File size: 15,029 Bytes
76f9cd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
"""
高级 Speaker Segmentation 测试用例
测试边缘情况、性能和复杂场景
"""

import pytest
import time
import random
from typing import List, Dict
import sys
import os

# 添加项目根目录到 Python 路径
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

from src.services.transcription_service import TranscriptionService


class TestSpeakerSegmentationAdvanced:
    """高级说话人分割测试"""
    
    def setup_method(self):
        """设置测试环境"""
        self.service = TranscriptionService()
    
    def test_rapid_speaker_changes(self):
        """测试快速说话人切换的情况"""
        transcription_segments = [
            {
                "start": 0.0,
                "end": 5.0,
                "text": "A B C D E F G H I J K L M N O P Q R S T"
            }
        ]
        
        # 模拟每0.25秒切换一次说话人
        speaker_segments = []
        for i in range(20):
            start_time = i * 0.25
            end_time = (i + 1) * 0.25
            speaker = f"SPEAKER_{i % 2:02d}"  # 两个说话人交替
            speaker_segments.append({
                "start": start_time,
                "end": end_time,
                "speaker": speaker
            })
        
        result = self.service._merge_speaker_segments(transcription_segments, speaker_segments)
        
        # 应该有多个分割段
        assert len(result) > 1
        
        # 检查说话人交替
        speakers = [seg["speaker"] for seg in result]
        assert "SPEAKER_00" in speakers
        assert "SPEAKER_01" in speakers
        
        # 检查文本完整性
        combined_text = " ".join([seg["text"] for seg in result if seg["text"]])
        original_words = "A B C D E F G H I J K L M N O P Q R S T".split()
        result_words = combined_text.split()
        
        # 允许一些文本丢失(由于快速切换),但大部分应该保留
        preserved_ratio = len(result_words) / len(original_words)
        assert preserved_ratio > 0.5, f"Too much text lost: {preserved_ratio:.2f}"
    
    def test_very_short_speaker_segments(self):
        """测试非常短的说话人段"""
        transcription_segments = [
            {
                "start": 0.0,
                "end": 2.0,
                "text": "Quick short conversation"
            }
        ]
        
        speaker_segments = [
            {
                "start": 0.0,
                "end": 0.1,
                "speaker": "SPEAKER_00"
            },
            {
                "start": 0.1,
                "end": 0.2,
                "speaker": "SPEAKER_01"
            },
            {
                "start": 0.2,
                "end": 2.0,
                "speaker": "SPEAKER_00"
            }
        ]
        
        result = self.service._merge_speaker_segments(transcription_segments, speaker_segments)
        
        # 即使有很短的段,也应该正确处理
        assert len(result) >= 1
        
        # 检查没有空文本段(除非原本就是空的)
        for seg in result:
            if seg["start"] < seg["end"]:  # 有效时间段
                # 可以接受空文本(因为段太短)
                pass
    
    def test_overlapping_segments_complex(self):
        """测试复杂的重叠情况"""
        transcription_segments = [
            {
                "start": 0.0,
                "end": 10.0,
                "text": "This is a complex conversation with multiple overlapping speakers talking at the same time"
            }
        ]
        
        speaker_segments = [
            # 三个说话人同时说话
            {
                "start": 0.0,
                "end": 6.0,
                "speaker": "SPEAKER_00"
            },
            {
                "start": 2.0,
                "end": 8.0,
                "speaker": "SPEAKER_01"
            },
            {
                "start": 4.0,
                "end": 10.0,
                "speaker": "SPEAKER_02"
            }
        ]
        
        result = self.service._merge_speaker_segments(transcription_segments, speaker_segments)
        
        # 应该有多个段
        assert len(result) >= 2
        
        # 检查所有说话人都被包含
        speakers = set(seg["speaker"] for seg in result)
        assert len(speakers) >= 2  # 至少包含两个说话人
        
        # 检查时间合理性(不要求严格连续性,因为有重叠)
        for seg in result:
            assert seg["start"] < seg["end"], f"Invalid timing: {seg['start']} >= {seg['end']}"
    
    def test_performance_large_segments(self):
        """测试大量段的性能"""
        # 生成大量转录段
        transcription_segments = []
        for i in range(100):
            transcription_segments.append({
                "start": i * 1.0,
                "end": (i + 1) * 1.0,
                "text": f"This is segment number {i} with some text content for testing purposes"
            })
        
