from typing import List import gradio as gr import PIL from gradio import ChatMessage from smolagents.gradio_ui import stream_to_gradio from agents.all_agents import get_master_agent from llm import ANTHROPIC_MODEL_IDS, get_anthropic_model gr.set_static_paths(paths=["images/"]) def resize_image(image): width, height = image.size if width > 1200 or height > 800: ratio = min(1200 / width, 800 / height) new_width = int(width * ratio) new_height = int(height * ratio) resized_image = image.resize((new_width, new_height), PIL.Image.Resampling.LANCZOS) return resized_image return image def chat_interface_fn(input_request, history: List[ChatMessage], gallery, anthropic_api_key, anthropic_model_id): model = get_anthropic_model(anthropic_model_id, anthropic_api_key) agent = get_master_agent(model) if gallery is None: gallery = [] else: gallery = [value[0] for value in gallery] message = input_request["text"] image_paths = input_request["files"] prompt = f""" You are given the following message from the user: {message} """ if len(image_paths) > 0: prompt += """ The user also provided the additional images that you can find in "images" variable """ if len(history) > 0: prompt += "This request follows a previous request, you can use the previous request to help you answer the current request." prompt += """ Before your final answer, if you have any images to show, store them in the "final_images" variable. Always return a text of what you did. Never assume an invented model name, always use the model name provided by the task_model_retriever tool. """ images = [PIL.Image.open(image_path) for image_path in image_paths] if len(gallery) > 0: images.extend(gallery) resized_images = [resize_image(image) for image in images] for message in stream_to_gradio( agent, task=prompt, task_images=resized_images, additional_args={"images": images}, reset_agent_memory=False, ): history.append(message) yield history, None final_images = agent.python_executor.state.get("final_images", []) gallery.extend(final_images) yield history, gallery def example_selected(example): textbox.value = example[0] image_box.value = example[1] example = { "text": example[0], "files": [ { "url": example[1], "path": example[1], "name": example[1], } ], } return example with gr.Blocks() as demo: gr.Markdown( """ # ScouterAI """ ) gr.HTML( """
Welcome to ScouterAI
The agent capable of identifying the best model among the entire HuggingFace Hub to use for your needs.
This Space focuses on using agentic reasoning to plan the use of multiple models to perform vision tasks.