ModalTranscriberMCP / src /services /distributed_transcription_service.py
richard-su's picture
Upload folder using huggingface_hub
b5df735 verified
raw
history blame
46.7 kB
"""
Distributed Transcription Service
Handles audio transcription with true distributed processing across multiple Modal containers
Enhanced with intelligent audio segmentation capabilities
"""
import asyncio
import aiohttp
import base64
import os
import tempfile
import subprocess
import json
from pathlib import Path
from typing import Dict, Any, List, Tuple
from concurrent.futures import ThreadPoolExecutor
import time
import re
import ffmpeg
import torch
from .transcription_service import TranscriptionService
class DistributedTranscriptionService:
"""Service for handling distributed audio transcription across multiple Modal containers"""
def __init__(self, cache_dir: str = "/tmp"):
self.cache_dir = cache_dir
self.transcription_service = TranscriptionService(cache_dir)
def split_audio_by_time(self, audio_file_path: str, chunk_duration: int = 60) -> List[Dict[str, Any]]:
"""Split audio into time-based chunks"""
try:
# Get audio duration using ffprobe
duration_cmd = [
"ffprobe", "-v", "quiet", "-show_entries", "format=duration",
"-of", "csv=p=0", audio_file_path
]
result = subprocess.run(duration_cmd, capture_output=True, text=True, check=True)
total_duration = float(result.stdout.strip())
chunks = []
start_time = 0.0
chunk_index = 0
while start_time < total_duration:
end_time = min(start_time + chunk_duration, total_duration)
actual_duration = end_time - start_time
# Skip very short chunks (less than 5 seconds)
if actual_duration < 5.0:
break
chunk_filename = f"chunk_{chunk_index:03d}.wav"
chunks.append({
"chunk_index": chunk_index,
"start_time": start_time,
"end_time": end_time,
"duration": actual_duration,
"filename": chunk_filename
})
start_time = end_time
chunk_index += 1
print(f"πŸ“Š Split audio into {len(chunks)} time-based chunks")
return chunks
except Exception as e:
print(f"❌ Error splitting audio by time: {e}")
return []
def split_audio_by_silence(
self,
audio_file_path: str,
min_segment_length: float = 30.0,
min_silence_length: float = 1.0,
max_segment_length: float = 120.0
) -> List[Dict[str, Any]]:
"""
Intelligently split audio using FFmpeg's silencedetect filter
Enhanced from AudioProcessingService
"""
try:
silence_end_re = re.compile(
r" silence_end: (?P<end>[0-9]+(\.?[0-9]*)) \| silence_duration: (?P<dur>[0-9]+(\.?[0-9]*))"
)
# Get audio duration
metadata = ffmpeg.probe(audio_file_path)
total_duration = float(metadata["format"]["duration"])
print(f"🎡 Audio duration: {total_duration:.2f}s")
print(f"πŸ” Detecting silence with min_silence_length={min_silence_length}s...")
# Use silence detection filter
cmd = [
"ffmpeg", "-i", audio_file_path,
"-af", f"silencedetect=noise=-30dB:duration={min_silence_length}",
"-f", "null", "-"
]
process = subprocess.Popen(
cmd,
stderr=subprocess.PIPE,
stdout=subprocess.PIPE,
text=True
)
segments = []
cur_start = 0.0
chunk_index = 0
# Process silence detection output
for line in process.stderr:
match = silence_end_re.search(line)
if match:
silence_end = float(match.group("end"))
silence_dur = float(match.group("dur"))
split_at = silence_end - (silence_dur / 2)
segment_duration = split_at - cur_start
# Skip segments that are too short
if segment_duration < min_segment_length:
continue
# Split long segments
if segment_duration > max_segment_length:
# Split into multiple smaller segments
sub_start = cur_start
while sub_start < split_at:
sub_end = min(sub_start + max_segment_length, split_at)
sub_duration = sub_end - sub_start
if sub_duration >= min_segment_length:
segments.append({
"chunk_index": chunk_index,
"start_time": sub_start,
"end_time": sub_end,
"duration": sub_duration,
"filename": f"silence_chunk_{chunk_index:03d}.wav",
"segmentation_type": "silence_based"
})
chunk_index += 1
sub_start = sub_end
else:
segments.append({
"chunk_index": chunk_index,
"start_time": cur_start,
"end_time": split_at,
"duration": segment_duration,
"filename": f"silence_chunk_{chunk_index:03d}.wav",
"segmentation_type": "silence_based"
})
chunk_index += 1
cur_start = split_at
process.wait()
# Handle the last segment
if total_duration > cur_start:
remaining_duration = total_duration - cur_start
if remaining_duration >= min_segment_length:
segments.append({
"chunk_index": chunk_index,
"start_time": cur_start,
"end_time": total_duration,
"duration": remaining_duration,
"filename": f"silence_chunk_{chunk_index:03d}.wav",
"segmentation_type": "silence_based"
})
print(f"🎯 Silence-based segmentation created {len(segments)} segments")
return segments
except Exception as e:
print(f"⚠️ Silence-based segmentation failed: {e}")
# Fallback to time-based segmentation
print("πŸ“‹ Falling back to time-based segmentation...")
