File size: 9,405 Bytes
748425c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27f8934
 
748425c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27f8934
 
 
 
 
 
 
 
748425c
 
 
 
 
 
 
 
27f8934
748425c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27f8934
748425c
 
 
27f8934
 
 
748425c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27f8934
748425c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27f8934
748425c
27f8934
748425c
 
 
 
 
27f8934
 
 
748425c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27f8934
748425c
27f8934
 
 
 
 
748425c
27f8934
 
 
 
 
748425c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27f8934
748425c
9c43fab
748425c
 
27f8934
748425c
27f8934
 
 
 
748425c
 
 
 
 
9c43fab
748425c
27f8934
 
748425c
 
 
 
 
27f8934
748425c
 
 
 
 
 
 
 
 
 
 
 
27f8934
 
 
9c43fab
748425c
 
27f8934
 
 
748425c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import os
from io import BytesIO

import cv2
import modal
import numpy as np
from PIL import Image

app = modal.App("ImageAlfred")

PYTHON_VERSION = "3.12"
CUDA_VERSION = "12.4.0"
FLAVOR = "devel"
OPERATING_SYS = "ubuntu22.04"
tag = f"{CUDA_VERSION}-{FLAVOR}-{OPERATING_SYS}"
volume = modal.Volume.from_name("image-alfred-volume", create_if_missing=True)
volume_path = "/vol"

MODEL_CACHE_DIR = f"{volume_path}/models/cache"
TORCH_HOME = f"{volume_path}/torch/home"
HF_HOME = f"{volume_path}/huggingface"

image = (
    modal.Image.from_registry(f"nvidia/cuda:{tag}", add_python=PYTHON_VERSION)
    .env(
        {
            "HF_HUB_ENABLE_HF_TRANSFER": "1",  # faster downloads
            "HF_HUB_CACHE": HF_HOME,
            "TORCH_HOME": TORCH_HOME,
        }
    )
    .apt_install("git")
    .pip_install(
        "huggingface-hub",
        "hf_transfer",
        "Pillow",
        "numpy",
        "opencv-contrib-python-headless",
        gpu="A10G",
    )
    .pip_install(
        "torch==2.4.1",
        "torchvision==0.19.1",
        index_url="https://download.pytorch.org/whl/cu124",
        gpu="A10G",
    )
    .pip_install(
        "git+https://github.com/luca-medeiros/lang-segment-anything.git",
        gpu="A10G",
    )
)


@app.function(
    gpu="A10G",
    image=image,
    volumes={volume_path: volume},
    # min_containers=1,
    timeout=60 * 3,
)
def lang_sam_segment(
    image_pil: Image.Image,
    prompt: str,
    box_threshold=0.3,
    text_threshold=0.25,
) -> list:
    """Segments an image using LangSAM based on a text prompt.
    This function uses LangSAM to segment objects in the image based on the provided prompt.
    """  # noqa: E501
    from lang_sam import LangSAM  # type: ignore

    model = LangSAM(sam_type="sam2.1_hiera_large")
    langsam_results = model.predict(
        images_pil=[image_pil],
        texts_prompt=[prompt],
        box_threshold=box_threshold,
        text_threshold=text_threshold,
    )
    if len(langsam_results[0]["labels"]) == 0:
        print("No masks found for the given prompt.")
        return None
    
    print(f"found {len(langsam_results[0]['labels'])} masks for prompt: {prompt}")
    print("labels:", langsam_results[0]["labels"])
    print("scores:", langsam_results[0]["scores"])
    print("masks scores:", langsam_results[0].get("mask_scores", "No mask scores available"))  # noqa: E501

    return langsam_results


@app.function(
    gpu="T4",
    image=image,
    volumes={volume_path: volume},
    timeout=60 * 3,
)
def change_image_objects_hsv(
    image_pil: Image.Image,
    targets_config: list[list[str | int | float]],
) -> Image.Image:
    """Changes the hue and saturation of specified objects in an image.
    This function uses LangSAM to segment objects in the image based on provided prompts,
    and then modifies the hue and saturation of those objects in the HSV color space.
    """  # noqa: E501
    if not isinstance(targets_config, list) or not all(
        (
            isinstance(target, list)
            and len(target) == 3
            and isinstance(target[0], str)
            and isinstance(target[1], (int, float))
            and isinstance(target[2], (int, float))
            and 0 <= target[1] <= 179
            and target[2] >= 0
        )
        for target in targets_config
    ):
        raise ValueError(
            "targets_config must be a list of lists, each containing [target_name, hue, saturation_scale]."  # noqa: E501
        )
    print("Change image objects hsv targets config:", targets_config)
    prompts = ". ".join(target[0] for target in targets_config)

    langsam_results = lang_sam_segment.remote(image_pil=image_pil, prompt=prompts)
    if not langsam_results:
        return image_pil

    labels = langsam_results[0]["labels"]
    scores = langsam_results[0]["scores"]

    img_array = np.array(image_pil)
    img_hsv = cv2.cvtColor(img_array, cv2.COLOR_RGB2HSV).astype(np.float32)

    for target_spec in targets_config:
        target_obj = target_spec[0]
        hue = target_spec[1]
        saturation_scale = target_spec[2]

        try:
            mask_idx = labels.index(target_obj)
        except ValueError:
            print(
                f"Warning: Label '{target_obj}' not found in the image. Skipping this target."  # noqa: E501
            )
            continue

        mask = langsam_results[0]["masks"][mask_idx]
        mask_bool = mask.astype(bool)

        img_hsv[mask_bool, 0] = float(hue)
        img_hsv[mask_bool, 1] = np.minimum(
            img_hsv[mask_bool, 1] * saturation_scale,
            255.0,
        )

    output_img = cv2.cvtColor(img_hsv.astype(np.uint8), cv2.COLOR_HSV2RGB)
    output_img_pil = Image.fromarray(output_img)
    return output_img_pil


