ModalTranscriberMCP / tests /test_08_speaker_diarization_integration.py
richard-su's picture
Upload folder using huggingface_hub
76f9cd2 verified
"""
Speaker Diarization Integration Tests
Comprehensive testing of speaker identification functionality with real audio files
Tests include download, transcription with speaker diarization, and result analysis
"""
import asyncio
import json
import os
import pytest
import shutil
import tempfile
import time
from pathlib import Path
from typing import Dict, Any, List
from src.tools.transcription_tools import transcribe_audio_file_tool
from src.tools.download_tools import download_apple_podcast_tool, download_xyz_podcast_tool
from src.services.health_service import HealthService
from src.services.transcription_service import TranscriptionService
class TestSpeakerDiarizationIntegration:
"""Comprehensive speaker diarization integration tests"""
@pytest.fixture(autouse=True)
def setup_test_environment(self):
"""Setup test environment with cache directories"""
self.cache_dir = Path("tests/cache")
self.transcribe_dir = Path("tests/cache/transcribe")
self.speaker_results_dir = Path("tests/cache/transcribe/speaker_diarization")
# Ensure directories exist
self.cache_dir.mkdir(exist_ok=True)
self.transcribe_dir.mkdir(exist_ok=True)
self.speaker_results_dir.mkdir(exist_ok=True)
print(f"πŸ“ Cache directory: {self.cache_dir.absolute()}")
print(f"πŸ“ Transcribe directory: {self.transcribe_dir.absolute()}")
print(f"πŸ“ Speaker results directory: {self.speaker_results_dir.absolute()}")
def test_speaker_diarization_environment_check(self):
"""Check if speaker diarization environment is properly configured"""
print("\nπŸ” Testing speaker diarization environment...")
health_service = HealthService()
health_status = health_service.get_health_status()
print(f"πŸ“Š Overall health: {health_status['status']}")
# Check Whisper status
whisper_status = health_status["whisper"]
print(f"🎀 Whisper status: {whisper_status['status']}")
print(f" Default model: {whisper_status['default_model']}")
print(f" Available models: {whisper_status['available_models']}")
# Check speaker diarization status
speaker_status = health_status["speaker_diarization"]
print(f"πŸ‘₯ Speaker diarization status: {speaker_status['status']}")
print(f" HF token available: {speaker_status['hf_token_available']}")
print(f" Pipeline loaded: {speaker_status.get('pipeline_loaded', False)}")
# Save environment status
env_status_file = self.speaker_results_dir / "environment_status.json"
with open(env_status_file, 'w') as f:
json.dump(health_status, f, indent=2)
print(f"πŸ’Ύ Environment status saved to: {env_status_file}")
# Test speaker diarization pipeline loading
speaker_test_result = health_service.test_speaker_diarization()
print(f"πŸ§ͺ Speaker pipeline test: {speaker_test_result['status']}")
if speaker_test_result['status'] == 'skipped':
print("⚠️ Speaker diarization will be tested without HF_TOKEN")
elif speaker_test_result['status'] == 'pipeline_loaded':
print("βœ… Speaker diarization pipeline ready")
# Save pipeline test result
pipeline_test_file = self.speaker_results_dir / "pipeline_test.json"
with open(pipeline_test_file, 'w') as f:
json.dump(speaker_test_result, f, indent=2)
print("βœ… Environment check completed")
@pytest.mark.asyncio
async def test_download_multi_speaker_podcast(self):
"""Download podcasts that likely have multiple speakers"""
print("\nπŸ“₯ Downloading multi-speaker podcast content...")