return self.split_audio_by_time(audio_file_path, chunk_duration=60)
def choose_segmentation_strategy(
self,
audio_file_path: str,
use_intelligent_segmentation: bool = True,
chunk_duration: int = 60
) -> List[Dict[str, Any]]:
"""
Choose the best segmentation strategy based on audio characteristics
"""
try:
# Get audio metadata
metadata = ffmpeg.probe(audio_file_path)
duration = float(metadata["format"]["duration"])
print(f"πŸŽ›οΈ Choosing segmentation strategy for {duration:.2f}s audio...")
# For short audio (< 30s), use single processing
if duration < 30:
print("πŸ“ Audio is short, using single chunk")
return [{
"chunk_index": 0,
"start_time": 0.0,
"end_time": duration,
"duration": duration,
"filename": "single_chunk.wav",
"segmentation_type": "single"
}]
# For longer audio, choose based on user preference
if use_intelligent_segmentation:
print("🧠 Using intelligent silence-based segmentation")
segments = self.split_audio_by_silence(
audio_file_path,
min_segment_length=30.0,
min_silence_length=1.0,
max_segment_length=120.0
)
# NEW: Check if silence-based segmentation failed for long audio
if duration > 180 and len(segments) == 1: # Audio > 3 minutes with only 1 segment
print(f"⚠️ Silence-based segmentation created only 1 segment for {duration:.2f}s audio")
print("πŸ”„ Falling back to 3-minute time-based segmentation for better processing efficiency")
return self.split_audio_by_time(audio_file_path, chunk_duration=180) # 3-minute chunks
# If silence-based segmentation didn't work well, fallback to time-based
if len(segments) == 0 or len(segments) > duration / 20: # Too many tiny segments
print("πŸ”„ Silence segmentation not optimal, using time-based")
return self.split_audio_by_time(audio_file_path, chunk_duration)
return segments
else:
print("⏰ Using time-based segmentation")
return self.split_audio_by_time(audio_file_path, chunk_duration)
except Exception as e:
print(f"❌ Error in segmentation strategy: {e}")
# Ultimate fallback
return self.split_audio_by_time(audio_file_path, chunk_duration)
def split_audio_locally(
self,
audio_file_path: str,
chunk_duration: int = 60,
use_intelligent_segmentation: bool = True
) -> List[Tuple[str, float, float]]:
"""
Split audio file into chunks locally for distributed processing using intelligent segmentation
Args:
audio_file_path: Path to audio file
chunk_duration: Duration of each chunk in seconds
use_intelligent_segmentation: Whether to use intelligent silence-based segmentation
Returns:
List of (chunk_file_path, start_time, end_time) tuples
"""
try:
# Choose segmentation strategy
segments = self.choose_segmentation_strategy(
audio_file_path,
use_intelligent_segmentation=use_intelligent_segmentation,
chunk_duration=chunk_duration
)
if not segments:
print("❌ No segments generated")
return []
print(f"🎡 Processing {len(segments)} segments using {segments[0].get('segmentation_type', 'time_based')} segmentation")
# Create temporary directory for chunks
temp_dir = tempfile.mkdtemp(prefix="audio_chunks_")
chunks = []
for segment in segments:
start_time = segment["start_time"]
end_time = segment["end_time"]
duration = segment["duration"]
# Create chunk file path
chunk_filename = f"chunk_{segment['chunk_index']:03d}_{start_time:.1f}s-{end_time:.1f}s.wav"
chunk_path = os.path.join(temp_dir, chunk_filename)
# Extract chunk using ffmpeg-python (no subprocess)
try:
(
ffmpeg
.input(audio_file_path, ss=start_time, t=duration)
.output(
chunk_path,
