
734
- "central_node": "AI Core Concepts & Domains",
735
- "nodes": [
736
- {
737
- "id": "foundational_ml",
738
- "label": "Foundational ML",
739
- "relationship": "builds on",
740
- "subnodes": [
741
- {"id": "supervised_l", "label": "Supervised Learning", "relationship": "e.g."},
742
- {"id": "unsupervised_l", "label": "Unsupervised Learning", "relationship": "e.g."}
743
- ]
744
- },
745
- {
746
- "id": "dl_architectures",
747
- "label": "Deep Learning Arch.",
748
- "relationship": "evolved from",
749
- "subnodes": [
750
- {"id": "cnns_rad", "label": "CNNs", "relationship": "e.g."},
751
- {"id": "rnns_rad", "label": "RNNs", "relationship": "e.g."}
752
- ]
753
- },
754
- {
755
- "id": "major_applications",
756
- "label": "Major AI Applications",
757
- "relationship": "applied in",
758
- "subnodes": [
759
- {"id": "nlp_rad", "label": "Natural Language Processing", "relationship": "e.g."},
760
- {"id": "cv_rad", "label": "Computer Vision", "relationship": "e.g."}
761
- ]
762
- },
763
- {
764
- "id": "ethical_concerns",
765
- "label": "Ethical AI Concerns",
766
- "relationship": "addresses",
767
- "subnodes": [
768
- {"id": "fairness_rad", "label": "Fairness & Bias", "relationship": "e.g."},
769
- {"id": "explainability", "label": "Explainability (XAI)", "relationship": "e.g."}
770
- ]
771
- },
772
- {
773
- "id": "future_trends",
774
- "label": "Future AI Trends",
775
- "relationship": "looking at",
776
- "subnodes": [
777
- {"id": "agi_future", "label": "AGI Development", "relationship": "e.g."},
778
- {"id": "quantum_ai", "label": "Quantum AI", "relationship": "e.g."}
779
- ]
780
- }
781
- ]
782
- }
783
- """
784
-
785
- PROCESS_FLOW_JSON = """
786
- {
787
- "start_node": "Start Inference Request",
788
- "nodes": [
789
- {
790
- "id": "user_input",
791
- "label": "Receive User Input (Data)",
792
- "type": "io"
793
- },
794
- {
795
- "id": "preprocess_data",
796
- "label": "Preprocess Data",
797
- "type": "process"
798
- },
799
- {
800
- "id": "validate_data",
801
- "label": "Validate Data Format/Type",
802
- "type": "decision"
803
- },
804
- {
805
- "id": "data_valid_yes",
806
- "label": "Data Valid?",
807
- "type": "decision"
808
- },
809
- {
810
- "id": "load_model",
811
- "label": "Load AI Model (if not cached)",
812
- "type": "process"
813
- },
814
- {
815
- "id": "run_inference",
816
- "label": "Run AI Model Inference",
817
- "type": "process"
818
- },
819
- {
820
- "id": "postprocess_output",
821
- "label": "Postprocess Model Output",
822
- "type": "process"
823
- },
824
- {
825
- "id": "send_response",
826
- "label": "Send Response to User",
827
- "type": "io"
828
- },
829
- {
830
- "id": "log_error",
831
- "label": "Log Error & Notify User",
832
- "type": "process"
833
- },
834
- {
835
- "id": "end_inference_process",
836
- "label": "End Inference Process",
837
- "type": "end"
838
- }
839
- ],
840
- "connections": [
841
- {"from": "start_node", "to": "user_input", "label": "Request"},
842
- {"from": "user_input", "to": "preprocess_data", "label": "Data Received"},
843
- {"from": "preprocess_data", "to": "validate_data", "label": "Cleaned"},
