File size: 6,162 Bytes
111afa2
 
3014996
111afa2
 
 
 
3014996
 
111afa2
3014996
 
 
 
 
 
 
111afa2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3014996
 
 
111afa2
3014996
111afa2
 
 
 
 
 
 
 
3014996
111afa2
3014996
 
518d841
 
3014996
 
111afa2
 
 
 
3014996
 
 
 
 
 
 
 
 
 
 
 
111afa2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3014996
 
 
b19dcac
518d841
b19dcac
8aeea34
 
618ff49
 
518d841
 
 
 
 
 
 
 
 
 
 
 
 
 
333aa09
 
 
518d841
 
 
 
333aa09
518d841
 
 
 
618ff49
518d841
111afa2
3014996
 
 
 
111afa2
 
3014996
 
 
111afa2
 
 
 
 
 
 
 
 
 
 
 
518d841
 
 
 
111afa2
 
 
 
 
 
 
3014996
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from typing import List

import gradio as gr
import PIL
from gradio import ChatMessage
from smolagents.gradio_ui import stream_to_gradio

from agents.all_agents import get_master_agent
from llm import get_default_model


gr.set_static_paths(paths=["images/"])

master_agent = get_master_agent(get_default_model())
print(master_agent)


def resize_image(image):
    width, height = image.size
    if width > 1200 or height > 800:
        ratio = min(1200 / width, 800 / height)
        new_width = int(width * ratio)
        new_height = int(height * ratio)
        resized_image = image.resize((new_width, new_height), PIL.Image.Resampling.LANCZOS)
        return resized_image
    return image


def chat_interface_fn(input_request, history: List[ChatMessage], gallery):
    if gallery is None:
        gallery = []
    else:
        gallery = [value[0] for value in gallery]
    message = input_request["text"]
    image_paths = input_request["files"]
    prompt = f"""
    You are given the following message from the user:
    {message}
    """

    if len(image_paths) > 0:
        prompt += """
        The user also provided the additional images that you can find in "images" variable
        """
    if len(history) > 0:
        prompt += "This request follows a previous request, you can use the previous request to help you answer the current request."

    prompt += """ 
    Before your final answer, if you have any images to show, store them in the "final_images" variable.
    Always return a text of what you did.

    Never assume an invented model name, always use the model name provided by the task_model_retriever tool.
    """

    images = [PIL.Image.open(image_path) for image_path in image_paths]
    if len(gallery) > 0:
        images.extend(gallery)
    resized_images = [resize_image(image) for image in images]

    for message in stream_to_gradio(
        master_agent,
        task=prompt,
        task_images=resized_images,
        additional_args={"images": images},
        reset_agent_memory=False,
    ):
        history.append(message)
        yield history, None

    final_images = master_agent.python_executor.state.get("final_images", [])
    gallery.extend(final_images)
    yield history, gallery


def example_selected(example):
    textbox.value = example[0]
    image_box.value = example[1]

    example = {
        "text": example[0],
        "files": [
            {
                "url": example[1],
                "path": example[1],
                "name": example[1],
            }
        ],
    }

    return example


with gr.Blocks() as demo:
    gr.Markdown(
        """
    # ScouterAI
    """
    )
    gr.HTML(
        """
        <div style="display: flex; align-items: center; gap: 20px; margin: 20px 0;">
            <img src="https://cdn-uploads.huggingface.co/production/uploads/632885ba1558dac67c440aa8/KpMuW4Qvrh5N-FMcVKKqG.png" 
            alt="Picture" 
            style="max-height: 350px; flex-shrink: 0;" />
            <div style="flex-grow: 1;">
                <p style="margin: 0; font-size: 1.1em;">
                    <p style="font-size: 1.8em; margin-bottom: 10px; font-weight: bold">Welcome to ScouterAI</p>
                    <p style="font-size: 1.2em;">The agent capable of identifying the best 
                    model among the entire HuggingFace Hub to use for your needs.</p>
                    This Space focuses on using agentic reasoning to plan the use of multiple models to perform vision tasks.
                    <br>
                    To answer your request, the agent will use the following models from the hub:
                    <br>
                    <ul>
                        <li><a href="https://huggingface.co/models?pipeline_tag=object-detection&library=transformers&sort=trending">Object detection</a></li>
                        <li><a href="https://huggingface.co/models?pipeline_tag=image-segmentation&library=transformers&sort=trending">Image segmentation</a></li>
                        <li><a href="https://huggingface.co/models?pipeline_tag=image-classification&library=transformers&sort=trending">Image classification</a></li>
                    </ul>
                    The agent can resize and crop images as well as annotating it with bounding boxes, masks and labels.
                    <br>
                    <br>
                    Type your request and add images to the textbox below or click on one of the examples to see how <strong style="font-size: 1.5em;">powerful</strong> it is.
                </p>
            </div>
        </div>
        """,
    )
    output_gallery = gr.Gallery(label="Images generated by the agent (do not put images)", type="pil", format="png")
    textbox = gr.MultimodalTextbox()
    gr.ChatInterface(
        chat_interface_fn,
        type="messages",
        multimodal=True,
        textbox=textbox,
        additional_inputs=[output_gallery],
        additional_outputs=[output_gallery],
    )

    text_box = gr.Textbox(label="Text", visible=False)
    image_box = gr.Image(label="Image", visible=False)
    dataset = gr.Dataset(
        samples=[
            [
                "I would like to detect all the cars in the image",
                "https://upload.wikimedia.org/wikipedia/commons/5/51/Crossing_the_Hudson_River_on_the_George_Washington_Bridge_from_Fort_Lee%2C_New_Jersey_to_Manhattan%2C_New_York_%287237796950%29.jpg",
            ],
            [
                "Find vegetables in the image and annotate the image with their masks",
                "https://media.istockphoto.com/id/1203599923/fr/photo/fond-de-nourriture-avec-lassortiment-des-l%C3%A9gumes-organiques-frais.jpg?s=612x612&w=0&k=20&c=Yu8nfOYI9YZ0UTpb7iFqX8OHp9wfvd9keMQ0BZIzhWs=",
            ],
            [
                "Detect each dog in the image, then crop each dog to find the breed and provide an annotated crop",
                "https://images.pexels.com/photos/10094979/pexels-photo-10094979.jpeg",
            ],
        ],
        components=[text_box, image_box],
        label="Examples",
    )

    dataset.select(example_selected, [dataset], [textbox])


demo.launch()