|
import gradio as gr |
|
import requests |
|
from bs4 import BeautifulSoup |
|
import json |
|
from typing import List, Dict, Any, Optional |
|
import re |
|
from urllib.parse import urljoin |
|
import time |
|
import functools |
|
import logging |
|
from datetime import datetime, timedelta |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class HF_API: |
|
def __init__(self): |
|
self.base_url = "https://huggingface.co" |
|
self.docs_url = "https://huggingface.co/docs" |
|
self.api_url = "https://huggingface.co/api" |
|
self.session = requests.Session() |
|
self.session.headers.update({ |
|
'User-Agent': 'HF-Info-Server/1.0 (Educational Purpose)', |
|
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', |
|
'Accept-Language': 'en-US,en;q=0.5', |
|
'Accept-Encoding': 'gzip, deflate', |
|
'Connection': 'keep-alive', |
|
'Upgrade-Insecure-Requests': '1' |
|
}) |
|
self.cache = {} |
|
self.cache_ttl = 3600 |
|
|
|
def _is_cache_valid(self, cache_key: str) -> bool: |
|
if cache_key not in self.cache: |
|
return False |
|
cache_time = self.cache[cache_key].get('timestamp', 0) |
|
return time.time() - cache_time < self.cache_ttl |
|
|
|
def _get_from_cache(self, cache_key: str) -> Optional[str]: |
|
if self._is_cache_valid(cache_key): |
|
return self.cache[cache_key]['content'] |
|
return None |
|
|
|
def _store_in_cache(self, cache_key: str, content: str): |
|
self.cache[cache_key] = { |
|
'content': content, |
|
'timestamp': time.time() |
|
} |
|
|
|
def _fetch_with_retry(self, url: str, max_retries: int = 3) -> Optional[str]: |
|
cache_key = f"url_{hash(url)}" |
|
cached_content = self._get_from_cache(cache_key) |
|
if cached_content: |
|
logger.info(f"Cache hit for {url}") |
|
return cached_content |
|
for attempt in range(max_retries): |
|
try: |
|
logger.info(f"Fetching {url} (attempt {attempt + 1})") |
|
response = self.session.get(url, timeout=20) |
|
response.raise_for_status() |
|
content = response.text |
|
self._store_in_cache(cache_key, content) |
|
return content |
|
except requests.exceptions.RequestException as e: |
|
logger.warning(f"Attempt {attempt + 1} failed for {url}: {e}") |
|
if attempt < max_retries - 1: |
|
time.sleep(2 ** attempt) |
|
else: |
|
logger.error(f"All attempts failed for {url}") |
|
return None |
|
return None |
|
|
|
def _extract_code_examples(self, soup: BeautifulSoup) -> List[Dict[str, str]]: |
|
code_blocks = [] |
|
code_elements = soup.find_all(['code', 'pre']) |
|
for code_elem in code_elements: |
|
lang_class = code_elem.get('class', []) |
|
language = 'python' |
|
for cls in lang_class: |
|
if 'language-' in str(cls): |
|
language = str(cls).replace('language-', '') |
|
break |
|
elif any(lang in str(cls).lower() for lang in ['python', 'bash', 'javascript', 'json']): |
|
language = str(cls).lower() |
|
break |
|
code_text = code_elem.get_text(strip=True) |
|
if len(code_text) > 20 and any(keyword in code_text.lower() for keyword in ['import', 'from', 'def', 'class', 'pip install', 'transformers']): |
|
code_blocks.append({'code': code_text, 'language': language, 'type': 'usage' if any(word in code_text.lower() for word in ['import', 'load', 'pipeline']) else 'example'}) |
|
highlight_blocks = soup.find_all('div', class_=re.compile(r'highlight|code-block|language')) |
|
for block in highlight_blocks: |
|
code_text = block.get_text(strip=True) |
|
if len(code_text) > 20: |
|
code_blocks.append({'code': code_text, 'language': 'python', 'type': 'example'}) |
|
seen = set() |
|
unique_blocks = [] |
|
for block in code_blocks: |
|
code_hash = hash(block['code'][:100]) |
|
if code_hash not in seen: |
|
seen.add(code_hash) |
|
unique_blocks.append(block) |
|
if len(unique_blocks) >= 5: |
|
break |
|
return unique_blocks |
|
|
|
def _extract_practical_content(self, soup: BeautifulSoup, topic: str) -> Dict[str, Any]: |
|
content = {'overview': '', 'code_examples': [], 'usage_instructions': [], 'parameters': [], 'methods': [], 'installation': '', 'quickstart': ''} |
|
main_content = soup.find('main') or soup.find('article') or soup.find('div', class_=re.compile(r'content|docs|prose')) |
|
if not main_content: |
|
return content |
|
overview_sections = main_content.find_all('p', limit=5) |
|
overview_texts = [] |
|
for p in overview_sections: |
|
text = p.get_text(strip=True) |
|
if len(text) > 30 and not text.startswith('Table of contents'): |
|
overview_texts.append(text) |
|
if overview_texts: |
|
overview = ' '.join(overview_texts) |
|
content['overview'] = overview[:1000] + "..." if len(overview) > 1000 else overview |
|
content['code_examples'] = self._extract_code_examples(main_content) |
