File size: 24,517 Bytes
b5df735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
"""
Modal Transcription Service - handles transcription via Modal endpoints
Enhanced to replace transcription_tools.py functions with proper service architecture
"""

import asyncio
import aiohttp
import base64
import os
from typing import Dict, Any
from pathlib import Path


class ModalTranscriptionService:
    """Service for audio transcription via Modal endpoints"""
    
    def __init__(self, endpoint_urls: Dict[str, str] = None, cache_dir: str = None, use_direct_modal_calls: bool = True):
        """
        Initialize Modal transcription service
        
        Args:
            endpoint_urls: Dictionary of endpoint URLs (used when use_direct_modal_calls=False)
            cache_dir: Cache directory path
            use_direct_modal_calls: Whether to use direct Modal function calls or HTTP endpoints
        """
        self.use_direct_modal_calls = use_direct_modal_calls
        self.endpoint_urls = endpoint_urls or {
            "transcribe_audio": "https://richardsucran--transcribe-audio-endpoint.modal.run",
            "transcribe_chunk": "https://richardsucran--transcribe-audio-chunk-endpoint.modal.run", 
            "health_check": "https://richardsucran--health-check-endpoint.modal.run"
        }
        self.cache_dir = cache_dir or "/tmp"
        
        # Determine if we're running in Modal environment
        if self.use_direct_modal_calls:
            print("βœ… Using direct function calls (no HTTP endpoints)")
    
    async def transcribe_audio_file(
        self,
        audio_file_path: str,
        model_size: str = "turbo",
        language: str = None,
        output_format: str = "srt",
        enable_speaker_diarization: bool = False,
        use_parallel_processing: bool = True,
        chunk_duration: int = 60,
        use_intelligent_segmentation: bool = True
    ) -> Dict[str, Any]:
        """
        Transcribe audio file using Modal endpoints with intelligent processing
        
        Args:
            audio_file_path: Path to audio file
            model_size: Whisper model size
            language: Language code (None for auto-detect)
            output_format: Output format (srt, txt, json)
            enable_speaker_diarization: Whether to enable speaker diarization
            use_parallel_processing: Whether to use distributed processing
            chunk_duration: Duration of chunks for parallel processing
            use_intelligent_segmentation: Whether to use intelligent segmentation
            
        Returns:
            Transcription result dictionary
        """
        try:
            # Validate input file
            if not os.path.exists(audio_file_path):
                return {
                    "processing_status": "failed",
                    "error_message": f"Audio file not found: {audio_file_path}"
                }
            
            # Read and encode audio file
            with open(audio_file_path, "rb") as f:
                audio_data = f.read()
            
            audio_base64 = base64.b64encode(audio_data).decode('utf-8')
            
            # Prepare request data
            request_data = {
                "audio_file_data": audio_base64,
                "audio_file_name": os.path.basename(audio_file_path),
                "model_size": model_size,
                "language": language,
                "output_format": output_format,
                "enable_speaker_diarization": enable_speaker_diarization,
                "use_parallel_processing": use_parallel_processing,
                "chunk_duration": chunk_duration,
                "use_intelligent_segmentation": use_intelligent_segmentation
            }
            
            endpoint_url = self.endpoint_urls["transcribe_audio"]
            
            print(f"🎀 Starting transcription via Modal {'function call' if self.use_direct_modal_calls else 'endpoint'}...")
            print(f"   File: {audio_file_path}")
            print(f"   Size: {len(audio_data) / (1024*1024):.2f} MB")
            print(f"   Model: {model_size}")
            print(f"   Parallel processing: {use_parallel_processing}")
            print(f"   Intelligent segmentation: {use_intelligent_segmentation}")
            print(f"   Speaker diarization: {enable_speaker_diarization}")
            
            # Choose between direct function call or HTTP endpoint
            if self.use_direct_modal_calls:
                # Direct function call (when running inside Modal environment)
                try:
                    # Call the process_transcription_request method directly
                    result = await self.process_transcription_request(request_data)
                except Exception as e:
                    print(f"⚠️ Direct Modal call failed, falling back to HTTP: {e}")
                    self.use_direct_modal_calls = False
                    # Fall through to HTTP endpoint call
                else:
                    print(f"βœ… Transcription completed successfully via direct function call")
                    self._log_transcription_results(result, enable_speaker_diarization)
                    return result
            
