File size: 4,157 Bytes
111afa2
 
3014996
111afa2
 
 
 
3014996
 
111afa2
3014996
 
 
 
 
 
 
111afa2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3014996
 
 
111afa2
3014996
111afa2
 
 
 
 
 
 
 
3014996
111afa2
3014996
 
 
 
111afa2
 
 
 
3014996
 
 
 
 
 
 
 
 
 
 
 
111afa2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3014996
 
 
b19dcac
 
 
 
 
 
111afa2
 
3014996
 
 
 
111afa2
 
3014996
 
 
111afa2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3014996
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from typing import List

import gradio as gr
import PIL
from gradio import ChatMessage
from smolagents.gradio_ui import stream_to_gradio

from agents.all_agents import get_master_agent
from llm import get_default_model


gr.set_static_paths(paths=["images/"])

master_agent = get_master_agent(get_default_model())
print(master_agent)


def resize_image(image):
    width, height = image.size
    if width > 1200 or height > 800:
        ratio = min(1200 / width, 800 / height)
        new_width = int(width * ratio)
        new_height = int(height * ratio)
        resized_image = image.resize((new_width, new_height), PIL.Image.Resampling.LANCZOS)
        return resized_image
    return image


def chat_interface_fn(input_request, history: List[ChatMessage], gallery):
    if gallery is None:
        gallery = []
    else:
        gallery = [value[0] for value in gallery]
    message = input_request["text"]
    image_paths = input_request["files"]
    prompt = f"""
    You are given the following message from the user:
    {message}
    """

    if len(image_paths) > 0:
        prompt += """
        The user also provided the additional images that you can find in "images" variable
        """
    if len(history) > 0:
        prompt += "This request follows a previous request, you can use the previous request to help you answer the current request."

    prompt += """ 
    Before your final answer, if you have any images to show, store them in the "final_images" variable.
    Always return a text of what you did.
    """

    images = [PIL.Image.open(image_path) for image_path in image_paths]
    if len(gallery) > 0:
        images.extend(gallery)
    resized_images = [resize_image(image) for image in images]

    for message in stream_to_gradio(
        master_agent,
        task=prompt,
        task_images=resized_images,
        additional_args={"images": images},
        reset_agent_memory=False,
    ):
        history.append(message)
        yield history, None

    final_images = master_agent.python_executor.state.get("final_images", [])
    gallery.extend(final_images)
    yield history, gallery


def example_selected(example):
    textbox.value = example[0]
    image_box.value = example[1]

    example = {
        "text": example[0],
        "files": [
            {
                "url": example[1],
                "path": example[1],
                "name": example[1],
            }
        ],
    }

    return example


with gr.Blocks() as demo:
    gr.Markdown(
    """
    # ScouterAI
    ![image/png](https://cdn-uploads.huggingface.co/production/uploads/632885ba1558dac67c440aa8/j7fUk65sQsQ3o7fdfG5TH.png){ width="800" height="600" style="display: block; margin: 0 auto" }
    Welcome to ScouterAI, the Agent that is capable of detecting over 9000 entities in images using the best models of the HuggingFace Hub.
    """)
    output_gallery = gr.Gallery(label="Output Gallery", type="pil", format="png")
    textbox = gr.MultimodalTextbox()
    gr.ChatInterface(
        chat_interface_fn,
        type="messages",
        multimodal=True,
        textbox=textbox,
        additional_inputs=[output_gallery],
        additional_outputs=[output_gallery],
    )

    text_box = gr.Textbox(label="Text", visible=False)
    image_box = gr.Image(label="Image", visible=False)
    dataset = gr.Dataset(
        samples=[
            [
                "I would like to detect all the cars in the image",
                "https://upload.wikimedia.org/wikipedia/commons/5/51/Crossing_the_Hudson_River_on_the_George_Washington_Bridge_from_Fort_Lee%2C_New_Jersey_to_Manhattan%2C_New_York_%287237796950%29.jpg",
            ],
            [
                "Find vegetables in the image and annotate the image with their masks",
                "https://media.istockphoto.com/id/1203599923/fr/photo/fond-de-nourriture-avec-lassortiment-des-l%C3%A9gumes-organiques-frais.jpg?s=612x612&w=0&k=20&c=Yu8nfOYI9YZ0UTpb7iFqX8OHp9wfvd9keMQ0BZIzhWs=",
            ],
        ],
        components=[text_box, image_box],
        label="Examples",
    )

    dataset.select(example_selected, [dataset], [textbox])


demo.launch()