from langchain_community.vectorstores import FAISS from langchain_huggingface import HuggingFaceEmbeddings def get_embeddings_model(): embeddings = HuggingFaceEmbeddings( model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cuda"}, encode_kwargs={"normalize_embeddings": True}, show_progress=True, ) print("Loaded embeddings model") return embeddings def get_vector_store(): return FAISS.load_local( folder_path="vector_store", embeddings=get_embeddings_model(), index_name="object_detection_models_faiss_index", allow_dangerous_deserialization=True, )