acodec='pcm_s16le',
ar=16000,
ac=1
)
.overwrite_output()
.run(quiet=True, capture_stdout=True, capture_stderr=True)
)
except ffmpeg.Error as e:
print(f"❌ FFmpeg error for chunk {segment['chunk_index']+1}: {e}")
print(f" stderr: {e.stderr.decode() if e.stderr else 'No stderr'}")
continue
if os.path.exists(chunk_path) and os.path.getsize(chunk_path) > 0:
chunks.append((chunk_path, start_time, end_time))
segmentation_type = segment.get('segmentation_type', 'time_based')
print(f"πŸ“¦ Created {segmentation_type} chunk {segment['chunk_index']+1}: {start_time:.1f}s-{end_time:.1f}s")
else:
print(f"⚠️ Failed to create chunk {segment['chunk_index']+1}")
return chunks
except Exception as e:
print(f"❌ Error splitting audio: {e}")
return []
async def transcribe_chunk_distributed(
self,
chunk_path: str,
start_time: float,
end_time: float,
model_size: str = "turbo",
language: str = None,
enable_speaker_diarization: bool = False,
chunk_endpoint_url: str = None
) -> Dict[str, Any]:
"""
Transcribe a single chunk using Modal distributed endpoint
Args:
chunk_path: Path to audio chunk file
start_time: Start time of chunk in original audio
end_time: End time of chunk in original audio
model_size: Whisper model size
language: Language code
enable_speaker_diarization: Whether to enable speaker diarization
chunk_endpoint_url: URL of chunk transcription endpoint
Returns:
Transcription result for the chunk
"""
try:
# Read and encode chunk file
with open(chunk_path, "rb") as f:
audio_data = f.read()
audio_base64 = base64.b64encode(audio_data).decode('utf-8')
# Prepare request data
request_data = {
"audio_file_data": audio_base64,
"audio_file_name": os.path.basename(chunk_path),
"model_size": model_size,
"language": language,
"output_format": "json", # Use JSON for easier merging
"enable_speaker_diarization": enable_speaker_diarization,
"chunk_start_time": start_time,
"chunk_end_time": end_time
}
# Send request to Modal chunk endpoint with retry mechanism
max_retries = 3
for attempt in range(max_retries):
try:
# Adjust timeout based on whether speaker diarization is enabled
if enable_speaker_diarization:
timeout_config = aiohttp.ClientTimeout(
total=720, # 12 minutes total for speaker diarization
connect=45, # 45 seconds connection timeout
sock_read=300 # 5 minutes read timeout for speaker processing
)
else:
timeout_config = aiohttp.ClientTimeout(
total=480, # 8 minutes total for regular transcription
connect=30, # 30 seconds connection timeout
sock_read=120 # 2 minutes read timeout for regular processing
)
async with aiohttp.ClientSession(timeout=timeout_config) as session:
async with session.post(
chunk_endpoint_url,
json=request_data
) as response:
if response.status == 200:
result = await response.json()
result["chunk_start_time"] = start_time
result["chunk_end_time"] = end_time
result["chunk_file"] = chunk_path
return result
else:
error_text = await response.text()
if attempt < max_retries - 1:
print(f"⚠️ HTTP {response.status} on attempt {attempt + 1}, retrying...")
await asyncio.sleep(2 ** attempt) # Exponential backoff
continue
else:
return {
"processing_status": "failed",
"error_message": f"HTTP {response.status} after {max_retries} attempts: {error_text}",
"chunk_start_time": start_time,
"chunk_end_time": end_time,
"chunk_file": chunk_path
}
except (asyncio.TimeoutError, aiohttp.ClientError) as e:
if attempt < max_retries - 1:
print(f"⚠️ Network error on attempt {attempt + 1}: {e}, retrying...")
