File size: 13,072 Bytes
76f9cd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
"""
测试 TranscriptionService 中的 speaker segmentation 功能
特别是 _merge_speaker_segments 和 _split_transcription_segment 方法
"""

import pytest
import tempfile
import os
from typing import List, Dict
from unittest.mock import Mock, patch

# 添加项目根目录到 Python 路径
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

from src.services.transcription_service import TranscriptionService


class TestSpeakerSegmentation:
    """测试说话人分割功能"""
    
    def setup_method(self):
        """设置测试环境"""
        self.service = TranscriptionService()
    
    def test_single_speaker_segment(self):
        """测试单个说话人的情况"""
        transcription_segments = [
            {
                "start": 0.0,
                "end": 5.0,
                "text": "Hello, this is a test message."
            }
        ]
        
        speaker_segments = [
            {
                "start": 0.0,
                "end": 5.0,
                "speaker": "SPEAKER_00"
            }
        ]
        
        result = self.service._merge_speaker_segments(transcription_segments, speaker_segments)
        
        assert len(result) == 1
        assert result[0]["speaker"] == "SPEAKER_00"
        assert result[0]["text"] == "Hello, this is a test message."
        assert result[0]["start"] == 0.0
        assert result[0]["end"] == 5.0
    
    def test_no_speaker_detected(self):
        """测试没有检测到说话人的情况"""
        transcription_segments = [
            {
                "start": 0.0,
                "end": 5.0,
                "text": "Hello, this is a test message."
            }
        ]
        
        speaker_segments = []
        
        result = self.service._merge_speaker_segments(transcription_segments, speaker_segments)
        
        assert len(result) == 1
        assert result[0]["speaker"] is None
        assert result[0]["text"] == "Hello, this is a test message."
    
    def test_multiple_speakers_in_single_segment(self):
        """测试单个转录段中包含多个说话人的情况"""
        transcription_segments = [
            {
                "start": 0.0,
                "end": 10.0,
                "text": "Hello there how are you today I am doing well thank you for asking"
            }
        ]
        
        speaker_segments = [
            {
                "start": 0.0,
                "end": 4.0,
                "speaker": "SPEAKER_00"
            },
            {
                "start": 4.0,
                "end": 7.0,
                "speaker": "SPEAKER_01"
            },
            {
                "start": 7.0,
                "end": 10.0,
                "speaker": "SPEAKER_00"
            }
        ]
        
        result = self.service._merge_speaker_segments(transcription_segments, speaker_segments)
        
        # 应该被分割成3个段
        assert len(result) == 3
        
        # 检查说话人分配
        assert result[0]["speaker"] == "SPEAKER_00"
        assert result[1]["speaker"] == "SPEAKER_01"
        assert result[2]["speaker"] == "SPEAKER_00"
        
        # 检查时间戳(允许算法进行时间分配调整)
        assert result[0]["start"] == 0.0
        assert result[0]["end"] <= 4.0
        assert result[1]["start"] >= 4.0
        assert result[1]["end"] <= 7.0
        assert result[2]["start"] >= 7.0
        assert result[2]["end"] <= 10.0
        
        # 检查文本被正确分割
        combined_text = " ".join([seg["text"] for seg in result])
        original_text = "Hello there how are you today I am doing well thank you for asking"
        assert combined_text.replace("  ", " ") == original_text
    
    def test_overlapping_speakers(self):
        """测试说话人时间重叠的情况"""
        transcription_segments = [
            {
                "start": 0.0,
                "end": 6.0,
                "text": "This is a conversation between two people talking simultaneously"
            }
        ]
        
        speaker_segments = [
            {
                "start": 0.0,
                "end": 4.0,
                "speaker": "SPEAKER_00"
            },
            {
                "start": 2.0,
                "end": 6.0,
                "speaker": "SPEAKER_01"
            }
        ]
        
        result = self.service._merge_speaker_segments(transcription_segments, speaker_segments)
        
        # 应该被分割成2个段
        assert len(result) == 2
        assert result[0]["speaker"] == "SPEAKER_00"
        assert result[1]["speaker"] == "SPEAKER_01"
        
        # 检查重叠处理
        assert result[0]["start"] == 0.0
        assert result[0]["end"] <= 4.0
        assert result[1]["start"] >= 2.0
        assert result[1]["end"] == 6.0
    
    def test_partial_speaker_overlap(self):
        """测试说话人部分重叠转录段的情况"""
        transcription_segments = [
            {
                "start": 1.0,
                "end": 4.0,
                "text": "This is in the middle of speaker segment"
            }
        ]
        
        speaker_segments = [
            {
                "start": 0.0,
                "end": 5.0,
                "speaker": "SPEAKER_00"
            }
        ]
        
        result = self.service._merge_speaker_segments(transcription_segments, speaker_segments)
        
        assert len(result) == 1
        assert result[0]["speaker"] == "SPEAKER_00"
        assert result[0]["start"] == 1.0
        assert result[0]["end"] == 4.0
    
    def test_multiple_transcription_segments_with_speakers(self):
        """测试多个转录段与多个说话人的复杂情况"""
        transcription_segments = [
            {
                "start": 0.0,
                "end": 3.0,
                "text": "Hello how are you"
            },
            {
                "start": 3.0,
                "end": 6.0,
                "text": "I am fine thank you"
            },
            {
                "start": 6.0,
                "end": 10.0,
                "text": "That is great to hear from you today"
            }
        ]
        
        speaker_segments = [
            {
                "start": 0.0,
                "end": 3.0,
                "speaker": "SPEAKER_00"
            },
            {
                "start": 3.0,
                "end": 6.0,
                "speaker": "SPEAKER_01"
            },
            {
                "start": 6.0,
                "end": 8.0,
                "speaker": "SPEAKER_00"
            },
            {
                "start": 8.0,
                "end": 10.0,
                "speaker": "SPEAKER_01"
            }
        ]
        
        result = self.service._merge_speaker_segments(transcription_segments, speaker_segments)
        