|
install_headings = main_content.find_all(['h1', 'h2', 'h3', 'h4'], string=re.compile(r'install|setup|getting started', re.IGNORECASE)) |
|
for heading in install_headings: |
|
next_elem = heading.find_next_sibling() |
|
install_text = [] |
|
while next_elem and next_elem.name not in ['h1', 'h2', 'h3', 'h4'] and len(install_text) < 3: |
|
if next_elem.name in ['p', 'pre', 'code']: |
|
text = next_elem.get_text(strip=True) |
|
if text and len(text) > 10: |
|
install_text.append(text) |
|
next_elem = next_elem.find_next_sibling() |
|
if install_text: |
|
content['installation'] = ' '.join(install_text) |
|
break |
|
usage_headings = main_content.find_all(['h1', 'h2', 'h3', 'h4']) |
|
for heading in usage_headings: |
|
heading_text = heading.get_text(strip=True).lower() |
|
if any(keyword in heading_text for keyword in ['usage', 'example', 'how to', 'quickstart', 'getting started']): |
|
next_elem = heading.find_next_sibling() |
|
instruction_parts = [] |
|
while next_elem and next_elem.name not in ['h1', 'h2', 'h3', 'h4']: |
|
if next_elem.name in ['p', 'li', 'div', 'ol', 'ul']: |
|
text = next_elem.get_text(strip=True) |
|
if text and len(text) > 15: |
|
instruction_parts.append(text) |
|
next_elem = next_elem.find_next_sibling() |
|
if len(instruction_parts) >= 5: |
|
break |
|
if instruction_parts: |
|
content['usage_instructions'].extend(instruction_parts) |
|
tables = main_content.find_all('table') |
|
for table in tables: |
|
headers = [th.get_text(strip=True).lower() for th in table.find_all('th')] |
|
if any(keyword in ' '.join(headers) for keyword in ['parameter', 'argument', 'option', 'attribute', 'name', 'type']): |
|
rows = table.find_all('tr')[1:] |
|
for row in rows[:8]: |
|
cells = [td.get_text(strip=True) for td in row.find_all('td')] |
|
if len(cells) >= 2: |
|
param_info = {'name': cells[0], 'description': cells[1] if len(cells) > 1 else '', 'type': cells[2] if len(cells) > 2 else '', 'default': cells[3] if len(cells) > 3 else ''} |
|
content['parameters'].append(param_info) |
|
return content |
|
|
|
def search_documentation(self, query: str, max_results: int = 3) -> str: |
|
""" |
|
Searches the official Hugging Face documentation for a specific topic and returns a summary. |
|
This tool is useful for finding how-to guides, explanations of concepts like 'pipeline' or 'tokenizer', and usage examples. |
|
Args: |
|
query (str): The topic or keyword to search for in the documentation (e.g., 'fine-tuning', 'peft', 'datasets'). |
|
max_results (int): The maximum number of documentation pages to retrieve and summarize. Defaults to 3. |
|
""" |
|
try: |
|
max_results = int(max_results) if isinstance(max_results, str) else max_results |
|
max_results = min(max_results, 5) |
|
query_lower = query.lower().strip() |
|
if not query_lower: |
|
return "Please provide a search query." |
|
doc_sections = { |
|
'transformers': {'base_url': 'https://huggingface.co/docs/transformers', 'topics': {'pipeline': '/main_classes/pipelines', 'tokenizer': '/main_classes/tokenizer', 'trainer': '/main_classes/trainer', 'model': '/main_classes/model', 'quicktour': '/quicktour', 'installation': '/installation', 'fine-tuning': '/training', 'training': '/training', 'inference': '/main_classes/pipelines', 'preprocessing': '/preprocessing', 'tutorial': '/tutorials', 'configuration': '/main_classes/configuration', 'peft': '/peft', 'lora': '/peft', 'quantization': '/main_classes/quantization', 'generation': '/main_classes/text_generation', 'optimization': '/perf_train_gpu_one', 'deployment': '/deployment', 'custom': '/custom_models'}}, |
|
'datasets': {'base_url': 'https://huggingface.co/docs/datasets', 'topics': {'loading': '/load_hub', 'load': '/load_hub', 'processing': '/process', 'streaming': '/stream', 'audio': '/audio_process', 'image': '/image_process', 'text': '/nlp_process', 'arrow': '/about_arrow', 'cache': '/cache', 'upload': '/upload_dataset', 'custom': '/dataset_script'}}, |
|
'diffusers': {'base_url': 'https://huggingface.co/docs/diffusers', 'topics': {'pipeline': '/using-diffusers/loading', 'stable diffusion': '/using-diffusers/stable_diffusion', 'controlnet': '/using-diffusers/controlnet', 'inpainting': '/using-diffusers/inpaint', 'training': '/training/overview', 'optimization': '/optimization/fp16', 'schedulers': '/using-diffusers/schedulers'}}, |
|
'hub': {'base_url': 'https://huggingface.co/docs/hub', 'topics': {'repositories': '/repositories', 'git': '/repositories-getting-started', 'spaces': '/spaces', 'models': '/models', 'datasets': '/datasets'}} |
|
} |
|