        # 生成大量说话人段
        speaker_segments = []
        for i in range(200):
            speaker_segments.append({
                "start": i * 0.5,
                "end": (i + 1) * 0.5,
                "speaker": f"SPEAKER_{i % 5:02d}"  # 5个说话人循环
            })
        
        # 测量执行时间
        start_time = time.time()
        result = self.service._merge_speaker_segments(transcription_segments, speaker_segments)
        execution_time = time.time() - start_time
        
        # 应该在合理时间内完成(< 1秒)
        assert execution_time < 1.0, f"Performance too slow: {execution_time:.2f}s"
        
        # 检查结果合理性
        assert len(result) > 0
        assert len(result) <= len(transcription_segments) * 2  # 每个段最多分割一次
    
    def test_no_overlap_at_all(self):
        """测试完全没有重叠的情况"""
        transcription_segments = [
            {
                "start": 0.0,
                "end": 2.0,
                "text": "First segment"
            },
            {
                "start": 5.0,
                "end": 7.0,
                "text": "Second segment"
            }
        ]
        
        speaker_segments = [
            {
                "start": 3.0,
                "end": 4.0,
                "speaker": "SPEAKER_00"
            },
            {
                "start": 8.0,
                "end": 9.0,
                "speaker": "SPEAKER_01"
            }
        ]
        
        result = self.service._merge_speaker_segments(transcription_segments, speaker_segments)
        
        # 应该保持原始段,但没有说话人信息
        assert len(result) == 2
        assert result[0]["speaker"] is None
        assert result[1]["speaker"] is None
        assert result[0]["text"] == "First segment"
        assert result[1]["text"] == "Second segment"
    
    def test_exact_boundary_matching(self):
        """测试精确边界匹配"""
        transcription_segments = [
            {
                "start": 1.0,
                "end": 3.0,
                "text": "Exact boundary match"
            }
        ]
        
        speaker_segments = [
            {
                "start": 1.0,
                "end": 3.0,
                "speaker": "SPEAKER_00"
            }
        ]
        
        result = self.service._merge_speaker_segments(transcription_segments, speaker_segments)
        
        assert len(result) == 1
        assert result[0]["speaker"] == "SPEAKER_00"
        assert result[0]["start"] == 1.0
        assert result[0]["end"] == 3.0
        assert result[0]["text"] == "Exact boundary match"
    
    def test_floating_point_precision(self):
        """测试浮点数精度问题"""
        transcription_segments = [
            {
                "start": 0.1,
                "end": 0.3,
                "text": "Precision test"
            }
        ]
        
        speaker_segments = [
            {
                "start": 0.10000001,  # 微小差异
                "end": 0.29999999,
                "speaker": "SPEAKER_00"
            }
        ]
        
        result = self.service._merge_speaker_segments(transcription_segments, speaker_segments)
        
        assert len(result) == 1
        assert result[0]["speaker"] == "SPEAKER_00"
    
    def test_text_distribution_accuracy(self):
        """测试文本分配的准确性"""
        transcription_segments = [
            {
                "start": 0.0,
                "end": 10.0,
                "text": "One two three four five six seven eight nine ten"
            }
        ]
        
        speaker_segments = [
            {
                "start": 0.0,
                "end": 8.0,  # 80% 的时间
                "speaker": "SPEAKER_00"
            },
            {
                "start": 8.0,
                "end": 10.0,  # 20% 的时间
                "speaker": "SPEAKER_01"
            }
        ]
        
        result = self.service._merge_speaker_segments(transcription_segments, speaker_segments)
        
        assert len(result) == 2
        
        # SPEAKER_00 应该得到大约 80% 的文本
        total_text_length = len("One two three four five six seven eight nine ten")
        speaker_00_length = len(result[0]["text"])
        speaker_01_length = len(result[1]["text"])
        
        speaker_00_ratio = speaker_00_length / total_text_length
        speaker_01_ratio = speaker_01_length / total_text_length
        