await asyncio.sleep(2 ** attempt) # Exponential backoff
continue
else:
return {
"processing_status": "failed",
"error_message": f"Network error after {max_retries} attempts: {e}",
"chunk_start_time": start_time,
"chunk_end_time": end_time,
"chunk_file": chunk_path
}
except Exception as e:
return {
"processing_status": "failed",
"error_message": str(e),
"chunk_start_time": start_time,
"chunk_end_time": end_time,
"chunk_file": chunk_path
}
async def merge_chunk_results(
self,
chunk_results: List[Dict[str, Any]],
output_format: str = "srt",
enable_speaker_diarization: bool = False,
audio_file_path: str = None
) -> Dict[str, Any]:
"""
Merge transcription results from multiple chunks
Args:
chunk_results: List of chunk transcription results
output_format: Output format (srt, txt, json)
enable_speaker_diarization: Whether speaker diarization was enabled
audio_file_path: Path to original audio file (needed for speaker embedding)
Returns:
Merged transcription result
"""
try:
print(f"πŸ”— Starting merge_chunk_results: {len(chunk_results)} chunks to process")
# Filter successful chunks
successful_chunks = [
chunk for chunk in chunk_results
if chunk.get("processing_status") == "success"
]
failed_chunks = [
chunk for chunk in chunk_results
if chunk.get("processing_status") != "success"
]
print(f"πŸ“Š Chunk processing results: {len(successful_chunks)} successful, {len(failed_chunks)} failed")
if not successful_chunks:
print("❌ All chunks failed - returning failure result")
return {
"processing_status": "failed",
"error_message": "All chunks failed to process",
"chunks_processed": 0,
"chunks_failed": len(failed_chunks)
}
# Sort chunks by start time
successful_chunks.sort(key=lambda x: x.get("chunk_start_time", 0))
print(f"πŸ“ˆ Sorted {len(successful_chunks)} successful chunks by start time")
# Apply speaker embedding unification if speaker diarization is enabled
speaker_mapping = {}
if enable_speaker_diarization and audio_file_path:
print(f"🎀 Speaker diarization enabled, attempting speaker unification...")
try:
from .speaker_embedding_service import SpeakerIdentificationService, SpeakerEmbeddingService
from ..utils.config import AudioProcessingConfig
print(f"βœ… Successfully imported speaker embedding services")
# Initialize speaker services
embedding_manager = SpeakerEmbeddingService()
speaker_service = SpeakerIdentificationService(embedding_manager)
print(f"βœ… Speaker services initialized")
# Unify speakers across chunks using embedding similarity
print("🎀 Unifying speakers across chunks using embedding similarity...")
speaker_mapping = await speaker_service.unify_distributed_speakers(
successful_chunks, audio_file_path
)
print(f"βœ… Speaker unification returned mapping with {len(speaker_mapping)} entries")
if speaker_mapping:
print(f"βœ… Speaker unification completed: {len(set(speaker_mapping.values()))} unified speakers")
else:
print("⚠️ Speaker unification returned empty mapping")
except Exception as e:
print(f"⚠️ Speaker unification failed: {e}")
print(f" Exception type: {type(e).__name__}")
import traceback
print(f" Traceback: {traceback.format_exc()}")
print("πŸ“‹ Continuing with original speaker labels...")
speaker_mapping = {}
else:
if enable_speaker_diarization:
print("⚠️ Speaker diarization enabled but no audio_file_path provided")
if audio_file_path:
print("ℹ️ Audio file path provided but speaker diarization disabled")
# Merge segments
all_segments = []
total_duration = 0
segment_count = 0
# First pass: collect all segments and mark missing speakers as UNKNOWN
print("πŸ“ First pass: collecting segments and marking unknown speakers...")