@app.function(
    gpu="T4",
    image=image,
    volumes={volume_path: volume},
    timeout=60 * 3,
)
def change_image_objects_lab(
    image_pil: Image.Image,
    targets_config: list[list[str | int | float]],
) -> Image.Image:
    """Changes the color of specified objects in an image.
    This function uses LangSAM to segment objects in the image based on provided prompts,
    and then modifies the color of those objects in the LAB color space.
    """  # noqa: E501
    if not isinstance(targets_config, list) or not all(
        (
            isinstance(target, list)
            and len(target) == 3
            and isinstance(target[0], str)
            and isinstance(target[1], int)
            and isinstance(target[2], int)
            and 0 <= target[1] <= 255
            and 0 <= target[2] <= 255
        )
        for target in targets_config
    ):
        raise ValueError(
            "targets_config must be a list of lists, each containing [target_name, new_a, new_b]."  # noqa: E501
        )

    print("change image objects lab targets config:", targets_config)

    prompts = ". ".join(target[0] for target in targets_config)

    langsam_results = lang_sam_segment.remote(
        image_pil=image_pil,
        prompt=prompts,
    )
    if not langsam_results:
        return image_pil

    labels = langsam_results[0]["labels"]
    scores = langsam_results[0]["scores"]
    img_array = np.array(image_pil)
    img_lab = cv2.cvtColor(img_array, cv2.COLOR_RGB2Lab).astype(np.float32)
    for target_spec in targets_config:
        target_obj = target_spec[0]
        new_a = target_spec[1]
        new_b = target_spec[2]

        try:
            mask_idx = labels.index(target_obj)
        except ValueError:
            print(
                f"Warning: Label '{target_obj}' not found in the image. Skipping this target."  # noqa: E501
            )
            continue

        mask = langsam_results[0]["masks"][mask_idx]
        mask_bool = mask.astype(bool)

        img_lab[mask_bool, 1] = new_a
        img_lab[mask_bool, 2] = new_b

    output_img = cv2.cvtColor(img_lab.astype(np.uint8), cv2.COLOR_Lab2RGB)
    output_img_pil = Image.fromarray(output_img)

    return output_img_pil


@app.function(
    gpu="T4",
    image=image,
    volumes={volume_path: volume},
    timeout=60 * 3,
)
def apply_mosaic_with_bool_mask(
    image: np.ndarray,
    mask: np.ndarray,
    privacy_strength: int,
) -> np.ndarray:
    h, w = image.shape[:2]
    image_size_factor = min(h, w) / 1000
    block_size = int(max(1, (privacy_strength * image_size_factor)))

    # Ensure block_size is at least 1 and doesn't exceed half of image dimensions
    block_size = max(1, min(block_size, min(h, w) // 2))

    small = cv2.resize(
        image, (w // block_size, h // block_size), interpolation=cv2.INTER_LINEAR
    )
    mosaic = cv2.resize(small, (w, h), interpolation=cv2.INTER_NEAREST)

    result = image.copy()
    result[mask] = mosaic[mask]
    return result


@app.function(
    gpu="T4",
    image=image,
    volumes={volume_path: volume},
    timeout=60 * 3,
)
def preserve_privacy(
    image_pil: Image.Image,
    prompt: str,
    privacy_strength: int = 15,
) -> Image.Image:
    """
    Preserves privacy in an image by applying a mosaic effect to specified objects.
    """
    print(f"Preserving privacy for prompt: {prompt} with strength {privacy_strength}")

    langsam_results = lang_sam_segment.remote(
        image_pil=image_pil,
        prompt=prompt,
        box_threshold=0.35,
        text_threshold=0.40,
    )
    if not langsam_results:
        return image_pil

    img_array = np.array(image_pil)

    for result in langsam_results:
        print(f"result: {result}")
        
        for i, mask in enumerate(result["masks"]):
            if "mask_scores" in result:
                if (
                    hasattr(result["mask_scores"], "shape")
                    and result["mask_scores"].ndim > 0
                ):
                    mask_score = result["mask_scores"][i]
                else:
                    mask_score = result["mask_scores"]
            if mask_score < 0.6:
                print(f"Skipping mask {i + 1}/{len(result['masks'])} -> low score.")
                continue
            print(
                f"Processing mask {i + 1}/{len(result['masks'])} Mask score: {mask_score}"  # noqa: E501
            )

            mask_bool = mask.astype(bool)

            img_array = apply_mosaic_with_bool_mask.remote(
                img_array, mask_bool, privacy_strength
            )

    output_image_pil = Image.fromarray(img_array)

    return output_image_pil