# Podcast URLs that typically have multiple speakers (interviews, discussions)
podcast_urls = [
{
"type": "apple",
"url": "https://podcasts.apple.com/cn/podcast/all-ears-english-podcast/id751574016?i=1000712048662",
"filename": "multi_speaker_apple.mp3",
"description": "All Ears English (typically has 2-3 speakers)"
},
{
"type": "xyz",
"url": "https://www.xiaoyuzhoufm.com/episode/6844388379e285b9b8b7067d",
"filename": "multi_speaker_xyz.mp3",
"description": "XiaoYuZhou conversation (likely multiple speakers)"
}
]
downloaded_files = []
for podcast_info in podcast_urls:
print(f"\n🎧 Downloading: {podcast_info['description']}")
print(f" URL: {podcast_info['url']}")
try:
if podcast_info["type"] == "apple":
result = await download_apple_podcast_tool(podcast_info["url"])
else: # xyz
result = await download_xyz_podcast_tool(podcast_info["url"])
print(f"πŸ“‹ Download result: {result['status']}")
if result['status'] == 'success' and result.get('audio_file_path'):
# Copy to our cache with descriptive name
cache_file = self.cache_dir / podcast_info["filename"]
if os.path.exists(result['audio_file_path']):
shutil.copy2(result['audio_file_path'], cache_file)
print(f"πŸ“ Saved to: {cache_file}")
file_size = os.path.getsize(cache_file) / (1024*1024)
print(f"πŸ“Š File size: {file_size:.2f} MB")
downloaded_files.append({
"file_path": str(cache_file),
"description": podcast_info["description"],
"type": podcast_info["type"],
"size_mb": file_size
})
else:
print(f"⚠️ Download failed: {result.get('error_message', 'Unknown error')}")
except Exception as e:
print(f"❌ Download error: {e}")
# Save download results
download_log = self.speaker_results_dir / "download_log.json"
with open(download_log, 'w') as f:
json.dump(downloaded_files, f, indent=2)
print(f"\nβœ… Downloaded {len(downloaded_files)} files")
return downloaded_files
def create_synthetic_multi_speaker_audio(self) -> str:
"""Create synthetic audio with multiple frequency patterns to simulate speakers"""
print("\n🎡 Creating synthetic multi-speaker audio for testing...")
try:
import numpy as np
import soundfile as sf
# Create 30 seconds of audio with 3 different "speakers" (frequency patterns)
sample_rate = 16000
duration = 30
t = np.linspace(0, duration, sample_rate * duration)
# Speaker 1: 440 Hz (A4) - first 10 seconds
speaker1_duration = 10
speaker1_samples = sample_rate * speaker1_duration
speaker1_audio = np.sin(2 * np.pi * 440 * t[:speaker1_samples]) * 0.3
# Brief silence
silence_samples = sample_rate * 2 # 2 seconds
silence = np.zeros(silence_samples)
# Speaker 2: 880 Hz (A5) - next 8 seconds
speaker2_duration = 8
speaker2_samples = sample_rate * speaker2_duration
speaker2_start = speaker1_samples + silence_samples
speaker2_audio = np.sin(2 * np.pi * 880 * t[speaker2_start:speaker2_start + speaker2_samples]) * 0.3
# Another silence
silence2 = np.zeros(silence_samples)
# Speaker 3: 660 Hz (E5) - remaining time
remaining_samples = len(t) - speaker1_samples - silence_samples - speaker2_samples - silence_samples
if remaining_samples > 0:
speaker3_start = speaker2_start + speaker2_samples + silence_samples
speaker3_audio = np.sin(2 * np.pi * 660 * t[speaker3_start:speaker3_start + remaining_samples]) * 0.3
else:
speaker3_audio = np.array([])
# Combine all audio segments
full_audio = np.concatenate([
speaker1_audio,
silence,
speaker2_audio,
silence2,
speaker3_audio
])
# Save synthetic audio
synthetic_file = self.cache_dir / "synthetic_multi_speaker.wav"
sf.write(synthetic_file, full_audio, sample_rate)
print(f"🎡 Synthetic audio created: {synthetic_file}")
print(f" Duration: {len(full_audio) / sample_rate:.2f}s")
print(f" Simulated speakers: 3 (440Hz, 880Hz, 660Hz)")
return str(synthetic_file)
except ImportError:
print("⚠️ numpy/soundfile not available, skipping synthetic audio creation")
return None
except Exception as e:
print(f"❌ Failed to create synthetic audio: {e}")
return None
@pytest.mark.asyncio
async def test_speaker_diarization_comprehensive(self):
"""Comprehensive speaker diarization test with multiple audio sources"""
print("\nπŸ‘₯ Testing comprehensive speaker diarization...")