            if not self.use_direct_modal_calls:
                # HTTP endpoint call (fallback)
                endpoint_url = self.endpoint_urls["transcribe_audio"]
                async with aiohttp.ClientSession() as session:
                    async with session.post(
                        endpoint_url,
                        json=request_data,
                        timeout=aiohttp.ClientTimeout(total=3600)  # 1 hour timeout
                    ) as response:
                        if response.status == 200:
                            result = await response.json()
                            print(f"βœ… Transcription completed successfully via HTTP endpoint")
                            self._log_transcription_results(result, enable_speaker_diarization)
                            return result
                        else:
                            error_text = await response.text()
                            return {
                                "processing_status": "failed",
                                "error_message": f"HTTP {response.status}: {error_text}"
                            }
                        
        except Exception as e:
            return {
                "processing_status": "failed",
                "error_message": f"Transcription request failed: {e}"
            }
    
    async def transcribe_chunk(
        self,
        chunk_path: str,
        start_time: float,
        end_time: float,
        model_size: str = "turbo",
        language: str = None,
        enable_speaker_diarization: bool = False
    ) -> Dict[str, Any]:
        """
        Transcribe a single audio chunk using Modal chunk endpoint
        
        Args:
            chunk_path: Path to audio chunk file
            start_time: Start time of chunk in original audio
            end_time: End time of chunk in original audio
            model_size: Whisper model size
            language: Language code
            enable_speaker_diarization: Whether to enable speaker diarization
            
        Returns:
            Transcription result for the chunk
        """
        try:
            # Read and encode chunk file
            with open(chunk_path, "rb") as f:
                audio_data = f.read()
            
            audio_base64 = base64.b64encode(audio_data).decode('utf-8')
            
            # Prepare request data
            request_data = {
                "audio_file_data": audio_base64,
                "audio_file_name": os.path.basename(chunk_path),
                "model_size": model_size,
                "language": language,
                "output_format": "json",  # Use JSON for easier merging
                "enable_speaker_diarization": enable_speaker_diarization,
                "chunk_start_time": start_time,
                "chunk_end_time": end_time
            }
            
            # Choose between direct function call or HTTP endpoint
            if self.use_direct_modal_calls:
                # Direct function call
                try:
                    result = self.process_chunk_request(request_data)
                    result["chunk_start_time"] = start_time
                    result["chunk_end_time"] = end_time
                    result["chunk_file"] = chunk_path
                    return result
                except Exception as e:
                    print(f"⚠️ Direct chunk call failed, falling back to HTTP: {e}")
                    self.use_direct_modal_calls = False
                    # Fall through to HTTP endpoint call
            
            if not self.use_direct_modal_calls:
                # HTTP endpoint call (fallback)
                endpoint_url = self.endpoint_urls["transcribe_chunk"]
                # Configure timeout with more granular controls
                # Adjust timeout based on speaker diarization
                if enable_speaker_diarization:
                    timeout_config = aiohttp.ClientTimeout(
                        total=720,  # 12 minutes total for speaker diarization
                        connect=45,  # 45 seconds connection timeout
                        sock_read=300  # 5 minutes read timeout for speaker processing
                    )
                else:
                    timeout_config = aiohttp.ClientTimeout(
                        total=480,  # 8 minutes total for regular transcription
                        connect=30,  # 30 seconds connection timeout
                        sock_read=120  # 2 minutes read timeout for regular processing
                    )
                
                async with aiohttp.ClientSession(timeout=timeout_config) as session:
                    async with session.post(
                        endpoint_url,
                        json=request_data
                    ) as response:
                        if response.status == 200:
                            result = await response.json()
                            result["chunk_start_time"] = start_time
                            result["chunk_end_time"] = end_time
                            result["chunk_file"] = chunk_path
                            return result
                        else:
                            error_text = await response.text()
                            return {
                                "processing_status": "failed",
                                "error_message": f"HTTP {response.status}: {error_text}",
                                "chunk_start_time": start_time,
                                "chunk_end_time": end_time,
                                "chunk_file": chunk_path
                            }
                        
        except Exception as e:
            return {
                "processing_status": "failed",
                "error_message": str(e),
                "chunk_start_time": start_time,
                "chunk_end_time": end_time,
                "chunk_file": chunk_path
            }
    
    async def check_endpoints_health(self) -> Dict[str, Any]:
        """
        Check the health status of all Modal endpoints
        