relevant_urls = [] |
|
for section_name, section_data in doc_sections.items(): |
|
base_url = section_data['base_url'] |
|
topics = section_data['topics'] |
|
for topic, path in topics.items(): |
|
relevance = 0 |
|
if query_lower == topic.lower(): relevance = 1.0 |
|
elif query_lower in topic.lower(): relevance = 0.9 |
|
elif any(word in topic.lower() for word in query_lower.split()): relevance = 0.7 |
|
elif any(word in query_lower for word in topic.lower().split()): relevance = 0.6 |
|
if relevance > 0: |
|
full_url = base_url + path |
|
relevant_urls.append({'url': full_url, 'topic': topic, 'section': section_name, 'relevance': relevance}) |
|
relevant_urls.sort(key=lambda x: x['relevance'], reverse=True) |
|
relevant_urls = relevant_urls[:max_results] |
|
if not relevant_urls: |
|
return f"β No documentation found for '{query}'. Try: pipeline, tokenizer, trainer, model, fine-tuning, datasets, diffusers, or peft." |
|
result = f"# π Hugging Face Documentation: {query}\n\n" |
|
for i, url_info in enumerate(relevant_urls, 1): |
|
section_emoji = {'transformers': 'π€', 'datasets': 'π', 'diffusers': 'π¨', 'hub': 'π'}.get(url_info['section'], 'π') |
|
result += f"## {i}. {section_emoji} {url_info['topic'].title()} ({url_info['section'].title()})\n\n" |
|
content = self._fetch_with_retry(url_info['url']) |
|
if content: |
|
soup = BeautifulSoup(content, 'html.parser') |
|
practical_content = self._extract_practical_content(soup, url_info['topic']) |
|
if practical_content['overview']: result += f"**π Overview:**\n{practical_content['overview']}\n\n" |
|
if practical_content['installation']: result += f"**βοΈ Installation:**\n{practical_content['installation']}\n\n" |
|
if practical_content['code_examples']: |
|
result += "**π» Code Examples:**\n\n" |
|
for j, code_block in enumerate(practical_content['code_examples'][:3], 1): |
|
lang = code_block.get('language', 'python') |
|
code_type = code_block.get('type', 'example') |
|
result += f"*{code_type.title()} {j}:*\n```{lang}\n{code_block['code']}\n```\n\n" |
|
if practical_content['usage_instructions']: |
|
result += "**π οΈ Usage Instructions:**\n" |
|
for idx, instruction in enumerate(practical_content['usage_instructions'][:4], 1): |
|
result += f"{idx}. {instruction}\n" |
|
result += "\n" |
|
if practical_content['parameters']: |
|
result += "**βοΈ Parameters:**\n" |
|
for param in practical_content['parameters'][:6]: |
|
param_type = f" (`{param['type']}`)" if param.get('type') else "" |
|
default_val = f" *Default: {param['default']}*" if param.get('default') else "" |
|
result += f"β’ **{param['name']}**{param_type}: {param['description']}{default_val}\n" |
|
result += "\n" |
|
result += f"**π Full Documentation:** {url_info['url']}\n\n" |
|
else: |
|
result += f"β οΈ Could not fetch content. Visit directly: {url_info['url']}\n\n" |
|
result += "---\n\n" |
|
return result |
|
except Exception as e: |
|
logger.error(f"Error in search_documentation: {e}") |
|
return f"β Error searching documentation: {str(e)}\n\nTry a simpler search term or check your internet connection." |
|
|
|
def get_model_info(self, model_name: str) -> str: |
|
""" |
|
Fetches comprehensive information about a specific model from the Hugging Face Hub. |
|
Provides statistics like downloads and likes, a description, usage examples, and a quick-start code snippet. |
|
Args: |
|
model_name (str): The full identifier of the model on the Hub, such as 'bert-base-uncased' or 'meta-llama/Llama-2-7b-hf'. |
|
""" |
|
try: |
|
model_name = model_name.strip() |
|
if not model_name: return "Please provide a model name." |
|
api_url = f"{self.api_url}/models/{model_name}" |
|
response = self.session.get(api_url, timeout=15) |
|
if response.status_code == 404: return f"β Model '{model_name}' not found. Please check the model name." |
|
elif response.status_code != 200: return f"β Error fetching model info (Status: {response.status_code})" |
|
model_data = response.json() |
|
result = f"# π€ Model: {model_name}\n\n" |
|
downloads = model_data.get('downloads', 0) |
|
likes = model_data.get('likes', 0) |
|
task = model_data.get('pipeline_tag', 'N/A') |
|
library = model_data.get('library_name', 'N/A') |
|
result += f"**π Statistics:**\nβ’ **Downloads:** {downloads:,}\nβ’ **Likes:** {likes:,}\nβ’ **Task:** {task}\nβ’ **Library:** {library}\nβ’ **Created:** {model_data.get('createdAt', 'N/A')[:10]}\nβ’ **Updated:** {model_data.get('lastModified', 'N/A')[:10]}\n\n" |
|
if 'tags' in model_data and model_data['tags']: result += f"**π·οΈ Tags:** {', '.join(model_data['tags'][:10])}\n\n" |
|
