ScouterAI / app.py
stevenbucaille's picture
Refine dog detection feature description in app.py to specify the process of annotating the original image with bounding boxes and labels for better clarity.
bf34015
raw
history blame
6.21 kB
from typing import List
import gradio as gr
import PIL
from gradio import ChatMessage
from smolagents.gradio_ui import stream_to_gradio
from agents.all_agents import get_master_agent
from llm import get_default_model
gr.set_static_paths(paths=["images/"])
master_agent = get_master_agent(get_default_model())
print(master_agent)
def resize_image(image):
width, height = image.size
if width > 1200 or height > 800:
ratio = min(1200 / width, 800 / height)
new_width = int(width * ratio)
new_height = int(height * ratio)
resized_image = image.resize((new_width, new_height), PIL.Image.Resampling.LANCZOS)
return resized_image
return image
def chat_interface_fn(input_request, history: List[ChatMessage], gallery):
if gallery is None:
gallery = []
else:
gallery = [value[0] for value in gallery]
message = input_request["text"]
image_paths = input_request["files"]
prompt = f"""
You are given the following message from the user:
{message}
"""
if len(image_paths) > 0:
prompt += """
The user also provided the additional images that you can find in "images" variable
"""
if len(history) > 0:
prompt += "This request follows a previous request, you can use the previous request to help you answer the current request."
prompt += """
Before your final answer, if you have any images to show, store them in the "final_images" variable.
Always return a text of what you did.
Never assume an invented model name, always use the model name provided by the task_model_retriever tool.
"""
images = [PIL.Image.open(image_path) for image_path in image_paths]
if len(gallery) > 0:
images.extend(gallery)
resized_images = [resize_image(image) for image in images]
for message in stream_to_gradio(
master_agent,
task=prompt,
task_images=resized_images,
additional_args={"images": images},
reset_agent_memory=False,
):
history.append(message)
yield history, None
final_images = master_agent.python_executor.state.get("final_images", [])
gallery.extend(final_images)
yield history, gallery
def example_selected(example):
textbox.value = example[0]
image_box.value = example[1]
example = {
"text": example[0],
"files": [
{
"url": example[1],
"path": example[1],
"name": example[1],
}
],
}
return example
with gr.Blocks() as demo:
gr.Markdown(
"""
# ScouterAI
"""
)
gr.HTML(
"""
<div style="display: flex; align-items: center; gap: 20px; margin: 20px 0;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/632885ba1558dac67c440aa8/KpMuW4Qvrh5N-FMcVKKqG.png"
alt="Picture"
style="max-height: 350px; flex-shrink: 0;" />
<div style="flex-grow: 1;">
<p style="margin: 0; font-size: 1.1em;">
<p style="font-size: 1.8em; margin-bottom: 10px; font-weight: bold">Welcome to ScouterAI</p>
<p style="font-size: 1.2em;">The agent capable of identifying the best
model among the entire HuggingFace Hub to use for your needs.</p>
This Space focuses on using agentic reasoning to plan the use of multiple models to perform vision tasks.
<br>
To answer your request, the agent will use the following models from the hub:
<br>
<ul>
<li><a href="https://huggingface.co/models?pipeline_tag=object-detection&library=transformers&sort=trending">Object detection</a></li>
<li><a href="https://huggingface.co/models?pipeline_tag=image-segmentation&library=transformers&sort=trending">Image segmentation</a></li>
<li><a href="https://huggingface.co/models?pipeline_tag=image-classification&library=transformers&sort=trending">Image classification</a></li>
</ul>
The agent can resize and crop images as well as annotating it with bounding boxes, masks and labels.
<br>
<br>
Type your request and add images to the textbox below or click on one of the examples to see how <strong style="font-size: 1.5em;">powerful</strong> it is.
</p>
</div>
</div>
""",
)
output_gallery = gr.Gallery(label="Images generated by the agent (do not put images)", type="pil", format="png")
textbox = gr.MultimodalTextbox()
gr.ChatInterface(
chat_interface_fn,
type="messages",
multimodal=True,
textbox=textbox,
additional_inputs=[output_gallery],
additional_outputs=[output_gallery],
)
text_box = gr.Textbox(label="Text", visible=False)
image_box = gr.Image(label="Image", visible=False)
dataset = gr.Dataset(
samples=[
[
"I would like to detect all the cars in the image",
"https://upload.wikimedia.org/wikipedia/commons/5/51/Crossing_the_Hudson_River_on_the_George_Washington_Bridge_from_Fort_Lee%2C_New_Jersey_to_Manhattan%2C_New_York_%287237796950%29.jpg",
],
[
"Find vegetables in the image and annotate the image with their masks",
"https://media.istockphoto.com/id/1203599923/fr/photo/fond-de-nourriture-avec-lassortiment-des-l%C3%A9gumes-organiques-frais.jpg?s=612x612&w=0&k=20&c=Yu8nfOYI9YZ0UTpb7iFqX8OHp9wfvd9keMQ0BZIzhWs=",
],
[
"Detect each dog in the image and identify its breed, then provide a crop of each dog and annotate the original image with a bounding box and a label",
"https://images.pexels.com/photos/10094979/pexels-photo-10094979.jpeg",
],
],
components=[text_box, image_box],
label="Examples",
)
dataset.select(example_selected, [dataset], [textbox])
demo.launch()