for chunk_idx, chunk in enumerate(successful_chunks):
chunk_start = chunk.get("chunk_start_time", 0)
chunk_segments = chunk.get("segments", [])
for segment in chunk_segments:
# Adjust segment timestamps to global timeline
adjusted_segment = segment.copy()
adjusted_segment["start"] = segment["start"] + chunk_start
adjusted_segment["end"] = segment["end"] + chunk_start
# Mark segments without speaker as UNKNOWN
if "speaker" not in segment or not segment["speaker"]:
adjusted_segment["speaker"] = "UNKNOWN"
adjusted_segment["chunk_id"] = chunk_idx
else:
# Preserve original speaker for embedding-based reassignment
adjusted_segment["original_speaker"] = segment["speaker"]
adjusted_segment["chunk_id"] = chunk_idx
# Temporarily use chunk-local speaker ID for embedding processing
adjusted_segment["speaker"] = f"chunk_{chunk_idx}_{segment['speaker']}"
all_segments.append(adjusted_segment)
segment_count += len(chunk_segments)
chunk_duration = chunk.get("audio_duration", 0)
if chunk_duration > 0:
total_duration = max(total_duration, chunk_start + chunk_duration)
print(f"πŸ“Š Collected {len(all_segments)} segments from {len(successful_chunks)} chunks")
# Second pass: Apply embedding-based speaker unification if enabled
final_speaker_mapping = {}
if enable_speaker_diarization and audio_file_path and speaker_mapping:
print("🎀 Second pass: applying embedding-based speaker unification...")
# Create final speaker mapping based on embedding results
for mapping_key, unified_speaker_id in speaker_mapping.items():
final_speaker_mapping[mapping_key] = unified_speaker_id
# Apply the unified speaker mapping to segments
for segment in all_segments:
if segment["speaker"] != "UNKNOWN":
chunk_id = segment["chunk_id"]
original_speaker = segment.get("original_speaker", "")
mapping_key = f"chunk_{chunk_id}_{original_speaker}"
if mapping_key in final_speaker_mapping:
segment["speaker"] = final_speaker_mapping[mapping_key]
print(f"🎯 Mapped chunk_{chunk_id}_{original_speaker} -> {segment['speaker']}")
else:
# Fallback: create a new speaker ID if not found in mapping
segment["speaker"] = f"SPEAKER_UNMATCHED_{chunk_id}_{original_speaker}"
print(f"⚠️ No mapping found for {mapping_key}, using fallback ID")
print(f"βœ… Applied speaker unification to segments")
else:
print("ℹ️ Speaker diarization disabled or no speaker mapping available")
# For segments with speakers but no diarization, use chunk-local naming
for segment in all_segments:
if segment["speaker"] != "UNKNOWN" and segment["speaker"].startswith("chunk_"):
chunk_id = segment["chunk_id"]
original_speaker = segment.get("original_speaker", "")
segment["speaker"] = f"SPEAKER_CHUNK_{chunk_id}_{original_speaker}"
# Third pass: Filter and generate output files
print("πŸ“„ Third pass: generating output files...")
# Separate segments by speaker type
known_speaker_segments = [seg for seg in all_segments if seg["speaker"] != "UNKNOWN"]
unknown_speaker_segments = [seg for seg in all_segments if seg["speaker"] == "UNKNOWN"]
print(f"πŸ“Š Segment distribution:")
print(f" Known speakers: {len(known_speaker_segments)} segments")
print(f" Unknown speakers: {len(unknown_speaker_segments)} segments (will be filtered)")
# Generate output files (excluding UNKNOWN speakers)
output_files = self._generate_output_files(
known_speaker_segments, # Only include segments with known speakers
output_format,
enable_speaker_diarization
)
# Collect speaker information based on filtered segments
speaker_info = self._collect_speaker_information_from_segments(
known_speaker_segments, enable_speaker_diarization
)
# Determine language (use most common language from chunks)
languages = [chunk.get("language_detected", "unknown") for chunk in successful_chunks]
most_common_language = max(set(languages), key=languages.count) if languages else "unknown"
# Combine text from known speaker segments only
full_text = " ".join([seg.get("text", "").strip() for seg in known_speaker_segments if seg.get("text", "").strip()])
print(f"πŸ”— merge_chunk_results completion summary:")
print(f" Total segments collected: {len(all_segments)}")