        Returns:
            Health status dictionary for all endpoints
        """
        health_status = {}
        
        async with aiohttp.ClientSession() as session:
            for endpoint_name, endpoint_url in self.endpoint_urls.items():
                try:
                    if endpoint_name == "health_check":
                        # Health check endpoint supports GET
                        async with session.get(
                            endpoint_url,
                            timeout=aiohttp.ClientTimeout(total=30)
                        ) as response:
                            if response.status == 200:
                                response_data = await response.json()
                                health_status[endpoint_name] = {
                                    "status": "healthy",
                                    "response": response_data,
                                    "url": endpoint_url
                                }
                            else:
                                health_status[endpoint_name] = {
                                    "status": "unhealthy",
                                    "error": f"HTTP {response.status}",
                                    "url": endpoint_url
                                }
                    else:
                        # Other endpoints are POST-only, just check if they're accessible
                        async with session.get(
                            endpoint_url,
                            timeout=aiohttp.ClientTimeout(total=10)
                        ) as response:
                            # 405 Method Not Allowed is expected for POST-only endpoints
                            if response.status == 405:
                                health_status[endpoint_name] = {
                                    "status": "healthy",
                                    "response": "Endpoint accessible (POST-only)",
                                    "url": endpoint_url
                                }
                            else:
                                health_status[endpoint_name] = {
                                    "status": "unknown",
                                    "response": f"HTTP {response.status}",
                                    "url": endpoint_url
                                }
                                
                except Exception as e:
                    health_status[endpoint_name] = {
                        "status": "error",
                        "error": str(e),
                        "url": endpoint_url
                    }
        
        return health_status
    
    async def get_system_status(self) -> Dict[str, Any]:
        """
        Get comprehensive system status including health checks
        
        Returns:
            System status dictionary
        """
        try:
            endpoint_url = self.endpoint_urls["health_check"]
            
            async with aiohttp.ClientSession() as session:
                async with session.get(
                    endpoint_url,
                    timeout=aiohttp.ClientTimeout(total=30)
                ) as response:
                    if response.status == 200:
                        return await response.json()
                    else:
                        error_text = await response.text()
                        return {
                            "status": "failed",
                            "error_message": f"HTTP {response.status}: {error_text}"
                        }
                        
        except Exception as e:
            return {
                "status": "failed", 
                "error_message": f"Health check failed: {e}"
            }
    
    def get_endpoint_url(self, endpoint_name: str) -> str:
        """
        Get URL for specific endpoint
        
        Args:
            endpoint_name: Name of the endpoint
            
        Returns:
            Endpoint URL
        """
        return self.endpoint_urls.get(endpoint_name, f"https://richardsucran--{endpoint_name}.modal.run")
    
    # ==================== Modal Server-Side Methods ====================
    # These methods are used by Modal endpoints running on the server
    
    async def process_transcription_request(self, request_data: Dict[str, Any]) -> Dict[str, Any]:
        """
        Process transcription request on Modal server
        This method runs on the Modal server, not the client
        """
        try:
            # Import services that are available on Modal server
            import sys
            import tempfile
            import base64
            from pathlib import Path
            
            # Import local services (available on Modal server)
            from src.services.distributed_transcription_service import DistributedTranscriptionService
            from src.services.transcription_service import TranscriptionService
            
            # Extract request parameters
            audio_file_data = request_data.get("audio_file_data")
            audio_file_name = request_data.get("audio_file_name", "audio.mp3")
            model_size = request_data.get("model_size", "turbo")
            language = request_data.get("language")
            output_format = request_data.get("output_format", "srt")
            enable_speaker_diarization = request_data.get("enable_speaker_diarization", False)
            use_parallel_processing = request_data.get("use_parallel_processing", True)
            chunk_duration = request_data.get("chunk_duration", 60)
            use_intelligent_segmentation = request_data.get("use_intelligent_segmentation", True)
            
            if not audio_file_data:
                return {
                    "processing_status": "failed",
                    "error_message": "No audio data provided"
                }
            
            # Decode audio data and save to temporary file
            audio_bytes = base64.b64decode(audio_file_data)
            temp_dir = Path(self.cache_dir)
            temp_dir.mkdir(exist_ok=True)
            
            temp_audio_path = temp_dir / audio_file_name
            with open(temp_audio_path, "wb") as f:
                f.write(audio_bytes)
            
            print(f"🎀 Processing audio on Modal server: {audio_file_name}")
            print(f"   Size: {len(audio_bytes) / (1024*1024):.2f} MB")
            print(f"   Model: {model_size}")
            print(f"   Parallel processing: {use_parallel_processing}")
            print(f"   Intelligent segmentation: {use_intelligent_segmentation}")
            
            # Choose processing strategy based on file size and settings
            file_size_mb = len(audio_bytes) / (1024 * 1024)
            
            if use_parallel_processing and file_size_mb > 10:  # Use distributed for files > 10MB
                print("πŸ”„ Using distributed transcription service")
                service = DistributedTranscriptionService()
                
                result = await service.transcribe_audio_distributed(
                    audio_file_path=str(temp_audio_path),
                    model_size=model_size,
                    language=language,
                    output_format=output_format,
                    enable_speaker_diarization=enable_speaker_diarization,
                    chunk_duration=chunk_duration,
                    use_intelligent_segmentation=use_intelligent_segmentation
                )
            else:
                print("🎯 Using single transcription service")
                service = TranscriptionService()
                
                result = service.transcribe_audio(
                    audio_file_path=str(temp_audio_path),
                    model_size=model_size,
                    language=language,
                    output_format=output_format,
                    enable_speaker_diarization=enable_speaker_diarization
                )
            
