File size: 29,108 Bytes
b5df735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
"""
Transcription Service
Handles audio transcription logic with support for parallel processing
"""

import whisper
import os
import json
import tempfile
import subprocess
from pathlib import Path
from concurrent.futures import ThreadPoolExecutor
from typing import Dict, Any, List


class TranscriptionService:
    """Service for handling audio transcription"""
    
    def __init__(self, cache_dir: str = "/tmp"):
        self.cache_dir = cache_dir
        
    def _load_cached_model(self, model_size: str = "turbo"):
        """Load Whisper model from cache directory if available"""
        try:
            # Try to load from preloaded cache first
            model_cache_dir = "/model"
            if os.path.exists(model_cache_dir):
                print(f"πŸ“¦ Loading {model_size} model from cache: {model_cache_dir}")
                # Set download root to cache directory
                model = whisper.load_model(model_size, download_root=model_cache_dir)
                print(f"βœ… Successfully loaded {model_size} model from cache")
                return model
            else:
                print(f"⚠️ Cache directory not found, downloading {model_size} model...")
                return whisper.load_model(model_size)
        except Exception as e:
            print(f"⚠️ Failed to load cached model, downloading: {e}")
            return whisper.load_model(model_size)
    
    def _load_speaker_diarization_pipeline(self):
        """Load speaker diarization pipeline from cache if available"""
        try:
            speaker_cache_dir = "/model/speaker-diarization"
            config_file = os.path.join(speaker_cache_dir, "download_complete.json")
            
            # Set proper cache directory for pyannote
            os.environ["PYANNOTE_CACHE"] = "/model/speaker-diarization"
            
            # Check if cached speaker diarization models exist
            if os.path.exists(config_file):
                print(f"πŸ“¦ Loading speaker diarization from cache: {speaker_cache_dir}")
                # Load from cache with proper cache_dir
                from pyannote.audio import Pipeline
                
                pipeline = Pipeline.from_pretrained(
                    "pyannote/speaker-diarization-3.1",
                    use_auth_token=os.environ.get("HF_TOKEN"),
                    cache_dir="/model/speaker-diarization"
                )
                print("βœ… Successfully loaded speaker diarization pipeline from cache")
                return pipeline
            else:
                print("⚠️ Speaker diarization cache not found, downloading...")
                # Download fresh if cache not available
                from pyannote.audio import Pipeline
                pipeline = Pipeline.from_pretrained(
                    "pyannote/speaker-diarization-3.1",
                    use_auth_token=os.environ.get("HF_TOKEN"),
                    cache_dir="/model/speaker-diarization"
                )
                
                # Create marker file to indicate successful download
                import json
                config = {
                    "model_name": "pyannote/speaker-diarization-3.1",
                    "cached_at": speaker_cache_dir,
                    "cache_complete": True,
                    "runtime_download": True
                }
                with open(config_file, "w") as f:
                    json.dump(config, f)
                
                return pipeline
        except Exception as e:
            print(f"⚠️ Failed to load speaker diarization pipeline: {e}")
            return None
        
    def transcribe_audio(
        self,
        audio_file_path: str,
        model_size: str = "turbo",
        language: str = None,
        output_format: str = "srt",
        enable_speaker_diarization: bool = False
    ) -> Dict[str, Any]:
        """
        Transcribe audio file using Whisper
        
        Args:
            audio_file_path: Path to audio file
            model_size: Whisper model size
            language: Language code (optional)
            output_format: Output format
            enable_speaker_diarization: Enable speaker identification
            
        Returns:
            Transcription result dictionary
        """
        try:
            print(f"🎀 Starting transcription for: {audio_file_path}")
            print(f"πŸš€ Using model: {model_size}")
        
            # Check if file exists
            if not os.path.exists(audio_file_path):
                raise FileNotFoundError(f"Audio file not found: {audio_file_path}")
            
