File size: 17,643 Bytes
748425c e4ccc11 748425c e4ccc11 748425c 79b337b 748425c e4ccc11 d8cda25 748425c e4ccc11 748425c e4ccc11 79b337b e4ccc11 748425c 79b337b 748425c d63f692 748425c e4ccc11 748425c e4ccc11 748425c e4ccc11 d8cda25 e4ccc11 748425c e4ccc11 748425c 79b337b 748425c d63f692 748425c e608228 748425c e608228 748425c e608228 748425c d63f692 e4ccc11 748425c e4ccc11 d63f692 e4ccc11 748425c 697792b e608228 697792b 748425c e4ccc11 e608228 748425c e4ccc11 e608228 697792b e608228 748425c e4ccc11 e608228 e4ccc11 e608228 748425c 79b337b 748425c d63f692 748425c d63f692 748425c e4ccc11 748425c e4ccc11 748425c e4ccc11 748425c e4ccc11 d63f692 e608228 e4ccc11 697792b 748425c 697792b 748425c e4ccc11 697792b 748425c e4ccc11 748425c 79b337b 748425c d63f692 748425c d63f692 748425c d63f692 748425c 79b337b 748425c d63f692 748425c 9c43fab 748425c 8b98658 d63f692 79b337b 748425c d63f692 e4ccc11 79b337b 748425c e4ccc11 79b337b 748425c e4ccc11 d63f692 748425c e4ccc11 9c43fab e4ccc11 748425c e4ccc11 748425c d8cda25 e4ccc11 d8cda25 e4ccc11 d8cda25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
import os
from io import BytesIO
import cv2
import modal
import numpy as np
from PIL import Image
app = modal.App("ImageAlfred")
PYTHON_VERSION = "3.12"
CUDA_VERSION = "12.4.0"
FLAVOR = "devel"
OPERATING_SYS = "ubuntu22.04"
tag = f"{CUDA_VERSION}-{FLAVOR}-{OPERATING_SYS}"
volume = modal.Volume.from_name("image-alfred-volume", create_if_missing=True)
volume_path = "/vol"
MODEL_CACHE_DIR = f"{volume_path}/models/cache"
TORCH_HOME = f"{volume_path}/torch/home"
HF_HOME = f"{volume_path}/huggingface"
image = (
modal.Image.from_registry(f"nvidia/cuda:{tag}", add_python=PYTHON_VERSION)
.env(
{
"HF_HUB_ENABLE_HF_TRANSFER": "1", # faster downloads
"HF_HUB_CACHE": HF_HOME,
"TORCH_HOME": TORCH_HOME,
}
)
.apt_install(
"git",
)
.pip_install(
"huggingface-hub",
"hf_transfer",
"Pillow",
"numpy",
"transformers",
"opencv-contrib-python-headless",
"scipy",
gpu="A10G",
)
.pip_install(
"torch==2.4.1",
"torchvision==0.19.1",
index_url="https://download.pytorch.org/whl/cu124",
gpu="A10G",
)
.pip_install("git+https://github.com/openai/CLIP.git", gpu="A10G")
.pip_install("git+https://github.com/facebookresearch/sam2.git", gpu="A10G")
.pip_install(
"git+https://github.com/PramaLLC/BEN2.git#egg=ben2",
gpu="A10G",
)
)
@app.function(
image=image,
gpu="A10G",
volumes={volume_path: volume},
timeout=60 * 3,
)
def prompt_segment(
image_pil: Image.Image,
prompts: list[str],
) -> list[dict]:
clip_results = clip.remote(image_pil, prompts)
if not clip_results:
print("No boxes returned from CLIP.")
return None
boxes = np.array(clip_results["boxes"])
sam_result_masks, sam_result_scores = sam2.remote(image_pil=image_pil, boxes=boxes)
print(f"sam_result_mask {sam_result_masks}")
if not sam_result_masks.any():
print("No masks or scores returned from SAM2.")
return None
if sam_result_masks.ndim == 3:
# If the masks are in 3D, we need to convert them to 4D
sam_result_masks = [sam_result_masks]
results = {
"labels": clip_results["labels"],
"boxes": boxes,
"clip_scores": clip_results["scores"],
"sam_masking_scores": sam_result_scores,
"masks": sam_result_masks,
}
return results
@app.function(
image=image,
gpu="A10G",
volumes={volume_path: volume},
timeout=60 * 3,
)
def privacy_prompt_segment(
image_pil: Image.Image,
prompts: list[str],
threshold: float,
) -> list[dict]:
owlv2_results = owlv2.remote(image_pil, prompts, threshold=threshold)
if not owlv2_results:
print("No boxes returned from OWLV2.")