model_url = f"{self.base_url}/{model_name}" |
|
page_content = self._fetch_with_retry(model_url) |
|
if page_content: |
|
soup = BeautifulSoup(page_content, 'html.parser') |
|
readme_content = soup.find('div', class_=re.compile(r'prose|readme|model-card')) |
|
if readme_content: |
|
paragraphs = readme_content.find_all('p')[:3] |
|
description_parts = [] |
|
for p in paragraphs: |
|
text = p.get_text(strip=True) |
|
if len(text) > 30 and not any(skip in text.lower() for skip in ['table of contents', 'toc']): |
|
description_parts.append(text) |
|
if description_parts: |
|
description = ' '.join(description_parts) |
|
result += f"**π Description:**\n{description[:800]}{'...' if len(description) > 800 else ''}\n\n" |
|
code_examples = self._extract_code_examples(soup) |
|
if code_examples: |
|
result += "**π» Usage Examples:**\n\n" |
|
for i, code_block in enumerate(code_examples[:3], 1): |
|
lang = code_block.get('language', 'python') |
|
result += f"*Example {i}:*\n```{lang}\n{code_block['code']}\n```\n\n" |
|
if task and task != 'N/A': |
|
result += f"**π Quick Start Template:**\n" |
|
if library == 'transformers': |
|
result += f"```python\nfrom transformers import pipeline\n\n# Load the model\nmodel = pipeline('{task}', model='{model_name}')\n\n# Use the model\n# result = model(your_input_here)\n# print(result)\n```\n\n" |
|
else: |
|
result += f"```python\n# Load and use {model_name}\n# Refer to the documentation for specific usage\n```\n\n" |
|
if 'siblings' in model_data: |
|
files = [f['rfilename'] for f in model_data['siblings'][:10]] |
|
if files: |
|
result += f"**π Model Files:** {', '.join(files)}\n\n" |
|
result += f"**π Model Page:** {model_url}\n" |
|
return result |
|
except requests.exceptions.RequestException as e: return f"β Network error: {str(e)}" |
|
except Exception as e: |
|
logger.error(f"Error in get_model_info: {e}") |
|
return f"β Error fetching model info: {str(e)}" |
|
|
|
def get_dataset_info(self, dataset_name: str) -> str: |
|
""" |
|
Retrieves detailed information about a specific dataset from the Hugging Face Hub. |
|
Includes statistics, a description, and a quick-start code snippet showing how to load the dataset. |
|
Args: |
|
dataset_name (str): The full identifier of the dataset on the Hub, for example 'squad' or 'imdb'. |
|
""" |
|
try: |
|
dataset_name = dataset_name.strip() |
|
if not dataset_name: return "Please provide a dataset name." |
|
api_url = f"{self.api_url}/datasets/{dataset_name}" |
|
response = self.session.get(api_url, timeout=15) |
|
if response.status_code == 404: return f"β Dataset '{dataset_name}' not found. Please check the dataset name." |
|
elif response.status_code != 200: return f"β Error fetching dataset info (Status: {response.status_code})" |
|
dataset_data = response.json() |
|
result = f"# π Dataset: {dataset_name}\n\n" |
|
downloads = dataset_data.get('downloads', 0) |
|
likes = dataset_data.get('likes', 0) |
|
result += f"**π Statistics:**\nβ’ **Downloads:** {downloads:,}\nβ’ **Likes:** {likes:,}\nβ’ **Created:** {dataset_data.get('createdAt', 'N/A')[:10]}\nβ’ **Updated:** {dataset_data.get('lastModified', 'N/A')[:10]}\n\n" |
|
if 'tags' in dataset_data and dataset_data['tags']: result += f"**π·οΈ Tags:** {', '.join(dataset_data['tags'][:10])}\n\n" |
|
dataset_url = f"{self.base_url}/datasets/{dataset_name}" |
|
page_content = self._fetch_with_retry(dataset_url) |
|
if page_content: |
|
soup = BeautifulSoup(page_content, 'html.parser') |
|
readme_content = soup.find('div', class_=re.compile(r'prose|readme|dataset-card')) |
|
if readme_content: |
|
paragraphs = readme_content.find_all('p')[:3] |
|
description_parts = [] |
|
for p in paragraphs: |
|
text = p.get_text(strip=True) |
|
if len(text) > 30: description_parts.append(text) |
|
if description_parts: |
|
description = ' '.join(description_parts) |
|
result += f"**π Description:**\n{description[:800]}{'...' if len(description) > 800 else ''}\n\n" |
|
code_examples = self._extract_code_examples(soup) |
|
if code_examples: |
|
result += "**π» Usage Examples:**\n\n" |
|
for i, code_block in enumerate(code_examples[:3], 1): |
|
lang = code_block.get('language', 'python') |
|
result += f"*Example {i}:*\n```{lang}\n{code_block['code']}\n```\n\n" |
|
result += f"**π Quick Start Template:**\n" |
|
result += f"```python\nfrom datasets import load_dataset\n\n# Load the dataset\ndataset = load_dataset('{dataset_name}')\n\n# Explore the dataset\n# print(dataset)\n# print(f\"Dataset keys: {{list(dataset.keys())}}\")\n\n# Access first example\n# if 'train' in dataset:\n# print(\"First example:\")\n# print(dataset['train'][0])\n```\n\n" |