print(f" Known speaker segments: {len(known_speaker_segments)}")
print(f" Unknown speaker segments filtered: {len(unknown_speaker_segments)}")
print(f" Final text length: {len(full_text)} characters")
print(f" Language detected: {most_common_language}")
print(f" Distributed processing flag: True")
return {
"processing_status": "success",
"txt_file_path": output_files.get("txt_file_path"),
"srt_file_path": output_files.get("srt_file_path"),
"audio_duration": total_duration,
"segment_count": len(known_speaker_segments), # Count only known speaker segments
"total_segments_collected": len(all_segments), # Total including UNKNOWN
"unknown_segments_filtered": len(unknown_speaker_segments), # UNKNOWN segments count
"language_detected": most_common_language,
"model_used": successful_chunks[0].get("model_used", "turbo") if successful_chunks else "turbo",
"distributed_processing": True,
"chunks_processed": len(successful_chunks),
"chunks_failed": len(failed_chunks),
"speaker_diarization_enabled": enable_speaker_diarization,
"speaker_embedding_unified": len(speaker_mapping) > 0 if speaker_mapping else False,
"text": full_text, # Add full text for client-side file saving (filtered)
"segments": known_speaker_segments, # Add segments for client-side file saving (filtered)
**speaker_info
}
except Exception as e:
print(f"❌ Error in merge_chunk_results: {e}")
print(f" Exception type: {type(e).__name__}")
import traceback
print(f" Traceback: {traceback.format_exc()}")
return {
"processing_status": "failed",
"error_message": f"Error merging chunk results: {e}",
"chunks_processed": len(successful_chunks) if 'successful_chunks' in locals() else 0,
"chunks_failed": len(failed_chunks) if 'failed_chunks' in locals() else len(chunk_results)
}
def _generate_output_files(
self,
segments: List[Dict],
output_format: str,
enable_speaker_diarization: bool
) -> Dict[str, str]:
"""Generate output files from merged segments (excluding UNKNOWN speakers)"""
try:
# Create output directory
output_dir = Path(self.cache_dir) / "transcribe"
output_dir.mkdir(parents=True, exist_ok=True)
# Generate timestamp for unique filenames
timestamp = int(time.time())
base_filename = f"distributed_transcription_{timestamp}"
output_files = {}
# Filter segments: only include segments with actual text content
valid_segments = []
for segment in segments:
text = segment.get("text", "").strip()
speaker = segment.get("speaker", "UNKNOWN")
# Skip segments with no text or UNKNOWN speaker
if text and speaker != "UNKNOWN":
valid_segments.append(segment)
print(f"πŸ“ Generating output files with {len(valid_segments)} valid segments (filtered from {len(segments)} total)")
# Generate TXT file
txt_path = output_dir / f"{base_filename}.txt"
with open(txt_path, "w", encoding="utf-8") as f:
for segment in valid_segments:
text = segment.get("text", "").strip()
if enable_speaker_diarization and "speaker" in segment:
f.write(f"[{segment['speaker']}] {text}\n")
else:
f.write(f"{text}\n")
output_files["txt_file_path"] = str(txt_path)
# Generate SRT file if requested
if output_format in ["srt", "both"]:
srt_path = output_dir / f"{base_filename}.srt"
with open(srt_path, "w", encoding="utf-8") as f:
srt_index = 1
for segment in valid_segments:
start_time = self._format_srt_time(segment.get("start", 0))
end_time = self._format_srt_time(segment.get("end", 0))
text = segment.get("text", "").strip()
if enable_speaker_diarization and "speaker" in segment:
text = f"[{segment['speaker']}] {text}"
f.write(f"{srt_index}\n")
f.write(f"{start_time} --> {end_time}\n")
f.write(f"{text}\n\n")
srt_index += 1
output_files["srt_file_path"] = str(srt_path)
print(f"βœ… Generated output files: {list(output_files.keys())}")
return output_files
except Exception as e:
print(f"❌ Error generating output files: {e}")
return {}
def _format_srt_time(self, seconds: float) -> str:
"""Format seconds to SRT time format"""
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
secs = int(seconds % 60)
millisecs = int((seconds % 1) * 1000)
return f"{hours:02d}:{minutes:02d}:{secs:02d},{millisecs:03d}"
def _collect_speaker_information_from_segments(