return None
boxes = np.array(owlv2_results["boxes"])
sam_result_masks, sam_result_scores = sam2.remote(image_pil=image_pil, boxes=boxes)
print(f"sam_result_mask {sam_result_masks}")
if not sam_result_masks.any():
print("No masks or scores returned from SAM2.")
return None
if sam_result_masks.ndim == 3:
# If the masks are in 3D, we need to convert them to 4D
sam_result_masks = [sam_result_masks]
results = {
"labels": owlv2_results["labels"],
"boxes": boxes,
"owlv2_scores": owlv2_results["scores"],
"sam_masking_scores": sam_result_scores,
"masks": sam_result_masks,
}
return results
@app.function(
image=image,
gpu="A100",
volumes={volume_path: volume},
timeout=60 * 3,
)
def sam2(image_pil: Image.Image, boxes: list[np.ndarray]) -> list[dict]:
import torch
from sam2.sam2_image_predictor import SAM2ImagePredictor
predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-large")
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
predictor.set_image(image_pil)
masks, scores, _ = predictor.predict(
point_coords=None,
point_labels=None,
box=boxes,
multimask_output=False,
)
return masks, scores
@app.function(
image=image,
gpu="A100",
volumes={volume_path: volume},
)
def owlv2(
image_pil: Image.Image,
labels: list[str],
threshold: float,
) -> list[dict]:
"""
Perform zero-shot segmentation on an image using specified labels.
Args:
image_pil (Image.Image): The input image as a PIL Image.
labels (list[str]): List of labels for zero-shot segmentation.
Returns:
list[dict]: List of dictionaries containing label and bounding box information.
"""
from transformers import pipeline
checkpoint = "google/owlv2-large-patch14-ensemble"
detector = pipeline(
model=checkpoint,
task="zero-shot-object-detection",
device="cuda",
use_fast=True,
)
# Load the image
predictions = detector(
image_pil,
candidate_labels=labels,
)
labels = []
scores = []
boxes = []
for prediction in predictions:
if prediction["score"] < threshold:
continue
labels.append(prediction["label"])
scores.append(prediction["score"])
boxes.append(np.array(list(prediction["box"].values())))
if labels == []:
print("No predictions found with score above threshold.")
return None
predictions = {"labels": labels, "scores": scores, "boxes": boxes}
return predictions
@app.function(
image=image,
gpu="A100",
volumes={volume_path: volume},
timeout=60 * 3,
)
def clip(
image_pil: Image.Image,
prompts: list[str],
) -> list[dict]:
"""
returns:
dict with keys each are lists:
- labels: str, the prompt used for the prediction
- scores: float, confidence score of the prediction
- boxes: np.array representing bounding box coordinates
"""
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
import torch
processor = CLIPSegProcessor.from_pretrained(
"CIDAS/clipseg-rd64-refined",
use_fast=True,
)
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
# Get original image dimensions
orig_width, orig_height = image_pil.size
inputs = processor(
text=prompts,
images=[image_pil] * len(prompts),
padding="max_length",
return_tensors="pt",
)
# predict
with torch.no_grad():
outputs = model(**inputs)
preds = outputs.logits.unsqueeze(1)
# Get the dimensions of the prediction output
pred_height, pred_width = preds.shape[-2:]
# Calculate scaling factors
width_scale = orig_width / pred_width
height_scale = orig_height / pred_height
labels = []
scores = []
boxes = []
# Process each prediction to find bounding boxes in high probability regions
for i, prompt in enumerate(prompts):
# Apply sigmoid to get probability map
pred_tensor = torch.sigmoid(preds[i][0])
# Convert tensor to numpy array
pred_np = pred_tensor.cpu().numpy()
# Convert to uint8 for OpenCV processing
heatmap = (pred_np * 255).astype(np.uint8)
# Apply threshold to find high probability regions
_, binary = cv2.threshold(heatmap, 127, 255, cv2.THRESH_BINARY)
# Find contours in thresholded image
contours, _ = cv2.findContours(
binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
# Process each contour to get bounding boxes
for contour in contours:
# Skip very small contours that might be noise
if cv2.contourArea(contour) < 100: # Minimum area threshold
continue
# Get bounding box coordinates in prediction space
x, y, w, h = cv2.boundingRect(contour)
# Scale coordinates to original image dimensions
x_orig = int(x * width_scale)
y_orig = int(y * height_scale)
w_orig = int(w * width_scale)
h_orig = int(h * height_scale)
# Calculate confidence score based on average probability in the region
mask = np.zeros_like(pred_np)
cv2.drawContours(mask, [contour], 0, 1, -1)
confidence = float(np.mean(pred_np[mask == 1]))
labels.append(prompt)
scores.append(confidence)
boxes.append(
np.array(
[
x_orig,
y_orig,
x_orig + w_orig,
y_orig + h_orig,
]
)
)
if labels == []:
return None
results = {
"labels": labels,
"scores": scores,
"boxes": boxes,
}
return results
@app.function(
gpu="A10G",
image=image,
volumes={volume_path: volume},
timeout=60 * 3,
)
def change_image_objects_hsv(
image_pil: Image.Image,
targets_config: list[list[str | int | float]],
) -> Image.Image:
if not isinstance(targets_config, list) or not all(
(
isinstance(target, list)
and len(target) == 4
and isinstance(target[0], str)
and isinstance(target[1], (int))
and isinstance(target[2], (int))
and isinstance(target[3], (int))
and target[1] >= 0
and target[1] <= 255
and target[2] >= 0
and target[2] <= 255
and target[3] >= 0
and target[3] <= 255
)
for target in targets_config
):
raise ValueError(
"targets_config must be a list of lists, each containing [target_name, hue, saturation_scale]." # noqa: E501
)
print("Change image objects hsv targets config:", targets_config)
prompts = [target[0].strip() for target in targets_config]
prompt_segment_results = prompt_segment.remote(
image_pil=image_pil,
prompts=prompts,
)
if not prompt_segment_results:
return image_pil
output_labels = prompt_segment_results["labels"]
img_array = np.array(image_pil)
img_hsv = cv2.cvtColor(img_array, cv2.COLOR_RGB2HSV).astype(np.float32)
for idx, label in enumerate(output_labels):
if not label or label == "":
print("Skipping empty label.")
continue
if label not in prompts:
print(f"Label '{label}' not found in prompts. Skipping.")
continue
input_label_idx = prompts.index(label)
target_rgb = targets_config[input_label_idx][1:]
target_hsv = cv2.cvtColor(np.uint8([[target_rgb]]), cv2.COLOR_RGB2HSV)[0][0]
mask = prompt_segment_results["masks"][idx][0].astype(bool)
h, s, v = cv2.split(img_hsv)
# Convert all channels to float32 for consistent processing
h = h.astype(np.float32)
s = s.astype(np.float32)
v = v.astype(np.float32)
# Compute original S and V means inside the mask
mean_s = np.mean(s[mask])
mean_v = np.mean(v[mask])
# Target S and V
target_hue, target_s, target_v = target_hsv
# Compute scaling factors (avoid div by zero)
scale_s = target_s / mean_s if mean_s > 0 else 1.0
scale_v = target_v / mean_v if mean_v > 0 else 1.0
scale_s = np.clip(scale_s, 0.8, 1.2)
scale_v = np.clip(scale_v, 0.8, 1.2)
# Apply changes only in mask
h[mask] = target_hue
s = s.astype(np.float32)
v = v.astype(np.float32)
s[mask] = np.clip(s[mask] * scale_s, 0, 255)
v[mask] = np.clip(v[mask] * scale_v, 0, 255)
# Merge and convert back
img_hsv = cv2.merge(
[
h.astype(np.uint8),
s.astype(np.uint8),
v.astype(np.uint8),
]
)
output_img = cv2.cvtColor(img_hsv.astype(np.uint8), cv2.COLOR_HSV2RGB)
output_img_pil = Image.fromarray(output_img)
return output_img_pil
@app.function(
gpu="A10G",
image=image,
volumes={volume_path: volume},
timeout=60 * 3,
)
def change_image_objects_lab(
image_pil: Image.Image,
targets_config: list[list[str | int | float]],
) -> Image.Image:
"""Changes the color of specified objects in an image.
This function uses LangSAM to segment objects in the image based on provided prompts,
and then modifies the color of those objects in the LAB color space.