|
result += f"**π Dataset Page:** {dataset_url}\n" |
|
return result |
|
except requests.exceptions.RequestException as e: return f"β Network error: {str(e)}" |
|
except Exception as e: |
|
logger.error(f"Error in get_dataset_info: {e}") |
|
return f"β Error fetching dataset info: {str(e)}" |
|
|
|
def search_models(self, task: str, limit: str = "5") -> str: |
|
""" |
|
Searches the Hugging Face Hub for models based on a specified task or keyword and returns a list of top models. |
|
Each result includes statistics and a quick usage example. |
|
Args: |
|
task (str): The task to search for, such as 'text-classification', 'image-generation', or 'question-answering'. |
|
limit (str): The maximum number of models to return. Defaults to '5'. |
|
""" |
|
try: |
|
task = task.strip() |
|
if not task: return "Please provide a search task or keyword." |
|
limit = int(limit) if isinstance(limit, str) and limit.isdigit() else 5 |
|
limit = min(max(limit, 1), 10) |
|
params = {'search': task, 'limit': limit * 3, 'sort': 'downloads', 'direction': -1} |
|
response = self.session.get(f"{self.api_url}/models", params=params, timeout=20) |
|
response.raise_for_status() |
|
models = response.json() |
|
if not models: return f"β No models found for task: '{task}'. Try different keywords." |
|
filtered_models = [] |
|
for model in models: |
|
if (model.get('downloads', 0) > 0 or model.get('likes', 0) > 0 or 'pipeline_tag' in model): |
|
filtered_models.append(model) |
|
if len(filtered_models) >= limit: break |
|
if not filtered_models: filtered_models = models[:limit] |
|
result = f"# π Top {len(filtered_models)} Models for '{task}'\n\n" |
|
for i, model in enumerate(filtered_models, 1): |
|
model_id = model.get('id', 'Unknown') |
|
downloads = model.get('downloads', 0) |
|
likes = model.get('likes', 0) |
|
task_type = model.get('pipeline_tag', 'N/A') |
|
library = model.get('library_name', 'N/A') |
|
quality_score = "" |
|
if downloads > 10000: quality_score = "β Popular" |
|
elif downloads > 1000: quality_score = "π₯ Active" |
|
elif likes > 10: quality_score = "π Liked" |
|
result += f"## {i}. {model_id} {quality_score}\n\n" |
|
result += f"**π Stats:**\nβ’ **Downloads:** {downloads:,}\nβ’ **Likes:** {likes}\nβ’ **Task:** {task_type}\nβ’ **Library:** {library}\n\n" |
|
if task_type and task_type != 'N/A': |
|
result += f"**π Quick Usage:**\n" |
|
if library == 'transformers': |
|
result += f"```python\nfrom transformers import pipeline\n\n# Load model\nmodel = pipeline('{task_type}', model='{model_id}')\n\n# Use model\n# result = model(\"Your input here\")\n# print(result)\n```\n\n" |
|
else: |
|
result += f"```python\n# Load and use {model_id}\n# Check model page for specific usage instructions\n```\n\n" |
|
result += f"**π Model Page:** {self.base_url}/{model_id}\n\n---\n\n" |
|
return result |
|
except requests.exceptions.RequestException as e: return f"β Network error: {str(e)}" |
|
except Exception as e: |
|
logger.error(f"Error in search_models: {e}") |
|
return f"β Error searching models: {str(e)}" |
|
|
|
def get_transformers_docs(self, topic: str) -> str: |
|
""" |
|
Fetches detailed documentation specifically for the Hugging Face Transformers library on a given topic. |
|
This provides in-depth explanations, code examples, and parameter descriptions for core library components. |
|
Args: |
|
topic (str): The Transformers library topic to look up, such as 'pipeline', 'tokenizer', 'trainer', or 'generation'. |
|
""" |
|
try: |
|
topic = topic.strip().lower() |
|
if not topic: return "Please provide a topic to search for." |
|
docs_url = "https://huggingface.co/docs/transformers" |
|
topic_map = {'pipeline': f"{docs_url}/main_classes/pipelines", 'pipelines': f"{docs_url}/main_classes/pipelines", 'tokenizer': f"{docs_url}/main_classes/tokenizer", 'tokenizers': f"{docs_url}/main_classes/tokenizer", 'trainer': f"{docs_url}/main_classes/trainer", 'training': f"{docs_url}/training", 'model': f"{docs_url}/main_classes/model", 'models': f"{docs_url}/main_classes/model", 'configuration': f"{docs_url}/main_classes/configuration", 'config': f"{docs_url}/main_classes/configuration", 'quicktour': f"{docs_url}/quicktour", 'quick': f"{docs_url}/quicktour", 'installation': f"{docs_url}/installation", 'install': f"{docs_url}/installation", 'tutorial': f"{docs_url}/tutorials", 'tutorials': f"{docs_url}/tutorials", 'generation': f"{docs_url}/main_classes/text_generation", 'text_generation': f"{docs_url}/main_classes/text_generation", 'preprocessing': f"{docs_url}/preprocessing", 'preprocess': f"{docs_url}/preprocessing", 'peft': f"{docs_url}/peft", 'lora': f"{docs_url}/peft", 'quantization': f"{docs_url}/main_classes/quantization", 'optimization': f"{docs_url}/perf_train_gpu_one", 'performance': f"{docs_url}/perf_train_gpu_one", 'deployment': f"{docs_url}/deployment", 'custom': f"{docs_url}/custom_models", 'fine-tuning': f"{docs_url}/training", 'finetuning': f"{docs_url}/training"} |