844
- {"from": "validate_data", "to": "data_valid_yes", "label": "Check"},
845
- {"from": "data_valid_yes", "to": "load_model", "label": "Yes"},
846
- {"from": "data_valid_yes", "to": "log_error", "label": "No"},
847
- {"from": "load_model", "to": "run_inference", "label": "Model Ready"},
848
- {"from": "run_inference", "to": "postprocess_output", "label": "Output Generated"},
849
- {"from": "postprocess_output", "to": "send_response", "label": "Ready"},
850
- {"from": "send_response", "to": "end_inference_process", "label": "Response Sent"},
851
- {"from": "log_error", "to": "end_inference_process", "label": "Error Handled"}
852
- ]
853
- }
854
- """
855
-
856
- WBS_DIAGRAM_JSON = """
857
- {
858
- "project_title": "AI Model Development Project",
859
- "phases": [
860
- {
861
- "id": "phase_prep",
862
- "label": "Preparation",
863
- "tasks": [
864
- {
865
- "id": "task_1_1_vision",
866
- "label": "Identify Vision",
867
- "subtasks": [
868
- {
869
- "id": "subtask_1_1_1_design_staff",
870
- "label": "Design & Staffing",
871
- "sub_subtasks": [
872
- {
873
- "id": "ss_task_1_1_1_1_env_setup",
874
- "label": "Environment Setup",
875
- "sub_sub_subtasks": [
876
- {
877
- "id": "sss_task_1_1_1_1_1_lib_install",
878
- "label": "Install Libraries",
879
- "final_level_tasks": [
880
- {"id": "ft_1_1_1_1_1_1_data_access", "label": "Grant Data Access"}
881
- ]
882
- }
883
- ]
884
- }
885
- ]
886
- }
887
- ]
888
- }
889
- ]
890
- },
891
- {
892
- "id": "phase_plan",
893
- "label": "Planning",
894
- "tasks": [
895
- {
896
- "id": "task_2_1_cost_analysis",
897
- "label": "Cost Analysis",
898
- "subtasks": [
899
- {
900
- "id": "subtask_2_1_1_benefit_analysis",
901
- "label": "Benefit Analysis",
902
- "sub_subtasks": [
903
- {
904
- "id": "ss_task_2_1_1_1_risk_assess",
905
- "label": "AI Risk Assessment",
906
- "sub_sub_subtasks": [
907
- {
908
- "id": "sss_task_2_1_1_1_1_model_selection",
909
- "label": "Model Selection",
910
- "final_level_tasks": [
911
- {"id": "ft_2_1_1_1_1_1_data_strategy", "label": "Data Strategy"}
912
- ]
913
- }
914
- ]
915
- }
916
- ]
917
- }
918
- ]
919
- }
920
- ]
921
- },
922
- {
923
- "id": "phase_dev",
924
- "label": "Development",
925
- "tasks": [
926
- {
927
- "id": "task_3_1_change_mgmt",
928
- "label": "Data Preprocessing",
929
- "subtasks": [
930
- {
931
- "id": "subtask_3_1_1_implementation",
932
- "label": "Feature Engineering",
933
- "sub_subtasks": [
934
- {
935
- "id": "ss_task_3_1_1_1_beta_testing",
936
- "label": "Model Training",
937
- "sub_sub_subtasks": [
938
- {
939
- "id": "sss_task_3_1_1_1_1_other_task",
940
- "label": "Model Evaluation",
941
- "final_level_tasks": [
942
- {"id": "ft_3_1_1_1_1_1_hyperparam_tune", "label": "Hyperparameter Tuning"}
943
- ]
944
- }
945
- ]
946
- }
947
- ]
948
- }
949
- ]
950
- }
951
- ]
952
- }
953
- ]
954
- }
955
- """
956
-
957
  TIMELINE_JSON = """
958
  {
959
  "title": "Complete History of Artificial Intelligence",
 
479
 
480
  """
481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
482
  TIMELINE_JSON = """
483
  {
484
  "title": "Complete History of Artificial Intelligence",