""" # noqa: E501
if not isinstance(targets_config, list) or not all(
(
isinstance(target, list)
and len(target) == 3
and isinstance(target[0], str)
and isinstance(target[1], int)
and isinstance(target[2], int)
and 0 <= target[1] <= 255
and 0 <= target[2] <= 255
)
for target in targets_config
):
raise ValueError(
"targets_config must be a list of lists, each containing [target_name, new_a, new_b]." # noqa: E501
)
print("change image objects lab targets config:", targets_config)
prompts = [target[0].strip() for target in targets_config]
prompt_segment_results = prompt_segment.remote(
image_pil=image_pil,
prompts=prompts,
)
if not prompt_segment_results:
return image_pil
output_labels = prompt_segment_results["labels"]
img_array = np.array(image_pil)
img_lab = cv2.cvtColor(img_array, cv2.COLOR_RGB2Lab).astype(np.float32)
for idx, label in enumerate(output_labels):
if not label or label == "":
print("Skipping empty label.")
continue
if label not in prompts:
print(f"Label '{label}' not found in prompts. Skipping.")
continue
input_label_idx = prompts.index(label)
new_a = targets_config[input_label_idx][1]
new_b = targets_config[input_label_idx][2]
mask = prompt_segment_results["masks"][idx][0]
mask_bool = mask.astype(bool)
img_lab[mask_bool, 1] = new_a
img_lab[mask_bool, 2] = new_b
output_img = cv2.cvtColor(img_lab.astype(np.uint8), cv2.COLOR_Lab2RGB)
output_img_pil = Image.fromarray(output_img)
return output_img_pil
@app.function(
gpu="A10G",
image=image,
volumes={volume_path: volume},
timeout=60 * 3,
)
def apply_mosaic_with_bool_mask(
image: np.ndarray,
mask: np.ndarray,
privacy_strength: int,
) -> np.ndarray:
h, w = image.shape[:2]
image_size_factor = min(h, w) / 1000
block_size = int(max(1, (privacy_strength * image_size_factor)))
# Ensure block_size is at least 1 and doesn't exceed half of image dimensions
block_size = max(1, min(block_size, min(h, w) // 2))
small = cv2.resize(
image, (w // block_size, h // block_size), interpolation=cv2.INTER_LINEAR
)
mosaic = cv2.resize(small, (w, h), interpolation=cv2.INTER_NEAREST)
result = image.copy()
result[mask] = mosaic[mask]
return result
@app.function(
gpu="A10G",
image=image,
volumes={volume_path: volume},
timeout=60 * 3,
)
def preserve_privacy(
image_pil: Image.Image,
prompts: list[str],
privacy_strength: int = 15,
threshold: float = 0.2,
) -> Image.Image:
"""
Preserves privacy in an image by applying a mosaic effect to specified objects.
"""
print(f"Preserving privacy for prompt: {prompts} with strength {privacy_strength}")
if isinstance(prompts, str):
prompts = [prompt.strip() for prompt in prompts.split(".")]
print(f"Parsed prompts: {prompts}")
prompt_segment_results = privacy_prompt_segment.remote(
image_pil=image_pil,
prompts=prompts,
threshold=threshold,
)
if not prompt_segment_results:
return image_pil
img_array = np.array(image_pil)
for i, mask in enumerate(prompt_segment_results["masks"]):
mask_bool = mask[0].astype(bool)
# Create kernel for morphological operations
kernel_size = 100
kernel = np.ones((kernel_size, kernel_size), np.uint8)
# Convert bool mask to uint8 for OpenCV operations
mask_uint8 = mask_bool.astype(np.uint8) * 255
# Apply dilation to slightly expand the mask area
mask_uint8 = cv2.dilate(mask_uint8, kernel, iterations=2)
# Optional: Apply erosion again to refine the mask
mask_uint8 = cv2.erode(mask_uint8, kernel, iterations=2)
# Convert back to boolean mask
mask_bool = mask_uint8 > 127
img_array = apply_mosaic_with_bool_mask.remote(
img_array, mask_bool, privacy_strength
)
output_image_pil = Image.fromarray(img_array)
return output_image_pil
@app.function(
gpu="A10G",
image=image,
volumes={volume_path: volume},
timeout=60 * 2,
)
def remove_background(image_pil: Image.Image) -> Image.Image:
import torch # type: ignore
from ben2 import BEN_Base # type: ignore
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
print("type of image_pil:", type(image_pil))
model = BEN_Base.from_pretrained("PramaLLC/BEN2")
model.to(device).eval() # todo check if this should be outside the function
output_image = model.inference(
image_pil,
refine_foreground=True,
)
print(f"output type: {type(output_image)}")
return output_image
|