        # 允许一定的误差范围
        assert 0.6 <= speaker_00_ratio <= 0.9, f"SPEAKER_00 ratio: {speaker_00_ratio:.2f}"
        assert 0.1 <= speaker_01_ratio <= 0.4, f"SPEAKER_01 ratio: {speaker_01_ratio:.2f}"
    
    def test_single_word_segments(self):
        """测试单词级别的分割"""
        transcription_segments = [
            {
                "start": 0.0,
                "end": 4.0,
                "text": "Hello world"
            }
        ]
        
        speaker_segments = [
            {
                "start": 0.0,
                "end": 2.0,
                "speaker": "SPEAKER_00"
            },
            {
                "start": 2.0,
                "end": 4.0,
                "speaker": "SPEAKER_01"
            }
        ]
        
        result = self.service._merge_speaker_segments(transcription_segments, speaker_segments)
        
        assert len(result) == 2
        
        # 检查单词没有被切断
        all_words = []
        for seg in result:
            if seg["text"]:
                all_words.extend(seg["text"].split())
        
        # 应该包含原始的两个完整单词
        original_words = ["Hello", "world"]
        for word in original_words:
            assert any(word in all_words for word in original_words), \
                f"Words not preserved correctly: {all_words}"
    
    def test_empty_speaker_segments(self):
        """测试空的说话人段列表"""
        transcription_segments = [
            {
                "start": 0.0,
                "end": 5.0,
                "text": "No speakers detected"
            }
        ]
        
        speaker_segments = []
        
        result = self.service._merge_speaker_segments(transcription_segments, speaker_segments)
        
        assert len(result) == 1
        assert result[0]["speaker"] is None
        assert result[0]["text"] == "No speakers detected"
    
    def test_malformed_input_handling(self):
        """测试处理格式错误的输入"""
        # 缺少必要字段的转录段
        transcription_segments = [
            {
                "start": 0.0,
                "end": 5.0,
                # 缺少 "text" 字段
            }
        ]
        
        speaker_segments = [
            {
                "start": 0.0,
                "end": 5.0,
                "speaker": "SPEAKER_00"
            }
        ]
        
        # 应该能够处理而不崩溃
        try:
            result = self.service._merge_speaker_segments(transcription_segments, speaker_segments)
            # 如果没有异常,检查结果
            assert len(result) >= 0
        except Exception as e:
            # 如果有异常,确保是预期的类型
            assert isinstance(e, (KeyError, AttributeError, TypeError))


class TestSpeakerSegmentationBenchmark:
    """性能基准测试"""
    
    def setup_method(self):
        """设置测试环境"""
        self.service = TranscriptionService()
    
    @pytest.mark.benchmark
    def test_benchmark_typical_podcast(self):
        """基准测试:典型播客场景(30分钟,3个说话人)"""
        # 模拟30分钟的播客:每5秒一个转录段
        transcription_segments = []
        for i in range(360):  # 30分钟 * 60秒 / 5秒
            start_time = i * 5.0
            end_time = (i + 1) * 5.0
            transcription_segments.append({
                "start": start_time,
                "end": end_time,
                "text": f"This is a podcast segment number {i} with typical conversation content"
            })
        
        # 模拟说话人切换:平均每30秒切换一次说话人
        speaker_segments = []
        current_time = 0.0
        current_speaker = 0
        
        while current_time < 1800.0:  # 30分钟
            segment_duration = random.uniform(15.0, 45.0)  # 15-45秒的说话段
            speaker_segments.append({
                "start": current_time,
                "end": min(current_time + segment_duration, 1800.0),
                "speaker": f"SPEAKER_{current_speaker:02d}"
            })
            current_time += segment_duration
            current_speaker = (current_speaker + 1) % 3  # 3个说话人循环
        
        # 执行基准测试
        start_time = time.time()
        result = self.service._merge_speaker_segments(transcription_segments, speaker_segments)
        execution_time = time.time() - start_time
        
        print(f"\n📊 Benchmark Results:")
        print(f"   Input segments: {len(transcription_segments)}")
        print(f"   Speaker segments: {len(speaker_segments)}")
        print(f"   Output segments: {len(result)}")
        print(f"   Execution time: {execution_time:.3f}s")
        print(f"   Segments per second: {len(result)/execution_time:.1f}")
        
        # 性能要求:应该能够处理实时转录(每秒至少处理60个段)
        assert execution_time < 2.0, f"Too slow for real-time processing: {execution_time:.3f}s"
        assert len(result) > 0, "Should produce some output segments"


if __name__ == "__main__":
    # 运行所有测试
    pytest.main([__file__, "-v", "--tb=short", "-m", "not benchmark"])
    
    # 单独运行基准测试
    print("\n" + "="*60)
    print("Running Benchmark Tests...")
    print("="*60)
    pytest.main([__file__, "-v", "--tb=short", "-m", "benchmark"])