            # Clean up temporary file
            try:
                temp_audio_path.unlink()
            except:
                pass
            
            print(f"βœ… Transcription completed on Modal server")
            return result
            
        except Exception as e:
            print(f"❌ Error processing transcription request: {e}")
            return {
                "processing_status": "failed",
                "error_message": f"Server processing error: {str(e)}"
            }
    
    def process_chunk_request(self, request_data: Dict[str, Any]) -> Dict[str, Any]:
        """
        Process chunk transcription request on Modal server
        This method runs on the Modal server, not the client
        """
        try:
            # Import services that are available on Modal server
            import base64
            import tempfile
            from pathlib import Path
            
            # Import local services (available on Modal server)
            from src.services.transcription_service import TranscriptionService
            
            # Extract request parameters
            audio_file_data = request_data.get("audio_file_data")
            audio_file_name = request_data.get("audio_file_name", "chunk.mp3")
            model_size = request_data.get("model_size", "turbo")
            language = request_data.get("language")
            enable_speaker_diarization = request_data.get("enable_speaker_diarization", False)
            chunk_start_time = request_data.get("chunk_start_time", 0)
            chunk_end_time = request_data.get("chunk_end_time", 0)
            
            if not audio_file_data:
                return {
                    "processing_status": "failed",
                    "error_message": "No audio data provided",
                    "chunk_start_time": chunk_start_time,
                    "chunk_end_time": chunk_end_time
                }
            
            # Decode audio data and save to temporary file
            audio_bytes = base64.b64decode(audio_file_data)
            temp_dir = Path(self.cache_dir)
            temp_dir.mkdir(exist_ok=True)
            
            temp_audio_path = temp_dir / audio_file_name
            with open(temp_audio_path, "wb") as f:
                f.write(audio_bytes)
            
            print(f"🎀 Processing chunk on Modal server: {audio_file_name}")
            print(f"   Time range: {chunk_start_time:.2f}s - {chunk_end_time:.2f}s")
            print(f"   Size: {len(audio_bytes) / (1024*1024):.2f} MB")
            
            # Use single transcription service for chunks
            service = TranscriptionService()
            
            result = service.transcribe_audio(
                audio_file_path=str(temp_audio_path),
                model_size=model_size,
                language=language,
                output_format="json",  # Always use JSON for chunks
                enable_speaker_diarization=enable_speaker_diarization
            )
            
            # Add chunk timing information
            if result.get("processing_status") == "success":
                result["chunk_start_time"] = chunk_start_time
                result["chunk_end_time"] = chunk_end_time
                result["chunk_file"] = audio_file_name
            
            # Clean up temporary file
            try:
                temp_audio_path.unlink()
            except:
                pass
            
            print(f"βœ… Chunk transcription completed on Modal server")
            return result
            
        except Exception as e:
            print(f"❌ Error processing chunk request: {e}")
            return {
                "processing_status": "failed",
                "error_message": f"Server chunk processing error: {str(e)}",
                "chunk_start_time": request_data.get("chunk_start_time", 0),
                "chunk_end_time": request_data.get("chunk_end_time", 0)
            }
    
    def _log_transcription_results(self, result: Dict[str, Any], enable_speaker_diarization: bool = False):
        """
        Log transcription results in a consistent format
        
        Args:
            result: Transcription result dictionary
            enable_speaker_diarization: Whether speaker diarization was enabled
        """
        print(f"   Processing type: {'Distributed' if result.get('distributed_processing', False) else 'Single'}")
        print(f"   Segments: {result.get('segment_count', 0)}")
        print(f"   Duration: {result.get('audio_duration', 0):.2f}s")
        print(f"   Language: {result.get('language_detected', 'unknown')}")
        
        if result.get("distributed_processing", False):
            print(f"   Chunks processed: {result.get('chunks_processed', 0)}")
            print(f"   Chunks failed: {result.get('chunks_failed', 0)}")
            segmentation_type = result.get("segmentation_type", "time_based")
            print(f"   Segmentation: {segmentation_type}")
        
        if enable_speaker_diarization:
            speaker_count = result.get("global_speaker_count", 0)
            print(f"   Speakers detected: {speaker_count}")