            # Load Whisper model from cache
            model = self._load_cached_model(model_size)
            
            # Load speaker diarization pipeline if enabled
            speaker_pipeline = None
            if enable_speaker_diarization:
                speaker_pipeline = self._load_speaker_diarization_pipeline()
                if speaker_pipeline is None:
                    print("⚠️ Speaker diarization disabled due to loading failure")
                    enable_speaker_diarization = False
            
            # Transcribe audio
            transcribe_options = {
                "language": language if language and language != "auto" else None,
                "task": "transcribe",
                "verbose": True
            }
            
            print(f"πŸ”„ Transcribing with options: {transcribe_options}")
            result = model.transcribe(audio_file_path, **transcribe_options)
            
            # Extract information
            text = result.get("text", "").strip()
            segments = result.get("segments", [])
            language_detected = result.get("language", "unknown")
            
            # Apply speaker diarization if enabled
            speaker_segments = []
            global_speaker_count = 0
            speaker_summary = {}
            
            if enable_speaker_diarization and speaker_pipeline:
                try:
                    print("πŸ‘₯ Applying speaker diarization...")
                    diarization_result = speaker_pipeline(audio_file_path)
                    
                    # Process diarization results
                    speakers = set()
                    for turn, _, speaker in diarization_result.itertracks(yield_label=True):
                        speakers.add(speaker)
                        speaker_segments.append({
                            "start": turn.start,
                            "end": turn.end,
                            "speaker": speaker
                        })
                    
                    global_speaker_count = len(speakers)
                    speaker_summary = {f"SPEAKER_{i:02d}": speaker for i, speaker in enumerate(sorted(speakers))}
                    
                    # Merge speaker information with transcription segments
                    segments = self._merge_speaker_segments(segments, speaker_segments)
                    
                    print(f"βœ… Speaker diarization completed: {global_speaker_count} speakers detected")
                    
                except Exception as e:
                    print(f"⚠️ Speaker diarization failed: {e}")
                    enable_speaker_diarization = False
            
            # Generate output files
            output_files = self._generate_output_files(
                audio_file_path, text, segments, enable_speaker_diarization
            )
            
            # Get audio duration
            audio_duration = 0.0
            if segments:
                audio_duration = max(seg.get("end", 0) for seg in segments)
            
            print(f"βœ… Transcription completed successfully")
            print(f"   Text length: {len(text)} characters")
            print(f"   Segments: {len(segments)}")
            print(f"   Duration: {audio_duration:.2f}s")
            print(f"   Language: {language_detected}")
            
            return {
                "txt_file_path": output_files.get("txt_file"),
                "srt_file_path": output_files.get("srt_file"),
                "audio_file": audio_file_path,
                "model_used": model_size,
                "segment_count": len(segments),
                "audio_duration": audio_duration,
                "processing_status": "success",
                "saved_files": [f for f in output_files.values() if f],
                "speaker_diarization_enabled": enable_speaker_diarization,
                "global_speaker_count": global_speaker_count,
                "speaker_summary": speaker_summary,
                "language_detected": language_detected,
                "text": text,
                "segments": [
                    {
                        "start": seg.get("start", 0),
                        "end": seg.get("end", 0),
                        "text": seg.get("text", "").strip(),
                        "speaker": seg.get("speaker", None)
                    }
                    for seg in segments
                ]
            }
            
        except Exception as e:
            print(f"❌ Transcription failed: {e}")
            return self._create_error_result(audio_file_path, model_size, str(e))
    
    def _merge_speaker_segments(self, transcription_segments: List[Dict], speaker_segments: List[Dict]) -> List[Dict]:
        """
        Merge speaker information with transcription segments, splitting transcription segments
        when multiple speakers are detected within a single segment
        """
        merged_segments = []
        
        for trans_seg in transcription_segments:
            trans_start = trans_seg.get("start", 0)
            trans_end = trans_seg.get("end", 0)
            trans_text = trans_seg.get("text", "").strip()
            
            # Find all overlapping speaker segments
            overlapping_speakers = []
            for speaker_seg in speaker_segments:
                speaker_start = speaker_seg["start"]
                speaker_end = speaker_seg["end"]
                