# Get available audio files
audio_files = []
# Check for downloaded podcast files
for file_pattern in ["*.mp3", "*.wav", "*.m4a"]:
audio_files.extend(list(self.cache_dir.glob(file_pattern)))
# Create synthetic audio if no real audio available
if not audio_files:
synthetic_file = self.create_synthetic_multi_speaker_audio()
if synthetic_file:
audio_files.append(Path(synthetic_file))
if not audio_files:
pytest.skip("No audio files available for speaker diarization testing")
print(f"🎡 Found {len(audio_files)} audio files for testing")
# Test each audio file
test_results = []
for audio_file in audio_files[:3]: # Limit to 3 files to avoid long test times
print(f"\n🎀 Testing speaker diarization on: {audio_file.name}")
file_size_mb = os.path.getsize(audio_file) / (1024*1024)
print(f" File size: {file_size_mb:.2f} MB")
# Test configurations
test_configs = [
{
"name": "without_speaker_diarization",
"enable_speaker_diarization": False,
"model_size": "turbo",
"description": "Baseline transcription without speaker identification"
},
{
"name": "with_speaker_diarization",
"enable_speaker_diarization": True,
"model_size": "turbo",
"description": "Full transcription with speaker identification"
}
]
file_results = {
"audio_file": str(audio_file),
"file_size_mb": file_size_mb,
"tests": {}
}
for config in test_configs:
print(f"\n πŸ§ͺ Testing: {config['description']}")
start_time = time.time()
try:
result = await transcribe_audio_file_tool(
audio_file_path=str(audio_file),
model_size=config["model_size"],
language=None, # Auto-detect
output_format="srt",
enable_speaker_diarization=config["enable_speaker_diarization"]
)
processing_time = time.time() - start_time
print(f" Status: {result['processing_status']}")
print(f" Processing time: {processing_time:.2f}s")
if result['processing_status'] == 'success':
print(f" Segments: {result['segment_count']}")
print(f" Duration: {result['audio_duration']:.2f}s")
print(f" Language: {result.get('language_detected', 'unknown')}")
print(f" Speaker diarization enabled: {result['speaker_diarization_enabled']}")
if result['speaker_diarization_enabled']:
speaker_count = result.get('global_speaker_count', 0)
print(f" Speakers detected: {speaker_count}")
print(f" Speaker summary: {result.get('speaker_summary', {})}")
# Save transcription results
result_dir = self.speaker_results_dir / audio_file.stem
result_dir.mkdir(exist_ok=True)
# Save detailed results
result_file = result_dir / f"{config['name']}_result.json"
with open(result_file, 'w') as f:
json.dump(result, f, indent=2)
# Copy transcription files to results directory
if result.get('txt_file_path') and os.path.exists(result['txt_file_path']):
shutil.copy2(
result['txt_file_path'],
result_dir / f"{config['name']}.txt"
)
if result.get('srt_file_path') and os.path.exists(result['srt_file_path']):
shutil.copy2(
result['srt_file_path'],
result_dir / f"{config['name']}.srt"
)
print(f" πŸ“ Results saved to: {result_dir}")
# Store test result
file_results["tests"][config["name"]] = {
"config": config,
"result": result,
"processing_time": processing_time
}
except Exception as e:
print(f" ❌ Test failed: {e}")
file_results["tests"][config["name"]] = {
"config": config,
"error": str(e),
"processing_time": time.time() - start_time
}
test_results.append(file_results)
# Save comprehensive test results
comprehensive_results_file = self.speaker_results_dir / "comprehensive_test_results.json"
with open(comprehensive_results_file, 'w') as f:
json.dump(test_results, f, indent=2)
print(f"\nπŸ“Š Comprehensive test results saved to: {comprehensive_results_file}")
# Generate summary report
self.generate_speaker_diarization_report(test_results)
print("βœ… Comprehensive speaker diarization test completed")
def generate_speaker_diarization_report(self, test_results: List[Dict]):
"""Generate a comprehensive speaker diarization test report"""
print("\nπŸ“‹ Generating speaker diarization report...")