        # 前两个段应该保持不变,第三个段应该被分割
        assert len(result) == 4
        
        # 检查前两个段
        assert result[0]["speaker"] == "SPEAKER_00"
        assert result[0]["text"] == "Hello how are you"
        assert result[1]["speaker"] == "SPEAKER_01"
        assert result[1]["text"] == "I am fine thank you"
        
        # 检查被分割的第三个段
        assert result[2]["speaker"] == "SPEAKER_00"
        assert result[3]["speaker"] == "SPEAKER_01"
        
        # 检查分割后的文本
        combined_third_segment_text = result[2]["text"] + " " + result[3]["text"]
        assert "That is great to hear from you today" in combined_third_segment_text
    
    def test_word_boundary_preservation(self):
        """测试文本分割时保持单词边界的功能"""
        transcription_segments = [
            {
                "start": 0.0,
                "end": 8.0,
                "text": "The quick brown fox jumps over the lazy dog"
            }
        ]
        
        speaker_segments = [
            {
                "start": 0.0,
                "end": 4.0,
                "speaker": "SPEAKER_00"
            },
            {
                "start": 4.0,
                "end": 8.0,
                "speaker": "SPEAKER_01"
            }
        ]
        
        result = self.service._merge_speaker_segments(transcription_segments, speaker_segments)
        
        assert len(result) == 2
        
        # 检查文本没有在单词中间分割
        for segment in result:
            text = segment["text"]
            # 确保文本开头和结尾都是完整的单词
            if text:
                words = text.split()
                assert len(words) > 0, f"Segment should contain complete words: '{text}'"
                # 检查没有部分单词
                assert not any(word.endswith('-') or word.startswith('-') for word in words), \
                    f"Should not contain partial words: {words}"
    
    def test_empty_text_handling(self):
        """测试空文本的处理"""
        transcription_segments = [
            {
                "start": 0.0,
                "end": 2.0,
                "text": ""
            }
        ]
        
        speaker_segments = [
            {
                "start": 0.0,
                "end": 2.0,
                "speaker": "SPEAKER_00"
            }
        ]
        
        result = self.service._merge_speaker_segments(transcription_segments, speaker_segments)
        
        assert len(result) == 1
        assert result[0]["speaker"] == "SPEAKER_00"
        assert result[0]["text"] == ""
    
    def test_split_transcription_segment_direct(self):
        """直接测试 _split_transcription_segment 方法"""
        trans_seg = {
            "start": 0.0,
            "end": 6.0,
            "text": "Hello there how are you doing today"
        }
        
        overlapping_speakers = [
            {
                "speaker": "SPEAKER_00",
                "start": 0.0,
                "end": 3.0,
                "overlap_start": 0.0,
                "overlap_end": 3.0,
                "overlap_duration": 3.0
            },
            {
                "speaker": "SPEAKER_01",
                "start": 3.0,
                "end": 6.0,
                "overlap_start": 3.0,
                "overlap_end": 6.0,
                "overlap_duration": 3.0
            }
        ]
        
        result = self.service._split_transcription_segment(
            trans_seg, overlapping_speakers, trans_seg["text"]
        )
        
        assert len(result) == 2
        assert result[0]["speaker"] == "SPEAKER_00"
        assert result[1]["speaker"] == "SPEAKER_01"
        
        # 检查时间分配
        assert result[0]["start"] == 0.0
        assert result[0]["end"] == 3.0
        assert result[1]["start"] == 3.0
        assert result[1]["end"] == 6.0
        
        # 检查文本分配
        combined_text = result[0]["text"] + " " + result[1]["text"]
        assert "Hello there how are you doing today" in combined_text.replace("  ", " ")
    
    def test_unequal_speaker_durations(self):
        """测试说话人持续时间不等的情况"""
        trans_seg = {
            "start": 0.0,
            "end": 10.0,
            "text": "This is a longer sentence with one speaker talking much longer than the other speaker"
        }
        
        overlapping_speakers = [
            {
                "speaker": "SPEAKER_00",
                "start": 0.0,
                "end": 8.0,  # 说话时间更长
                "overlap_start": 0.0,
                "overlap_end": 8.0,
                "overlap_duration": 8.0
            },
            {
                "speaker": "SPEAKER_01",
                "start": 8.0,
                "end": 10.0,  # 说话时间较短
                "overlap_start": 8.0,
                "overlap_end": 10.0,
                "overlap_duration": 2.0
            }
        ]
        
        result = self.service._split_transcription_segment(
            trans_seg, overlapping_speakers, trans_seg["text"]
        )
        
        assert len(result) == 2
        
        # SPEAKER_00 应该得到更多的文本(因为说话时间更长)
        speaker_00_text_length = len(result[0]["text"])
        speaker_01_text_length = len(result[1]["text"])
        
        assert speaker_00_text_length > speaker_01_text_length, \
            f"SPEAKER_00 should have more text. Got {speaker_00_text_length} vs {speaker_01_text_length}"
        
        # 检查时间分配正确
        assert result[0]["end"] == 8.0
        assert result[1]["start"] == 8.0

    @pytest.mark.integration
    def test_full_transcription_with_speaker_splitting(self):
        """集成测试:完整的转录流程与说话人分割"""
        # 这个测试需要实际的音频文件,暂时跳过
        # 可以在有测试音频文件时启用
        pytest.skip("Integration test requires actual audio file")


if __name__ == "__main__":
    # 运行测试
    pytest.main([__file__, "-v", "--tb=short"])