                # Check if there's any overlap
                overlap_start = max(trans_start, speaker_start)
                overlap_end = min(trans_end, speaker_end)
                overlap_duration = max(0, overlap_end - overlap_start)
                
                if overlap_duration > 0:
                    overlapping_speakers.append({
                        "speaker": speaker_seg["speaker"],
                        "start": speaker_start,
                        "end": speaker_end,
                        "overlap_start": overlap_start,
                        "overlap_end": overlap_end,
                        "overlap_duration": overlap_duration
                    })
            
            if not overlapping_speakers:
                # No speaker detected, keep original segment
                merged_seg = trans_seg.copy()
                merged_seg["speaker"] = None
                merged_segments.append(merged_seg)
                continue
            
            # Sort overlapping speakers by start time
            overlapping_speakers.sort(key=lambda x: x["overlap_start"])
            
            if len(overlapping_speakers) == 1:
                # Single speaker for this transcription segment
                merged_seg = trans_seg.copy()
                merged_seg["speaker"] = overlapping_speakers[0]["speaker"]
                merged_segments.append(merged_seg)
            else:
                # Multiple speakers detected - split the transcription segment
                print(f"πŸ”„ Splitting segment ({trans_start:.2f}s-{trans_end:.2f}s) with {len(overlapping_speakers)} speakers")
                split_segments = self._split_transcription_segment(
                    trans_seg, overlapping_speakers, trans_text
                )
                merged_segments.extend(split_segments)
        
        return merged_segments
    
    def _split_transcription_segment(self, trans_seg: Dict, overlapping_speakers: List[Dict], trans_text: str) -> List[Dict]:
        """
        Split a transcription segment into multiple segments based on speaker changes
        """
        split_segments = []
        trans_start = trans_seg.get("start", 0)
        trans_end = trans_seg.get("end", 0)
        trans_duration = trans_end - trans_start
        
        # Calculate the proportion of text for each speaker based on overlap duration
        total_overlap_duration = sum(sp["overlap_duration"] for sp in overlapping_speakers)
        
        if total_overlap_duration == 0:
            # Fallback: equal distribution
            text_per_speaker = len(trans_text) // len(overlapping_speakers)
        
        current_text_pos = 0
        for i, speaker_info in enumerate(overlapping_speakers):
            # Calculate text portion for this speaker
            if total_overlap_duration > 0:
                text_proportion = speaker_info["overlap_duration"] / total_overlap_duration
            else:
                text_proportion = 1.0 / len(overlapping_speakers)
            
            # Calculate text length for this speaker
            if i == len(overlapping_speakers) - 1:
                # Last speaker gets remaining text
                speaker_text_length = len(trans_text) - current_text_pos
            else:
                speaker_text_length = int(len(trans_text) * text_proportion)
            
            # Extract text for this speaker
            speaker_text_end = min(current_text_pos + speaker_text_length, len(trans_text))
            speaker_text = trans_text[current_text_pos:speaker_text_end].strip()
            
            # Adjust word boundaries to avoid cutting words in half
            if speaker_text_end < len(trans_text) and i < len(overlapping_speakers) - 1:
                # Find the last complete word
                last_space = speaker_text.rfind(' ')
                if last_space > 0:
                    speaker_text = speaker_text[:last_space]
                    speaker_text_end = current_text_pos + last_space + 1  # +1 to skip the space
                else:
                    # If no space found, keep original text but update position
                    speaker_text_end = current_text_pos + speaker_text_length
            
            # Use actual speaker diarization timing directly
            segment_start = speaker_info["overlap_start"]
            segment_end = speaker_info["overlap_end"]
            
            # Always create segment if we have valid timing, even with empty text
            if segment_start < segment_end:
                split_segment = {
                    "start": segment_start,
                    "end": segment_end,
                    "text": speaker_text,
                    "speaker": speaker_info["speaker"]
                }
                split_segments.append(split_segment)
                print(f"   β†’ {speaker_info['speaker']}: {segment_start:.2f}s-{segment_end:.2f}s: \"{speaker_text[:50]}{'...' if len(speaker_text) > 50 else ''}\"")
            
            current_text_pos = speaker_text_end
        
        return split_segments
    
    def transcribe_audio_parallel(
        self,
        audio_file_path: str,
        model_size: str = "turbo",
        language: str = None,
        output_format: str = "srt",
        enable_speaker_diarization: bool = False,
        chunk_duration: int = 300
    ) -> Dict[str, Any]:
        """
        Transcribe audio with parallel processing for long files
        
