import os from io import BytesIO import cv2 import modal import numpy as np from PIL import Image app = modal.App("ImageAlfred") PYTHON_VERSION = "3.12" CUDA_VERSION = "12.4.0" FLAVOR = "devel" OPERATING_SYS = "ubuntu22.04" tag = f"{CUDA_VERSION}-{FLAVOR}-{OPERATING_SYS}" volume = modal.Volume.from_name("image-alfred-volume", create_if_missing=True) volume_path = "/vol" MODEL_CACHE_DIR = f"{volume_path}/models/cache" TORCH_HOME = f"{volume_path}/torch/home" HF_HOME = f"{volume_path}/huggingface" image = ( modal.Image.from_registry(f"nvidia/cuda:{tag}", add_python=PYTHON_VERSION) .env( { "HF_HUB_ENABLE_HF_TRANSFER": "1", # faster downloads "HF_HUB_CACHE": HF_HOME, "TORCH_HOME": TORCH_HOME, } ) .apt_install( "git", ) .pip_install( "huggingface-hub", "hf_transfer", "Pillow", "numpy", "transformers", "opencv-contrib-python-headless", "scipy", gpu="A10G", ) .pip_install( "torch==2.4.1", "torchvision==0.19.1", index_url="https://download.pytorch.org/whl/cu124", gpu="A10G", ) .pip_install("git+https://github.com/openai/CLIP.git", gpu="A10G") .pip_install("git+https://github.com/facebookresearch/sam2.git", gpu="A10G") .pip_install( "git+https://github.com/PramaLLC/BEN2.git#egg=ben2", gpu="A10G", ) ) @app.function( image=image, gpu="A10G", volumes={volume_path: volume}, timeout=60 * 3, ) def prompt_segment( image_pil: Image.Image, prompts: list[str], ) -> list[dict]: clip_results = clip.remote(image_pil, prompts) if not clip_results: print("No boxes returned from CLIP.") return None boxes = np.array(clip_results["boxes"]) sam_result_masks, sam_result_scores = sam2.remote(image_pil=image_pil, boxes=boxes) print(f"sam_result_mask {sam_result_masks}") if not sam_result_masks.any(): print("No masks or scores returned from SAM2.") return None if sam_result_masks.ndim == 3: # If the masks are in 3D, we need to convert them to 4D sam_result_masks = [sam_result_masks] results = { "labels": clip_results["labels"], "boxes": boxes, "clip_scores": clip_results["scores"], "sam_masking_scores": sam_result_scores, "masks": sam_result_masks, } return results @app.function( image=image, gpu="A10G", volumes={volume_path: volume}, timeout=60 * 3, ) def privacy_prompt_segment( image_pil: Image.Image, prompts: list[str], threshold: float, ) -> list[dict]: owlv2_results = owlv2.remote(image_pil, prompts, threshold=threshold) if not owlv2_results: print("No boxes returned from OWLV2.") return None boxes = np.array(owlv2_results["boxes"]) sam_result_masks, sam_result_scores = sam2.remote(image_pil=image_pil, boxes=boxes) print(f"sam_result_mask {sam_result_masks}") if not sam_result_masks.any(): print("No masks or scores returned from SAM2.") return None if sam_result_masks.ndim == 3: # If the masks are in 3D, we need to convert them to 4D sam_result_masks = [sam_result_masks] results = { "labels": owlv2_results["labels"], "boxes": boxes, "owlv2_scores": owlv2_results["scores"], "sam_masking_scores": sam_result_scores, "masks": sam_result_masks, } return results @app.function( image=image, gpu="A100", volumes={volume_path: volume}, timeout=60 * 3, ) def sam2(image_pil: Image.Image, boxes: list[np.ndarray]) -> list[dict]: import torch from sam2.sam2_image_predictor import SAM2ImagePredictor predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-large") with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16): predictor.set_image(image_pil) masks, scores, _ = predictor.predict( point_coords=None, point_labels=None, box=boxes, multimask_output=False, ) return masks, scores @app.function( image=image, gpu="A100", volumes={volume_path: volume}, ) def owlv2( image_pil: Image.Image, labels: list[str], threshold: float, ) -> list[dict]: """ Perform zero-shot segmentation on an image using specified labels. Args: image_pil (Image.Image): The input image as a PIL Image. labels (list[str]): List of labels for zero-shot segmentation. Returns: list[dict]: List of dictionaries containing label and bounding box information. """ from transformers import pipeline checkpoint = "google/owlv2-large-patch14-ensemble" detector = pipeline( model=checkpoint, task="zero-shot-object-detection", device="cuda", use_fast=True, ) # Load the image predictions = detector( image_pil, candidate_labels=labels, ) labels = [] scores = [] boxes = [] for prediction in predictions: if prediction["score"] < threshold: continue labels.append(prediction["label"]) scores.append(prediction["score"]) boxes.append(np.array(list(prediction["box"].values()))) if labels == []: print("No predictions found with score above threshold.") return None predictions = {"labels": labels, "scores": scores, "boxes": boxes} return predictions @app.function( image=image, gpu="A100", volumes={volume_path: volume}, timeout=60 * 3, ) def clip( image_pil: Image.Image, prompts: list[str], ) -> list[dict]: """ returns: dict with keys each are lists: - labels: str, the prompt used for the prediction - scores: float, confidence score of the prediction - boxes: np.array representing bounding box coordinates """ from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation import torch processor = CLIPSegProcessor.from_pretrained( "CIDAS/clipseg-rd64-refined", use_fast=True, ) model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined") # Get original image dimensions orig_width, orig_height = image_pil.size inputs = processor( text=prompts, images=[image_pil] * len(prompts), padding="max_length", return_tensors="pt", ) # predict with torch.no_grad(): outputs = model(**inputs) preds = outputs.logits.unsqueeze(1) # Get the dimensions of the prediction output pred_height, pred_width = preds.shape[-2:] # Calculate scaling factors width_scale = orig_width / pred_width height_scale = orig_height / pred_height labels = [] scores = [] boxes = [] # Process each prediction to find bounding boxes in high probability regions for i, prompt in enumerate(prompts): # Apply sigmoid to get probability map pred_tensor = torch.sigmoid(preds[i][0]) # Convert tensor to numpy array pred_np = pred_tensor.cpu().numpy() # Convert to uint8 for OpenCV processing heatmap = (pred_np * 255).astype(np.uint8) # Apply threshold to find high probability regions _, binary = cv2.threshold(heatmap, 127, 255, cv2.THRESH_BINARY) # Find contours in thresholded image contours, _ = cv2.findContours( binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE ) # Process each contour to get bounding boxes for contour in contours: # Skip very small contours that might be noise if cv2.contourArea(contour) < 100: # Minimum area threshold continue # Get bounding box coordinates in prediction space x, y, w, h = cv2.boundingRect(contour) # Scale coordinates to original image dimensions x_orig = int(x * width_scale) y_orig = int(y * height_scale) w_orig = int(w * width_scale) h_orig = int(h * height_scale) # Calculate confidence score based on average probability in the region mask = np.zeros_like(pred_np) cv2.drawContours(mask, [contour], 0, 1, -1) confidence = float(np.mean(pred_np[mask == 1])) labels.append(prompt) scores.append(confidence) boxes.append( np.array( [ x_orig, y_orig, x_orig + w_orig, y_orig + h_orig, ] ) ) if labels == []: return None results = { "labels": labels, "scores": scores, "boxes": boxes, } return results @app.function( gpu="A10G", image=image, volumes={volume_path: volume}, timeout=60 * 3, ) def change_image_objects_hsv( image_pil: Image.Image, targets_config: list[list[str | int | float]], ) -> Image.Image: if not isinstance(targets_config, list) or not all( ( isinstance(target, list) and len(target) == 4 and isinstance(target[0], str) and isinstance(target[1], (int)) and isinstance(target[2], (int)) and isinstance(target[3], (int)) and target[1] >= 0 and target[1] <= 255 and target[2] >= 0 and target[2] <= 255 and target[3] >= 0 and target[3] <= 255 ) for target in targets_config ): raise ValueError( "targets_config must be a list of lists, each containing [target_name, hue, saturation_scale]." # noqa: E501 ) print("Change image objects hsv targets config:", targets_config) prompts = [target[0].strip() for target in targets_config] prompt_segment_results = prompt_segment.remote( image_pil=image_pil, prompts=prompts, ) if not prompt_segment_results: return image_pil output_labels = prompt_segment_results["labels"] img_array = np.array(image_pil) img_hsv = cv2.cvtColor(img_array, cv2.COLOR_RGB2HSV).astype(np.float32) for idx, label in enumerate(output_labels): if not label or label == "": print("Skipping empty label.") continue if label not in prompts: print(f"Label '{label}' not found in prompts. Skipping.") continue input_label_idx = prompts.index(label) target_rgb = targets_config[input_label_idx][1:] target_hsv = cv2.cvtColor(np.uint8([[target_rgb]]), cv2.COLOR_RGB2HSV)[0][0] mask = prompt_segment_results["masks"][idx][0].astype(bool) h, s, v = cv2.split(img_hsv) # Convert all channels to float32 for consistent processing h = h.astype(np.float32) s = s.astype(np.float32) v = v.astype(np.float32) # Compute original S and V means inside the mask mean_s = np.mean(s[mask]) mean_v = np.mean(v[mask]) # Target S and V target_hue, target_s, target_v = target_hsv # Compute scaling factors (avoid div by zero) scale_s = target_s / mean_s if mean_s > 0 else 1.0 scale_v = target_v / mean_v if mean_v > 0 else 1.0 scale_s = np.clip(scale_s, 0.8, 1.2) scale_v = np.clip(scale_v, 0.8, 1.2) # Apply changes only in mask h[mask] = target_hue s = s.astype(np.float32) v = v.astype(np.float32) s[mask] = np.clip(s[mask] * scale_s, 0, 255) v[mask] = np.clip(v[mask] * scale_v, 0, 255) # Merge and convert back img_hsv = cv2.merge( [ h.astype(np.uint8), s.astype(np.uint8), v.astype(np.uint8), ] ) output_img = cv2.cvtColor(img_hsv.astype(np.uint8), cv2.COLOR_HSV2RGB) output_img_pil = Image.fromarray(output_img) return output_img_pil @app.function( gpu="A10G", image=image, volumes={volume_path: volume}, timeout=60 * 3, ) def change_image_objects_lab( image_pil: Image.Image, targets_config: list[list[str | int | float]], ) -> Image.Image: """Changes the color of specified objects in an image. This function uses LangSAM to segment objects in the image based on provided prompts, and then modifies the color of those objects in the LAB color space. """ # noqa: E501 if not isinstance(targets_config, list) or not all( ( isinstance(target, list) and len(target) == 3 and isinstance(target[0], str) and isinstance(target[1], int) and isinstance(target[2], int) and 0 <= target[1] <= 255 and 0 <= target[2] <= 255 ) for target in targets_config ): raise ValueError( "targets_config must be a list of lists, each containing [target_name, new_a, new_b]." # noqa: E501 ) print("change image objects lab targets config:", targets_config) prompts = [target[0].strip() for target in targets_config] prompt_segment_results = prompt_segment.remote( image_pil=image_pil, prompts=prompts, ) if not prompt_segment_results: return image_pil output_labels = prompt_segment_results["labels"] img_array = np.array(image_pil) img_lab = cv2.cvtColor(img_array, cv2.COLOR_RGB2Lab).astype(np.float32) for idx, label in enumerate(output_labels): if not label or label == "": print("Skipping empty label.") continue if label not in prompts: print(f"Label '{label}' not found in prompts. Skipping.") continue input_label_idx = prompts.index(label) new_a = targets_config[input_label_idx][1] new_b = targets_config[input_label_idx][2] mask = prompt_segment_results["masks"][idx][0] mask_bool = mask.astype(bool) img_lab[mask_bool, 1] = new_a img_lab[mask_bool, 2] = new_b output_img = cv2.cvtColor(img_lab.astype(np.uint8), cv2.COLOR_Lab2RGB) output_img_pil = Image.fromarray(output_img) return output_img_pil @app.function( gpu="A10G", image=image, volumes={volume_path: volume}, timeout=60 * 3, ) def apply_mosaic_with_bool_mask( image: np.ndarray, mask: np.ndarray, privacy_strength: int, ) -> np.ndarray: h, w = image.shape[:2] image_size_factor = min(h, w) / 1000 block_size = int(max(1, (privacy_strength * image_size_factor))) # Ensure block_size is at least 1 and doesn't exceed half of image dimensions block_size = max(1, min(block_size, min(h, w) // 2)) small = cv2.resize( image, (w // block_size, h // block_size), interpolation=cv2.INTER_LINEAR ) mosaic = cv2.resize(small, (w, h), interpolation=cv2.INTER_NEAREST) result = image.copy() result[mask] = mosaic[mask] return result @app.function( gpu="A10G", image=image, volumes={volume_path: volume}, timeout=60 * 3, ) def preserve_privacy( image_pil: Image.Image, prompts: list[str], privacy_strength: int = 15, threshold: float = 0.2, ) -> Image.Image: """ Preserves privacy in an image by applying a mosaic effect to specified objects. """ print(f"Preserving privacy for prompt: {prompts} with strength {privacy_strength}") if isinstance(prompts, str): prompts = [prompt.strip() for prompt in prompts.split(".")] print(f"Parsed prompts: {prompts}") prompt_segment_results = privacy_prompt_segment.remote( image_pil=image_pil, prompts=prompts, threshold=threshold, ) if not prompt_segment_results: return image_pil img_array = np.array(image_pil) for i, mask in enumerate(prompt_segment_results["masks"]): mask_bool = mask[0].astype(bool) # Create kernel for morphological operations kernel_size = 100 kernel = np.ones((kernel_size, kernel_size), np.uint8) # Convert bool mask to uint8 for OpenCV operations mask_uint8 = mask_bool.astype(np.uint8) * 255 # Apply dilation to slightly expand the mask area mask_uint8 = cv2.dilate(mask_uint8, kernel, iterations=2) # Optional: Apply erosion again to refine the mask mask_uint8 = cv2.erode(mask_uint8, kernel, iterations=2) # Convert back to boolean mask mask_bool = mask_uint8 > 127 img_array = apply_mosaic_with_bool_mask.remote( img_array, mask_bool, privacy_strength ) output_image_pil = Image.fromarray(img_array) return output_image_pil @app.function( gpu="A10G", image=image, volumes={volume_path: volume}, timeout=60 * 2, ) def remove_background(image_pil: Image.Image) -> Image.Image: import torch # type: ignore from ben2 import BEN_Base # type: ignore device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") print("type of image_pil:", type(image_pil)) model = BEN_Base.from_pretrained("PramaLLC/BEN2") model.to(device).eval() # todo check if this should be outside the function output_image = model.inference( image_pil, refine_foreground=True, ) print(f"output type: {type(output_image)}") return output_image