|
url = topic_map.get(topic) |
|
if not url: |
|
for key, value in topic_map.items(): |
|
if topic in key or key in topic: |
|
url = value |
|
topic = key |
|
break |
|
if not url: |
|
url = f"{docs_url}/quicktour" |
|
topic = "quicktour" |
|
content = self._fetch_with_retry(url) |
|
if not content: return f"β Could not fetch documentation for '{topic}'. Please try again or visit: {url}" |
|
soup = BeautifulSoup(content, 'html.parser') |
|
practical_content = self._extract_practical_content(soup, topic) |
|
result = f"# π Transformers Documentation: {topic.replace('_', ' ').title()}\n\n" |
|
if practical_content['overview']: result += f"**π Overview:**\n{practical_content['overview']}\n\n" |
|
if practical_content['installation']: result += f"**βοΈ Installation:**\n{practical_content['installation']}\n\n" |
|
if practical_content['code_examples']: |
|
result += "**π» Code Examples:**\n\n" |
|
for i, code_block in enumerate(practical_content['code_examples'][:4], 1): |
|
lang = code_block.get('language', 'python') |
|
code_type = code_block.get('type', 'example') |
|
result += f"### {code_type.title()} {i}:\n```{lang}\n{code_block['code']}\n```\n\n" |
|
if practical_content['usage_instructions']: |
|
result += "**π οΈ Step-by-Step Usage:**\n" |
|
for i, instruction in enumerate(practical_content['usage_instructions'][:6], 1): |
|
result += f"{i}. {instruction}\n" |
|
result += "\n" |
|
if practical_content['parameters']: |
|
result += "**βοΈ Key Parameters:**\n" |
|
for param in practical_content['parameters'][:10]: |
|
param_type = f" (`{param['type']}`)" if param.get('type') else "" |
|
default_val = f" *Default: `{param['default']}`*" if param.get('default') else "" |
|
result += f"β’ **`{param['name']}`**{param_type}: {param['description']}{default_val}\n" |
|
result += "\n" |
|
related_topics = [k for k in topic_map.keys() if k != topic][:5] |
|
if related_topics: result += f"**π Related Topics:** {', '.join(related_topics)}\n\n" |
|
result += f"**π Full Documentation:** {url}\n" |
|
return result |
|
except Exception as e: |
|
logger.error(f"Error in get_transformers_docs: {e}") |
|
return f"β Error fetching Transformers documentation: {str(e)}" |
|
|
|
def get_trending_models(self, limit: str = "10") -> str: |
|
""" |
|
Fetches a list of the most downloaded models currently trending on the Hugging Face Hub. |
|
This is useful for discovering popular and widely-used models. |
|
Args: |
|
limit (str): The number of trending models to return. Defaults to '10'. |
|
""" |
|
try: |
|
limit = int(limit) if isinstance(limit, str) and limit.isdigit() else 10 |
|
limit = min(max(limit, 1), 20) |
|
params = {'sort': 'downloads', 'direction': -1, 'limit': limit} |
|
response = self.session.get(f"{self.api_url}/models", params=params, timeout=20) |
|
response.raise_for_status() |
|
models = response.json() |
|
if not models: return "β Could not fetch trending models." |
|
result = f"# π₯ Trending Models (Top {len(models)})\n\n" |
|
for i, model in enumerate(models, 1): |
|
model_id = model.get('id', 'Unknown') |
|
downloads = model.get('downloads', 0) |
|
likes = model.get('likes', 0) |
|
task = model.get('pipeline_tag', 'N/A') |
|
if downloads > 1000000: trend = "π Mega Popular" |
|
elif downloads > 100000: trend = "π₯ Very Popular" |
|
elif downloads > 10000: trend = "β Popular" |
|
else: trend = "π Trending" |
|
result += f"## {i}. {model_id} {trend}\n" |
|
result += f"β’ **Downloads:** {downloads:,} | **Likes:** {likes} | **Task:** {task}\n" |
|
result += f"β’ **Link:** {self.base_url}/{model_id}\n\n" |
|
return result |
|
except Exception as e: |
|
logger.error(f"Error in get_trending_models: {e}") |
|
return f"β Error fetching trending models: {str(e)}" |
|
|
|
|
|
hf_api = HF_API() |
|
|
|
|
|
|
|
def clear_output(): |
|
"""Clears a Gradio output component.""" |
|
return "" |
|
|
|
def set_textbox_value(text): |
|
"""Sets a Gradio Textbox to a specific value.""" |
|
return text |
|
|
|
|
|
def run_doc_search(query, max_results): |
|
return hf_api.search_documentation(query, int(max_results) if str(max_results).isdigit() else 2) |
|
|
|
|
|
def run_model_info(model_name): |
|
return hf_api.get_model_info(model_name) |