        Args:
            audio_file_path: Path to audio file
            model_size: Whisper model size
            language: Language code (optional)
            output_format: Output format
            enable_speaker_diarization: Enable speaker identification
            chunk_duration: Duration of chunks in seconds
            
        Returns:
            Transcription result dictionary
        """
        try:
            print(f"🎀 Starting parallel transcription for: {audio_file_path}")
            print(f"πŸš€ Using model: {model_size}")
            print(f"⚑ Chunk duration: {chunk_duration}s")
            
            # Check if file exists
            if not os.path.exists(audio_file_path):
                raise FileNotFoundError(f"Audio file not found: {audio_file_path}")
            
            # Get audio duration
            total_duration = self._get_audio_duration(audio_file_path)
            print(f"πŸ“Š Total audio duration: {total_duration:.2f}s")
            
            # If audio is shorter than chunk duration, use single processing
            if total_duration <= chunk_duration:
                print("πŸ“ Audio is short, using single processing")
                return self.transcribe_audio(
                    audio_file_path, model_size, language, output_format, enable_speaker_diarization
                )
            
            # Split audio into chunks
            chunks = self._split_audio_into_chunks(audio_file_path, chunk_duration, total_duration)
            print(f"πŸ”€ Created {len(chunks)} chunks for parallel processing")
            
            # Load Whisper model once from cache
            model = self._load_cached_model(model_size)
            
            # Process chunks in parallel
            chunk_results = self._process_chunks_parallel(chunks, model, language)
            
            # Combine results
            combined_result = self._combine_chunk_results(
                chunk_results, audio_file_path, model_size, 
                enable_speaker_diarization, total_duration
            )
            
            # Cleanup chunk files
            self._cleanup_chunks(chunks)
            
            return combined_result
            
        except Exception as e:
            print(f"❌ Parallel transcription failed: {e}")
            result = self._create_error_result(audio_file_path, model_size, str(e))
            result["parallel_processing"] = True
            return result
    
    def normalize_audio_file(self, input_file: str, output_file: str = None) -> str:
        """
        Normalize audio file for better Whisper compatibility
        
        Args:
            input_file: Input audio file path
            output_file: Output file path (optional)
            
        Returns:
            Path to normalized audio file
        """
        if output_file is None:
            temp_dir = tempfile.mkdtemp()
            output_file = os.path.join(temp_dir, "normalized_audio.wav")
        
        # Convert to standardized format: 16kHz, mono, PCM
        cmd = [
            "ffmpeg", "-i", input_file,
            "-ar", "16000",  # 16kHz sample rate (Whisper's native)
            "-ac", "1",      # Mono channel
            "-c:a", "pcm_s16le",  # PCM 16-bit encoding
            "-y",  # Overwrite output file
            output_file
        ]
        
        result = subprocess.run(cmd, capture_output=True, text=True)
        if result.returncode != 0:
            print(f"⚠️ FFmpeg normalization failed: {result.stderr}")
            return input_file  # Return original file if normalization fails
        else:
            print("βœ… Audio normalized for Whisper")
            return output_file
    
    def _get_audio_duration(self, audio_file_path: str) -> float:
        """Get audio duration using ffprobe"""
        cmd = ["ffprobe", "-v", "quiet", "-show_entries", "format=duration", "-of", "csv=p=0", audio_file_path]
        duration_output = subprocess.run(cmd, capture_output=True, text=True)
        return float(duration_output.stdout.strip())
    
    def _split_audio_into_chunks(self, audio_file_path: str, chunk_duration: int, total_duration: float) -> List[Dict]:
        """Split audio file into chunks for parallel processing"""
        chunks = []
        temp_dir = tempfile.mkdtemp()
        
        for i in range(0, int(total_duration), chunk_duration):
            chunk_start = i
            chunk_end = min(i + chunk_duration, total_duration)
            chunk_file = os.path.join(temp_dir, f"chunk_{i//chunk_duration:03d}.wav")
            
