ABDALLALSWAITI commited on
Commit
9366462
·
verified ·
1 Parent(s): f375499

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -22
README.md CHANGED
@@ -1,3 +1,8 @@
 
 
 
 
 
1
  ---
2
  title: Hugging Face Information Server
3
  emoji: 📚
@@ -58,19 +63,21 @@ This application is a fully compliant **Model Context Protocol (MCP)** server, a
58
  The server's public endpoint is:
59
  `https://agents-mcp-hackathon-huggingfacedoc.hf.space/gradio_api/mcp/sse`
60
 
61
- ### Method 1: Test with a Public Client
62
 
63
- You can test this server immediately using this public MCP Client Space. Just paste the server URL above into the client's URL input field.
64
 
65
- **[➡️ Test with Public MCP Client](https://huggingface.co/spaces/ABDALLALSWAITI/MCPclient)**
66
 
67
- ### Method 2: Integrate with UI Clients (e.g., Cursor IDE)
68
 
69
- MCP hosts often use a configuration file, typically named `mcp.json`, to manage server connections [cite].
70
 
71
- #### General `mcp.json` Configuration
72
 
73
- For a remote server using HTTP+SSE transport, the configuration points to the server's URL [cite]. You would create an `mcp.json` file with the following structure:
 
 
74
 
75
  ```json
76
  {
@@ -88,7 +95,7 @@ For a remote server using HTTP+SSE transport, the configuration points to the se
88
 
89
  #### Configuring Cursor IDE
90
 
91
- Cursor IDE has built-in MCP support. To connect this server, you can use the `mcp-remote` tool, which acts as a bridge for clients that don't natively support remote SSE servers [cite].
92
 
93
  1. Open Cursor settings (`Ctrl + Shift + J` / `Cmd + Shift + J`).
94
  2. Go to the `MCP` tab and click `Add new global MCP server`.
@@ -166,7 +173,7 @@ export GOOGLE_API_KEY="YOUR_API_KEY_HERE"
166
 
167
  **3. Create and Run the Client Script**
168
 
169
- Save the client code from the previous section as `client_app.py` and run it:
170
 
171
  ```bash
172
  python client_app.py
@@ -176,32 +183,21 @@ python client_app.py
176
 
177
  ## Advanced: Using `LiteLLMModel` Directly
178
 
179
- The `smol-agents` library uses `LiteLLMModel` to interact with various language models. If you want to use a model like Anthropic's Claude 3.5 Sonnet directly in your Python code, you can do so easily.
180
-
181
- First, ensure you have your Anthropic API key set as an environment variable:
182
-
183
- ```bash
184
- export ANTHROPIC_API_KEY="YOUR_ANTHROPIC_KEY"
185
- ```
186
-
187
- Then, you can use the following pattern in Python:
188
 
189
  ```python
190
  from smolagents import LiteLLMModel
191
 
192
- # Define the messages in the standard conversation format
193
  messages = [
194
  {"role": "user", "content": [{"type": "text", "text": "Hello, how are you?"}]}
195
  ]
196
 
197
- # Instantiate the model
198
  model = LiteLLMModel(
199
  model_id="anthropic/claude-3-5-sonnet-latest",
200
  temperature=0.2,
201
  max_tokens=1024
202
  )
203
 
204
- # Call the model with the messages
205
  response = model(messages)
206
  print(response)
207
  ```
@@ -230,4 +226,7 @@ The server exposes the following tools to any connected MCP client:
230
 
231
  ## License
232
 
233
- This project is licensed under the Apache 2.0 License.
 
 
 
 
1
+ Of course. I've added a new section for the Modal-deployed client right after the public test client link, including the thank you note and the guide.
2
+
3
+ Here is the complete, updated `README.md` file.
4
+
5
+ ````markdown
6
  ---
7
  title: Hugging Face Information Server
8
  emoji: 📚
 
63
  The server's public endpoint is:
64
  `https://agents-mcp-hackathon-huggingfacedoc.hf.space/gradio_api/mcp/sse`
65
 
66
+ ### Method 1: Test with Public Clients
67
 
68
+ You can test this server immediately using these public MCP Client Spaces. Just paste the server URL above into the client's URL input field.
69
 
70
+ **[➡️ Test with Hugging Face Client](https://huggingface.co/spaces/ABDALLALSWAITI/MCPclient)**
71
 
72
+ A special thank you to **Modal Labs** for providing credits and resources during the hackathon. You can also test with this client deployed on **Modal**.
73
 
74
+ **[➡️ Test with Modal Client](https://abedalswaity7--huggingface-research-agent-ui.modal.run/)**
75
 
76
+ *For those interested, here is a guide on deploying Gradio applications on Modal: [How to run Gradio apps on Modal](https://modal.com/blog/how_to_run_gradio_on_modal_article).*
77
 
78
+ ### Method 2: Integrate with UI Clients (e.g., Cursor IDE)
79
+
80
+ MCP hosts often use a configuration file, typically named `mcp.json`, to manage server connections. For a remote server using HTTP+SSE transport, the configuration points to the server's URL. You would create an `mcp.json` file with the following structure:
81
 
82
  ```json
83
  {
 
95
 
96
  #### Configuring Cursor IDE
97
 
98
+ To connect this server in Cursor, you can use the `mcp-remote` tool, which acts as a bridge.
99
 
100
  1. Open Cursor settings (`Ctrl + Shift + J` / `Cmd + Shift + J`).
101
  2. Go to the `MCP` tab and click `Add new global MCP server`.
 
173
 
174
  **3. Create and Run the Client Script**
175
 
176
+ Save the client code as `client_app.py` and run it from your terminal:
177
 
178
  ```bash
179
  python client_app.py
 
183
 
184
  ## Advanced: Using `LiteLLMModel` Directly
185
 
186
+ The `smol-agents` library uses `LiteLLMModel` to interact with various language models. To use a model like Anthropic's Claude 3.5 Sonnet directly, ensure your API key is set (`export ANTHROPIC_API_KEY="YOUR_KEY"`) and use the following pattern:
 
 
 
 
 
 
 
 
187
 
188
  ```python
189
  from smolagents import LiteLLMModel
190
 
 
191
  messages = [
192
  {"role": "user", "content": [{"type": "text", "text": "Hello, how are you?"}]}
193
  ]
194
 
 
195
  model = LiteLLMModel(
196
  model_id="anthropic/claude-3-5-sonnet-latest",
197
  temperature=0.2,
198
  max_tokens=1024
199
  )
200
 
 
201
  response = model(messages)
202
  print(response)
203
  ```
 
226
 
227
  ## License
228
 
229
+ This project is licensed under the Apache 2.0 License.
230
+
231
+ ```
232
+ ```