|
|
|
|
|
def run_dataset_info(dataset_name): |
|
return hf_api.get_dataset_info(dataset_name) |
|
|
|
|
|
def run_model_search(task, limit): |
|
return hf_api.search_models(task, int(limit) if str(limit).isdigit() else 5) |
|
|
|
|
|
def run_transformers_docs(topic): |
|
return hf_api.get_transformers_docs(topic) |
|
|
|
|
|
def run_trending_models(limit): |
|
return hf_api.get_trending_models(int(limit) if str(limit).isdigit() else 10) |
|
|
|
|
|
|
|
|
|
with gr.Blocks( |
|
title="π€ Hugging Face Information Server", |
|
theme=gr.themes.Soft(), |
|
css=""" |
|
.gradio-container { font-family: 'Inter', sans-serif; } |
|
.main-header { text-align: center; padding: 20px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; border-radius: 10px; margin-bottom: 20px; } |
|
""") as demo: |
|
|
|
with gr.Row(): |
|
gr.HTML(""" |
|
<div class="main-header"> |
|
<h1>π€ Hugging Face Information Server</h1> |
|
<p>Get comprehensive documentation with <strong>real code examples</strong>, <strong>usage instructions</strong>, and <strong>practical content</strong></p> |
|
</div> |
|
""") |
|
|
|
with gr.Tab("π Documentation Search", elem_id="docs"): |
|
gr.Markdown("### Search for documentation with **comprehensive code examples** and **step-by-step instructions**") |
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
doc_query = gr.Textbox(label="π Search Query", placeholder="e.g., tokenizer, pipeline, fine-tuning, peft, trainer, quantization") |
|
with gr.Column(scale=1): |
|
doc_max_results = gr.Number(label="Max Results", value=2, minimum=1, maximum=5) |
|
doc_output = gr.Textbox(label="π Documentation with Examples", lines=25, max_lines=30) |
|
with gr.Row(): |
|
doc_btn = gr.Button("π Search Documentation", variant="primary", size="lg") |
|
doc_clear = gr.Button("ποΈ Clear", variant="secondary") |
|
gr.Markdown("**Quick Examples:**") |
|
with gr.Row(): |
|
gr.Button("Pipeline", size="sm").click(functools.partial(set_textbox_value, "pipeline"), outputs=doc_query) |
|
gr.Button("Tokenizer", size="sm").click(functools.partial(set_textbox_value, "tokenizer"), outputs=doc_query) |
|
gr.Button("Fine-tuning", size="sm").click(functools.partial(set_textbox_value, "fine-tuning"), outputs=doc_query) |
|
gr.Button("PEFT", size="sm").click(functools.partial(set_textbox_value, "peft"), outputs=doc_query) |
|
|
|
doc_btn.click(run_doc_search, inputs=[doc_query, doc_max_results], outputs=doc_output) |
|
doc_clear.click(clear_output, outputs=doc_output) |
|
|
|
with gr.Tab("π€ Model Information", elem_id="models"): |
|
gr.Markdown("### Get detailed model information with **usage examples** and **code snippets**") |
|
model_name = gr.Textbox(label="π€ Model Name", placeholder="e.g., bert-base-uncased, gpt2, microsoft/DialoGPT-medium, meta-llama/Llama-2-7b-hf") |
|
model_output = gr.Textbox(label="π Model Information + Usage Examples", lines=25, max_lines=30) |
|
with gr.Row(): |
|
model_btn = gr.Button("π Get Model Info", variant="primary", size="lg") |
|
model_clear = gr.Button("ποΈ Clear", variant="secondary") |
|
gr.Markdown("**Popular Models:**") |
|
with gr.Row(): |
|
gr.Button("BERT", size="sm").click(functools.partial(set_textbox_value, "bert-base-uncased"), outputs=model_name) |
|
gr.Button("GPT-2", size="sm").click(functools.partial(set_textbox_value, "gpt2"), outputs=model_name) |
|
gr.Button("T5", size="sm").click(functools.partial(set_textbox_value, "t5-small"), outputs=model_name) |
|
gr.Button("DistilBERT", size="sm").click(functools.partial(set_textbox_value, "distilbert-base-uncased"), outputs=model_name) |
|
|
|
model_btn.click(run_model_info, inputs=model_name, outputs=model_output) |
|
model_clear.click(clear_output, outputs=model_output) |
|
|
|
with gr.Tab("π Dataset Information", elem_id="datasets"): |
|
gr.Markdown("### Get dataset information with **loading examples** and **usage code**") |
|
dataset_name = gr.Textbox(label="π Dataset Name", placeholder="e.g., squad, imdb, glue, common_voice, wikitext") |
|
dataset_output = gr.Textbox(label="π Dataset Information + Usage Examples", lines=25, max_lines=30) |
|
with gr.Row(): |
|
dataset_btn = gr.Button("π Get Dataset Info", variant="primary", size="lg") |
|
dataset_clear = gr.Button("ποΈ Clear", variant="secondary") |
|
gr.Markdown("**Popular Datasets:**") |
|
with gr.Row(): |
|
gr.Button("SQuAD", size="sm").click(functools.partial(set_textbox_value, "squad"), outputs=dataset_name) |
|
gr.Button("IMDB", size="sm").click(functools.partial(set_textbox_value, "imdb"), outputs=dataset_name) |
|