            # Extract chunk using ffmpeg
            cmd = [
                "ffmpeg", "-i", audio_file_path,
                "-ss", str(chunk_start),
                "-t", str(chunk_end - chunk_start),
                "-c:a", "pcm_s16le",  # Use PCM encoding for better quality
                "-ar", "16000",  # 16kHz sample rate for Whisper
                chunk_file
            ]
            
            subprocess.run(cmd, capture_output=True)
            
            if os.path.exists(chunk_file):
                chunks.append({
                    "file": chunk_file,
                    "start_time": chunk_start,
                    "end_time": chunk_end,
                    "index": len(chunks),
                    "temp_dir": temp_dir
                })
                print(f"πŸ“¦ Created chunk {len(chunks)}: {chunk_start:.1f}s-{chunk_end:.1f}s")
        
        return chunks
    
    def _process_chunks_parallel(self, chunks: List[Dict], model, language: str) -> List[Dict]:
        """Process audio chunks in parallel"""
        def process_chunk(chunk_info):
            try:
                print(f"πŸ”„ Processing chunk {chunk_info['index']}: {chunk_info['start_time']:.1f}s-{chunk_info['end_time']:.1f}s")
                
                transcribe_options = {
                    "language": language if language and language != "auto" else None,
                    "task": "transcribe",
                    "verbose": False  # Reduce verbosity for parallel processing
                }
                
                result = model.transcribe(chunk_info["file"], **transcribe_options)
                
                # Adjust segment timing to global timeline
                segments = []
                for seg in result.get("segments", []):
                    adjusted_seg = {
                        "start": seg["start"] + chunk_info["start_time"],
                        "end": seg["end"] + chunk_info["start_time"],
                        "text": seg["text"].strip(),
                        "speaker": None
                    }
                    segments.append(adjusted_seg)
                
                print(f"βœ… Chunk {chunk_info['index']} completed: {len(segments)} segments")
                
                return {
                    "text": result.get("text", "").strip(),
                    "segments": segments,
                    "language": result.get("language", "unknown"),
                    "chunk_index": chunk_info["index"]
                }
                
            except Exception as e:
                print(f"❌ Chunk {chunk_info['index']} failed: {e}")
                return {
                    "text": "",
                    "segments": [],
                    "language": "unknown",
                    "chunk_index": chunk_info["index"],
                    "error": str(e)
                }
        
        # Process chunks in parallel using ThreadPoolExecutor
        with ThreadPoolExecutor(max_workers=min(len(chunks), 8)) as executor:
            chunk_results = list(executor.map(process_chunk, chunks))
        
        # Sort results by chunk index
        chunk_results.sort(key=lambda x: x["chunk_index"])
        return chunk_results
    
    def _combine_chunk_results(
        self, 
        chunk_results: List[Dict], 
        audio_file_path: str, 
        model_size: str, 
        enable_speaker_diarization: bool,
        total_duration: float
    ) -> Dict[str, Any]:
        """Combine results from multiple chunks"""
        # Combine results
        full_text = " ".join([chunk["text"] for chunk in chunk_results if chunk["text"]])
        all_segments = []
        for chunk in chunk_results:
            all_segments.extend(chunk["segments"])
        
        # Sort segments by start time
        all_segments.sort(key=lambda x: x["start"])
        
        # Get detected language (use most common one)
        languages = [chunk["language"] for chunk in chunk_results if chunk["language"] != "unknown"]
        language_detected = max(set(languages), key=languages.count) if languages else "unknown"
        