report = {
"test_summary": {
"total_files_tested": len(test_results),
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S"),
"test_configurations": [
"without_speaker_diarization",
"with_speaker_diarization"
]
},
"detailed_results": {},
"performance_analysis": {},
"speaker_detection_analysis": {}
}
# Analyze results
total_processing_time = 0
successful_tests = 0
speaker_detection_results = []
for file_result in test_results:
file_name = Path(file_result["audio_file"]).name
report["detailed_results"][file_name] = {
"file_size_mb": file_result["file_size_mb"],
"tests": {}
}
for test_name, test_data in file_result["tests"].items():
if "result" in test_data and test_data["result"]["processing_status"] == "success":
successful_tests += 1
total_processing_time += test_data["processing_time"]
result = test_data["result"]
# Store test details
report["detailed_results"][file_name]["tests"][test_name] = {
"status": "success",
"processing_time": test_data["processing_time"],
"segment_count": result["segment_count"],
"audio_duration": result["audio_duration"],
"language_detected": result.get("language_detected"),
"speaker_diarization_enabled": result["speaker_diarization_enabled"]
}
# Collect speaker detection data
if result["speaker_diarization_enabled"]:
speaker_detection_results.append({
"file": file_name,
"speakers_detected": result.get("global_speaker_count", 0),
"speaker_summary": result.get("speaker_summary", {}),
"segments_with_speakers": len([
seg for seg in result.get("segments", [])
if seg.get("speaker")
])
})
report["detailed_results"][file_name]["tests"][test_name].update({
"speakers_detected": result.get("global_speaker_count", 0),
"speaker_summary": result.get("speaker_summary", {})
})
else:
# Handle failed tests
report["detailed_results"][file_name]["tests"][test_name] = {
"status": "failed",
"error": test_data.get("error", "Unknown error"),
"processing_time": test_data.get("processing_time", 0)
}
# Performance analysis
if successful_tests > 0:
report["performance_analysis"] = {
"average_processing_time": total_processing_time / successful_tests,
"total_processing_time": total_processing_time,
"successful_tests": successful_tests,
"total_tests": len(test_results) * 2 # 2 configs per file
}
# Speaker detection analysis
if speaker_detection_results:
total_speakers = sum(r["speakers_detected"] for r in speaker_detection_results)
avg_speakers = total_speakers / len(speaker_detection_results) if speaker_detection_results else 0
report["speaker_detection_analysis"] = {
"files_with_speaker_detection": len(speaker_detection_results),
"total_speakers_detected": total_speakers,
"average_speakers_per_file": avg_speakers,
"speaker_detection_details": speaker_detection_results
}
# Save report
report_file = self.speaker_results_dir / "speaker_diarization_report.json"
with open(report_file, 'w') as f:
json.dump(report, f, indent=2)
# Generate markdown report
self.generate_markdown_report(report)
print(f"πŸ“Š Report saved to: {report_file}")
return report
def generate_markdown_report(self, report: Dict):
"""Generate a markdown version of the speaker diarization report"""
markdown_content = f"""# Speaker Diarization Test Report
Generated: {report['test_summary']['timestamp']}
## Summary
- **Files Tested**: {report['test_summary']['total_files_tested']}
- **Test Configurations**: {len(report['test_summary']['test_configurations'])}
"""
# Performance section
if "performance_analysis" in report:
perf = report["performance_analysis"]
markdown_content += f"""## Performance Analysis
- **Successful Tests**: {perf['successful_tests']}/{perf['total_tests']}
- **Average Processing Time**: {perf['average_processing_time']:.2f} seconds
- **Total Processing Time**: {perf['total_processing_time']:.2f} seconds
"""
# Speaker detection section
if "speaker_detection_analysis" in report:
speaker = report["speaker_detection_analysis"]
markdown_content += f"""## Speaker Detection Analysis
- **Files with Speaker Detection**: {speaker['files_with_speaker_detection']}
- **Total Speakers Detected**: {speaker['total_speakers_detected']}
- **Average Speakers per File**: {speaker['average_speakers_per_file']:.1f}
### Speaker Detection Details
"""
for detail in speaker["speaker_detection_details"]:
markdown_content += f"""#### {detail['file']}
- Speakers: {detail['speakers_detected']}
- Segments with speakers: {detail['segments_with_speakers']}
- Speaker summary: {detail['speaker_summary']}
"""
# Detailed results section
markdown_content += "## Detailed Results\n\n"
for file_name, file_data in report["detailed_results"].items():
markdown_content += f"""### {file_name}
- File size: {file_data['file_size_mb']:.2f} MB
"""
for test_name, test_data in file_data["tests"].items():
status_icon = "βœ…" if test_data["status"] == "success" else "❌"
markdown_content += f"""#### {test_name} {status_icon}
"""
if test_data["status"] == "success":
markdown_content += f"""- Processing time: {test_data['processing_time']:.2f}s
- Segments: {test_data['segment_count']}
- Duration: {test_data['audio_duration']:.2f}s
- Language: {test_data.get('language_detected', 'unknown')}
- Speaker diarization: {test_data['speaker_diarization_enabled']}
"""
if test_data.get('speakers_detected'):
markdown_content += f"""- Speakers detected: {test_data['speakers_detected']}
"""
else:
markdown_content += f"""- Error: {test_data.get('error', 'Unknown error')}
"""
markdown_content += "\n"
# Save markdown report
markdown_file = self.speaker_results_dir / "speaker_diarization_report.md"
with open(markdown_file, 'w') as f:
f.write(markdown_content)
print(f"πŸ“„ Markdown report saved to: {markdown_file}")
@pytest.mark.asyncio
async def test_local_vs_modal_speaker_diarization(self):
"""Compare local vs Modal speaker diarization performance"""
print("\nβš–οΈ Testing local vs Modal speaker diarization...")
# Create small test audio for comparison
synthetic_file = self.create_synthetic_multi_speaker_audio()
if not synthetic_file:
pytest.skip("Could not create synthetic audio for comparison test")
comparison_results = {
"test_audio": synthetic_file,
"local_transcription": {},
"modal_transcription": {},
"comparison": {}
}
# Test local transcription service
print("🏠 Testing local transcription service...")
try:
local_service = TranscriptionService()
start_time = time.time()
local_result = local_service.transcribe_audio(
audio_file_path=synthetic_file,
model_size="turbo",
enable_speaker_diarization=True
)
local_time = time.time() - start_time
comparison_results["local_transcription"] = {
"result": local_result,
"processing_time": local_time
}
print(f" Local processing time: {local_time:.2f}s")
print(f" Local speakers detected: {local_result.get('global_speaker_count', 0)}")
except Exception as e:
print(f" ❌ Local test failed: {e}")
comparison_results["local_transcription"] = {"error": str(e)}
# Test Modal transcription
print("☁️ Testing Modal transcription...")