gr.Button("GLUE", size="sm").click(functools.partial(set_textbox_value, "glue"), outputs=dataset_name) |
|
gr.Button("Common Voice", size="sm").click(functools.partial(set_textbox_value, "common_voice"), outputs=dataset_name) |
|
|
|
dataset_btn.click(run_dataset_info, inputs=dataset_name, outputs=dataset_output) |
|
dataset_clear.click(clear_output, outputs=dataset_output) |
|
|
|
with gr.Tab("π Model Search", elem_id="search"): |
|
gr.Markdown("### Search models with **quick usage examples** and **quality indicators**") |
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
search_task = gr.Textbox(label="π Task or Keyword", placeholder="e.g., text-classification, image-generation, question-answering, sentiment-analysis") |
|
with gr.Column(scale=1): |
|
search_limit = gr.Number(label="Max Results", value=5, minimum=1, maximum=10) |
|
search_output = gr.Textbox(label="π Models with Usage Examples", lines=25, max_lines=30) |
|
with gr.Row(): |
|
search_btn = gr.Button("π Search Models", variant="primary", size="lg") |
|
search_clear = gr.Button("ποΈ Clear", variant="secondary") |
|
gr.Markdown("**Popular Tasks:**") |
|
with gr.Row(): |
|
gr.Button("Text Classification", size="sm").click(functools.partial(set_textbox_value, "text-classification"), outputs=search_task) |
|
gr.Button("Question Answering", size="sm").click(functools.partial(set_textbox_value, "question-answering"), outputs=search_task) |
|
gr.Button("Text Generation", size="sm").click(functools.partial(set_textbox_value, "text-generation"), outputs=search_task) |
|
gr.Button("Image Classification", size="sm").click(functools.partial(set_textbox_value, "image-classification"), outputs=search_task) |
|
|
|
search_btn.click(run_model_search, inputs=[search_task, search_limit], outputs=search_output) |
|
search_clear.click(clear_output, outputs=search_output) |
|
|
|
with gr.Tab("β‘ Transformers Docs", elem_id="transformers"): |
|
gr.Markdown("### Get comprehensive Transformers documentation with **detailed examples** and **parameters**") |
|
transformers_topic = gr.Textbox(label="π Topic", placeholder="e.g., pipeline, tokenizer, trainer, model, peft, generation, quantization") |
|
transformers_output = gr.Textbox(label="π Comprehensive Documentation", lines=25, max_lines=30) |
|
with gr.Row(): |
|
transformers_btn = gr.Button("π Get Documentation", variant="primary", size="lg") |
|
transformers_clear = gr.Button("ποΈ Clear", variant="secondary") |
|
gr.Markdown("**Core Topics:**") |
|
with gr.Row(): |
|
gr.Button("Pipeline", size="sm").click(functools.partial(set_textbox_value, "pipeline"), outputs=transformers_topic) |
|
gr.Button("Tokenizer", size="sm").click(functools.partial(set_textbox_value, "tokenizer"), outputs=transformers_topic) |
|
gr.Button("Trainer", size="sm").click(functools.partial(set_textbox_value, "trainer"), outputs=transformers_topic) |
|
gr.Button("Generation", size="sm").click(functools.partial(set_textbox_value, "generation"), outputs=transformers_topic) |
|
|
|
transformers_btn.click(run_transformers_docs, inputs=transformers_topic, outputs=transformers_output) |
|
transformers_clear.click(clear_output, outputs=transformers_output) |
|
|
|
with gr.Tab("π₯ Trending Models", elem_id="trending"): |
|
gr.Markdown("### Discover the most popular and trending models") |
|
trending_limit = gr.Number(label="Number of Models", value=10, minimum=1, maximum=20) |
|
trending_output = gr.Textbox(label="π₯ Trending Models", lines=20, max_lines=25) |
|
with gr.Row(): |
|
trending_btn = gr.Button("π₯ Get Trending Models", variant="primary", size="lg") |
|
trending_clear = gr.Button("ποΈ Clear", variant="secondary") |
|
|
|
trending_btn.click(run_trending_models, inputs=trending_limit, outputs=trending_output) |
|
trending_clear.click(clear_output, outputs=trending_output) |
|
|
|
|
|
with gr.Row(): |
|
gr.HTML(""" |
|
<div style="text-align: center; padding: 20px; color: #666;"> |
|
<h3>π‘ Features</h3> |
|
<p><strong>β
Real code examples</strong> β’ <strong>β
Step-by-step instructions</strong> β’ <strong>β
Parameter documentation</strong> β’ <strong>β
Quality indicators</strong></p> |
|
<p><em>Get practical, actionable information, directly from the source.</em></p> |
|
<p><a href="https://huggingface.co/spaces/Agents-MCP-Hackathon/HuggingFaceDoc/blob/main/README.md" target="_blank">π Read the Guide on Hugging Face Spaces</a></p> |
|
</div> |
|
""") |
|
|
|
if __name__ == "__main__": |
|
print("π Starting Hugging Face Information Server...") |
|
print("π Features: Code examples, usage instructions, comprehensive documentation") |
|
|
|
demo.launch( |
|
|
|
mcp_server=True |
|
) |