self,
segments: List[Dict],
enable_speaker_diarization: bool
) -> Dict[str, Any]:
"""Collect and merge speaker information from segments"""
if not enable_speaker_diarization:
return {}
try:
# Collect all speakers from segments
all_speakers = set()
speaker_summary = {}
for segment in segments:
speaker = segment.get("speaker", "UNKNOWN")
if speaker != "UNKNOWN":
all_speakers.add(speaker)
if speaker not in speaker_summary:
speaker_summary[speaker] = {
"total_duration": 0,
"segment_count": 0
}
# Calculate segment duration from start and end times
segment_duration = segment.get("end", 0) - segment.get("start", 0)
speaker_summary[speaker]["total_duration"] += segment_duration
speaker_summary[speaker]["segment_count"] += 1
return {
"global_speaker_count": len(all_speakers),
"speakers_detected": list(all_speakers),
"speaker_summary": speaker_summary
}
except Exception as e:
print(f"⚠️ Error collecting speaker information: {e}")
print(f" Segment data types: {[type(seg.get('duration', 0)) for seg in segments]}")
return {
"global_speaker_count": 0,
"speakers_detected": [],
"speaker_summary": {}
}
async def transcribe_audio_distributed(
self,
audio_file_path: str,
model_size: str = "turbo",
language: str = None,
output_format: str = "srt",
enable_speaker_diarization: bool = False,
chunk_duration: int = 60,
use_intelligent_segmentation: bool = True,
chunk_endpoint_url: str = None
) -> Dict[str, Any]:
"""
Transcribe audio using distributed processing across multiple Modal containers
Args:
audio_file_path: Path to audio file
model_size: Whisper model size
language: Language code
output_format: Output format
enable_speaker_diarization: Whether to enable speaker diarization
chunk_duration: Duration of each chunk in seconds
use_intelligent_segmentation: Whether to use intelligent segmentation
chunk_endpoint_url: URL of chunk transcription endpoint
Returns:
Transcription result dictionary
"""
temp_files = []
try:
print(f"πŸš€ Starting distributed transcription for: {audio_file_path}")
print(f"πŸš€ Using model: {model_size}")
print(f"⚑ Chunk duration: {chunk_duration}s")
# Step 1: Split audio locally into chunks
chunks = self.split_audio_locally(
audio_file_path,
chunk_duration,
use_intelligent_segmentation
)
if not chunks:
return {
"processing_status": "failed",
"error_message": "Failed to split audio into chunks"
}
temp_files.extend([chunk[0] for chunk in chunks])
# Step 2: Process all chunks concurrently (no batching)
print(f"πŸ”„ Processing {len(chunks)} chunks concurrently across multiple containers...")
# Set default chunk endpoint URL if not provided
if not chunk_endpoint_url:
chunk_endpoint_url = "https://richardsucran--transcribe-audio-chunk-endpoint.modal.run"
# Create all tasks simultaneously for maximum concurrency
all_tasks = []
for chunk_idx, (chunk_path, start_time, end_time) in enumerate(chunks):
# Create a coroutine first
coro = self.transcribe_chunk_distributed(
chunk_path=chunk_path,
start_time=start_time,
end_time=end_time,
model_size=model_size,
language=language,
enable_speaker_diarization=enable_speaker_diarization,
chunk_endpoint_url=chunk_endpoint_url
)
# Convert coroutine to Task explicitly
task = asyncio.create_task(coro)
all_tasks.append((chunk_idx, task))
print(f"πŸ“€ Launched {len(all_tasks)} concurrent transcription tasks")
# Process results as they complete (optimal resource utilization)
chunk_results = [None] * len(chunks) # Pre-allocate results array
completed_count = 0
failed_count = 0
# Set timeout based on speaker diarization
total_timeout = 1800 if enable_speaker_diarization else 1200 # 30min vs 20min total
print(f"⏰ Total processing timeout: {total_timeout//60} minutes")
try:
# Use asyncio.wait with return_when=FIRST_COMPLETED for real-time progress
pending_tasks = {task: chunk_idx for chunk_idx, task in all_tasks}
start_time = asyncio.get_event_loop().time()
while pending_tasks:
# Check for timeout
elapsed = asyncio.get_event_loop().time() - start_time
if elapsed > total_timeout:
print(f"⏰ Total timeout reached ({total_timeout//60} minutes), cancelling remaining tasks...")