        # Generate output files
        output_files = self._generate_output_files(
            audio_file_path, full_text, all_segments, enable_speaker_diarization
        )
        
        print(f"βœ… Parallel transcription completed successfully")
        print(f"   Text length: {len(full_text)} characters")
        print(f"   Total segments: {len(all_segments)}")
        print(f"   Duration: {total_duration:.2f}s")
        print(f"   Language: {language_detected}")
        print(f"   Chunks processed: {len(chunk_results)}")
        
        return {
            "txt_file_path": output_files.get("txt_file"),
            "srt_file_path": output_files.get("srt_file"),
            "audio_file": audio_file_path,
            "model_used": model_size,
            "segment_count": len(all_segments),
            "audio_duration": total_duration,
            "processing_status": "success",
            "saved_files": [f for f in output_files.values() if f],
            "speaker_diarization_enabled": enable_speaker_diarization,
            "global_speaker_count": 0,
            "speaker_summary": {},
            "language_detected": language_detected,
            "text": full_text,
            "segments": all_segments,
            "chunks_processed": len(chunk_results),
            "parallel_processing": True
        }
    
    def _cleanup_chunks(self, chunks: List[Dict]):
        """Clean up temporary chunk files"""
        temp_dirs = set()
        for chunk in chunks:
            try:
                if os.path.exists(chunk["file"]):
                    os.remove(chunk["file"])
                temp_dirs.add(chunk["temp_dir"])
            except Exception as e:
                print(f"⚠️ Failed to cleanup chunk file: {e}")
        
        # Remove temp directories
        for temp_dir in temp_dirs:
            try:
                os.rmdir(temp_dir)
            except Exception as e:
                print(f"⚠️ Failed to cleanup temp directory: {e}")
    
    def _generate_output_files(
        self, 
        audio_file_path: str, 
        text: str, 
        segments: List[Dict], 
        enable_speaker_diarization: bool
    ) -> Dict[str, str]:
        """Generate output files (TXT and SRT)"""
        base_path = Path(audio_file_path).with_suffix("")
        output_files = {}
        
        # Generate TXT file
        if text:
            txt_file = f"{base_path}.txt"
            with open(txt_file, 'w', encoding='utf-8') as f:
                f.write(text)
            output_files["txt_file"] = txt_file
        
        # Generate SRT file
        if segments:
            srt_file = f"{base_path}.srt"
            srt_content = self._generate_srt_content(segments, enable_speaker_diarization)
            with open(srt_file, 'w', encoding='utf-8') as f:
                f.write(srt_content)
            output_files["srt_file"] = srt_file
        
        return output_files
    
    def _generate_srt_content(self, segments: List[Dict], include_speakers: bool = False) -> str:
        """Generate SRT format content from segments"""
        srt_lines = []
        
        for i, segment in enumerate(segments, 1):
            start_time = self._format_timestamp(segment.get('start', 0))
            end_time = self._format_timestamp(segment.get('end', 0))
            text = segment.get('text', '').strip()
            
            if include_speakers and segment.get('speaker'):
                text = f"[{segment['speaker']}] {text}"
            
            srt_lines.append(f"{i}")
            srt_lines.append(f"{start_time} --> {end_time}")
            srt_lines.append(text)
            srt_lines.append("")  # Empty line between segments
        
        return "\n".join(srt_lines)
    
    def _format_timestamp(self, seconds: float) -> str:
        """Format timestamp for SRT format"""
        hours = int(seconds // 3600)
        minutes = int((seconds % 3600) // 60)
        secs = int(seconds % 60)
        milliseconds = int((seconds % 1) * 1000)
        
        return f"{hours:02d}:{minutes:02d}:{secs:02d},{milliseconds:03d}"
    
    def _create_error_result(self, audio_file_path: str, model_size: str, error_message: str) -> Dict[str, Any]:
        """Create error result dictionary"""
        return {
            "txt_file_path": None,
            "srt_file_path": None,
            "audio_file": audio_file_path,
            "model_used": model_size,
            "segment_count": 0,
            "audio_duration": 0,
            "processing_status": "failed",
            "saved_files": [],
            "speaker_diarization_enabled": False,
            "global_speaker_count": 0,
            "speaker_summary": {},
            "error_message": error_message
        }