try:
start_time = time.time()
modal_result = await transcribe_audio_file_tool(
audio_file_path=synthetic_file,
model_size="turbo",
enable_speaker_diarization=True
)
modal_time = time.time() - start_time
comparison_results["modal_transcription"] = {
"result": modal_result,
"processing_time": modal_time
}
print(f" Modal processing time: {modal_time:.2f}s")
print(f" Modal speakers detected: {modal_result.get('global_speaker_count', 0)}")
except Exception as e:
print(f" ❌ Modal test failed: {e}")
comparison_results["modal_transcription"] = {"error": str(e)}
# Generate comparison
if ("result" in comparison_results["local_transcription"] and
"result" in comparison_results["modal_transcription"]):
local_res = comparison_results["local_transcription"]["result"]
modal_res = comparison_results["modal_transcription"]["result"]
comparison_results["comparison"] = {
"processing_time_difference": (
comparison_results["modal_transcription"]["processing_time"] -
comparison_results["local_transcription"]["processing_time"]
),
"speaker_count_match": (
local_res.get("global_speaker_count", 0) ==
modal_res.get("global_speaker_count", 0)
),
"local_speakers": local_res.get("global_speaker_count", 0),
"modal_speakers": modal_res.get("global_speaker_count", 0)
}
print(f"πŸ“Š Comparison results:")
print(f" Processing time difference: {comparison_results['comparison']['processing_time_difference']:.2f}s")
print(f" Speaker count match: {comparison_results['comparison']['speaker_count_match']}")
# Save comparison results
comparison_file = self.speaker_results_dir / "local_vs_modal_comparison.json"
with open(comparison_file, 'w') as f:
json.dump(comparison_results, f, indent=2)
print(f"πŸ“ Comparison results saved to: {comparison_file}")
print("βœ… Local vs Modal comparison completed")
def test_speaker_diarization_summary(self):
"""Generate final summary of all speaker diarization tests"""
print("\nπŸ“‹ Generating final speaker diarization test summary...")
# Collect all result files
result_files = list(self.speaker_results_dir.glob("*.json"))
summary = {
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S"),
"test_files_generated": [str(f.name) for f in result_files],
"results_directory": str(self.speaker_results_dir),
"test_conclusions": []
}
# Analyze comprehensive results if available
comprehensive_file = self.speaker_results_dir / "comprehensive_test_results.json"
if comprehensive_file.exists():
with open(comprehensive_file, 'r') as f:
comprehensive_data = json.load(f)
# Extract key findings
if comprehensive_data:
summary["test_conclusions"].append(
f"Tested {len(comprehensive_data)} audio files with speaker diarization"
)
# Count successful speaker detections
successful_detections = 0
for file_result in comprehensive_data:
for test_name, test_data in file_result.get("tests", {}).items():
if (test_name == "with_speaker_diarization" and
"result" in test_data and
test_data["result"].get("speaker_diarization_enabled")):
speakers = test_data["result"].get("global_speaker_count", 0)
if speakers > 0:
successful_detections += 1
summary["test_conclusions"].append(
f"Successfully detected speakers in {successful_detections} tests"
)
# Check environment status
env_file = self.speaker_results_dir / "environment_status.json"
if env_file.exists():
with open(env_file, 'r') as f:
env_data = json.load(f)
speaker_status = env_data.get("speaker_diarization", {}).get("status", "unknown")
summary["test_conclusions"].append(f"Speaker diarization environment status: {speaker_status}")
# Save summary
summary_file = self.speaker_results_dir / "test_summary.json"
with open(summary_file, 'w') as f:
json.dump(summary, f, indent=2)
print(f"πŸ“Š Final summary:")
print(f" Results directory: {self.speaker_results_dir}")
print(f" Generated files: {len(result_files)}")
print(f" Key findings: {len(summary['test_conclusions'])}")
for conclusion in summary["test_conclusions"]:
print(f" β€’ {conclusion}")
print(f"πŸ’Ύ Summary saved to: {summary_file}")
print("βœ… Speaker diarization integration testing completed")
# Assert the test completed successfully
assert summary["test_files_generated"], "Should have generated test files"
assert len(summary["test_conclusions"]) > 0, "Should have test conclusions"