for task in pending_tasks.keys():
task.cancel()
break
# Wait for at least one task to complete
remaining_timeout = total_timeout - elapsed
done, pending = await asyncio.wait(
pending_tasks.keys(),
return_when=asyncio.FIRST_COMPLETED,
timeout=min(60, remaining_timeout) # Check every minute
)
# Process completed tasks
for task in done:
chunk_idx = pending_tasks.pop(task)
try:
result = await task
chunk_results[chunk_idx] = result
if result.get("processing_status") == "success":
completed_count += 1
print(f"βœ… Chunk {chunk_idx + 1}/{len(chunks)} completed successfully")
else:
failed_count += 1
error_msg = result.get("error_message", "Unknown error")
print(f"❌ Chunk {chunk_idx + 1}/{len(chunks)} failed: {error_msg}")
except Exception as e:
failed_count += 1
chunk_results[chunk_idx] = {
"processing_status": "failed",
"error_message": str(e),
"chunk_start_time": chunks[chunk_idx][1],
"chunk_end_time": chunks[chunk_idx][2],
"chunk_file": chunks[chunk_idx][0]
}
print(f"❌ Chunk {chunk_idx + 1}/{len(chunks)} exception: {e}")
# Show progress
total_processed = completed_count + failed_count
if total_processed > 0:
print(f"πŸ“Š Progress: {total_processed}/{len(chunks)} chunks processed "
f"({completed_count} βœ…, {failed_count} ❌)")
# Handle any remaining cancelled tasks
for task, chunk_idx in pending_tasks.items():
if chunk_results[chunk_idx] is None:
chunk_results[chunk_idx] = {
"processing_status": "failed",
"error_message": "Task cancelled due to timeout",
"chunk_start_time": chunks[chunk_idx][1],
"chunk_end_time": chunks[chunk_idx][2],
"chunk_file": chunks[chunk_idx][0]
}
failed_count += 1
except Exception as e:
print(f"❌ Error during concurrent processing: {e}")
# Fill in any missing results
for i, result in enumerate(chunk_results):
if result is None:
chunk_results[i] = {
"processing_status": "failed",
"error_message": f"Processing error: {e}",
"chunk_start_time": chunks[i][1],
"chunk_end_time": chunks[i][2],
"chunk_file": chunks[i][0]
}
print(f"🏁 Concurrent processing completed: {completed_count} successful, {failed_count} failed")
# Step 3: Merge results from all chunks
print("πŸ”— Merging results from all chunks...")
final_result = await self.merge_chunk_results(
chunk_results,
output_format,
enable_speaker_diarization,
audio_file_path
)
print(f"βœ… Distributed transcription completed successfully")
print(f" Chunks processed: {final_result.get('chunks_processed', 0)}")
print(f" Chunks failed: {final_result.get('chunks_failed', 0)}")
print(f" Total segments: {final_result.get('segment_count', 0)}")
print(f" Duration: {final_result.get('audio_duration', 0):.2f}s")
return final_result
except Exception as e:
return {
"processing_status": "failed",
"error_message": f"Distributed transcription failed: {e}",
"chunks_processed": 0,
"chunks_failed": len(chunks) if 'chunks' in locals() else 0
}
finally:
# Clean up temporary files
for temp_file in temp_files:
try:
if os.path.exists(temp_file):
os.remove(temp_file)
except Exception as e:
print(f"⚠️ Failed to clean up temp file {temp_file}: {e}")
# Clean up temporary directories
for chunk_path, _, _ in chunks if 'chunks' in locals() else []:
try:
temp_dir = os.path.dirname(chunk_path)
if temp_dir.startswith("/tmp/audio_chunks_"):
import shutil
shutil.rmtree(temp_dir, ignore_errors=True)
except Exception as e:
print(f"⚠️ Failed to clean up temp directory: {e}")