File size: 106,965 Bytes
f154d12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bdd68c
 
 
 
 
 
 
 
f154d12
 
 
 
 
6bdd68c
 
f154d12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4dc3c5
f154d12
a4dc3c5
a6d12b7
 
f154d12
 
 
 
 
a6d12b7
 
 
f154d12
 
 
 
 
 
 
a4dc3c5
 
 
 
 
 
 
 
 
f154d12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c57b0c6
 
f154d12
 
 
 
 
 
 
 
 
c57b0c6
 
 
 
 
 
f154d12
 
 
c57b0c6
 
 
 
 
f154d12
 
 
c57b0c6
 
 
 
f154d12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3480838
 
 
 
f154d12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
417dcde
f154d12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3480838
 
ba636af
3480838
f154d12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3480838
f154d12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
"""
Enhanced MCP Hub - Single Unified Version with Advanced Features.

This module provides a comprehensive MCP (Model Context Protocol) Hub that integrates
multiple AI agents for research, code generation, and execution. It includes web search,
question enhancement, LLM processing, code generation, and secure code execution capabilities.

The hub is designed to be used as both a Gradio web interface and as an MCP server,
providing a unified API for AI-assisted development workflows.
"""
import gradio as gr
import modal
import textwrap
import base64
import marshal
import types
import time
import asyncio
import aiohttp
import ast
import json
from typing import Dict, Any, List
from functools import wraps
from contextlib import asynccontextmanager

# Import our custom modules
from mcp_hub.config import api_config, model_config, app_config
from mcp_hub.exceptions import APIError, ValidationError, CodeGenerationError, CodeExecutionError
from mcp_hub.utils import (
    validate_non_empty_string, extract_json_from_text,
    extract_urls_from_text, make_llm_completion,
    create_apa_citation
)
from mcp_hub.logging_config import logger
from tavily import TavilyClient

# Import advanced features with graceful fallback
ADVANCED_FEATURES_AVAILABLE = False
try:
    from mcp_hub.performance_monitoring import metrics_collector, track_performance, track_api_call
    from mcp_hub.cache_utils import cached
    from mcp_hub.reliability_utils import rate_limited, circuit_protected
    from mcp_hub.health_monitoring import health_monitor
    ADVANCED_FEATURES_AVAILABLE = True
    logger.info("Advanced features loaded successfully")
    
except ImportError as e:
    logger.info(f"Advanced features not available: {e}")
    logger.info("Running with basic features only")
    
    # Create dummy decorators for backward compatibility
    def track_performance(operation_name: str = None):
        def decorator(func): 
            return func
        return decorator
    
    def track_api_call(service_name: str):
        def decorator(func): 
            return func
        return decorator
    
    def rate_limited(service: str = "default", timeout: float = 10.0):
        def decorator(func): 
            return func
        return decorator
    
    def circuit_protected(service: str = "default"):
        def decorator(func): 
            return func
        return decorator
    
    def cached(ttl: int = 300):
        def decorator(func): 
            return func
        return decorator

# Performance tracking wrapper
def with_performance_tracking(operation_name: str):
    """
    Add performance tracking and metrics collection to any function (sync or async).

    This decorator wraps both synchronous and asynchronous functions to collect
    execution time, success/failure metrics, and error counts. It integrates with
    the advanced monitoring system when available.

    Args:
        operation_name (str): The name of the operation to track in metrics

    Returns:
        function: A decorator function that can wrap sync or async functions
    """
    def decorator(func):
        if asyncio.iscoroutinefunction(func):
            @wraps(func)
            async def async_wrapper(*args, **kwargs):
                start_time = time.time()
                try:
                    result = await func(*args, **kwargs)
                    success = True
                    error = None
                except Exception as e:
                    success = False
                    error = str(e)
                    raise
                finally:
                    duration = time.time() - start_time
                    if ADVANCED_FEATURES_AVAILABLE:
                        metrics_collector.record_metric(f"{operation_name}_duration", duration, 
                                                        {"success": str(success), "operation": operation_name})
                        if not success:
                            metrics_collector.increment_counter(f"{operation_name}_errors", 1, 
                                                              {"operation": operation_name, "error": error})
                    logger.info(f"Operation {operation_name} completed in {duration:.2f}s (success: {success})")
                return result
            return async_wrapper
        else:
            @wraps(func)
            def wrapper(*args, **kwargs):
                start_time = time.time()
                try:
                    result = func(*args, **kwargs)
                    success = True
                    error = None
                except Exception as e:
                    success = False
                    error = str(e)
                    raise
                finally:
                    duration = time.time() - start_time
                    if ADVANCED_FEATURES_AVAILABLE:
                        metrics_collector.record_metric(f"{operation_name}_duration", duration, 
                                                        {"success": str(success), "operation": operation_name})
                        if not success:
                            metrics_collector.increment_counter(f"{operation_name}_errors", 1, 
                                                              {"operation": operation_name, "error": error})
                    logger.info(f"Operation {operation_name} completed in {duration:.2f}s (success: {success})")
                return result
            return wrapper
    return decorator

class QuestionEnhancerAgent:
    """
    Agent responsible for enhancing questions into sub-questions for research.

    This agent takes a single user query and intelligently breaks it down into
    multiple distinct, non-overlapping sub-questions that explore different
    technical angles of the original request. It uses LLM models to enhance
    question comprehension and research depth.    """
    
    @with_performance_tracking("question_enhancement")
    @rate_limited("nebius")
    @circuit_protected("nebius")
    @cached(ttl=300)  # Cache for 5 minutes
    def enhance_question(self, user_request: str, num_questions: int) -> Dict[str, Any]:
        """
        Split a single user query into multiple distinct sub-questions for enhanced research.

        Takes a user's original request and uses LLM processing to break it down into
        separate sub-questions that explore different technical angles. This enables
        more comprehensive research and analysis of complex topics.

        Args:
            user_request (str): The original user query to be enhanced and split
            num_questions (int): The number of sub-questions to generate

        Returns:
            Dict[str, Any]: A dictionary containing the generated sub-questions array
                           or error information if processing fails
        """
        try:
            validate_non_empty_string(user_request, "User request")
            logger.info(f"Enhancing question: {user_request[:100]}...")
            
            prompt_text = f"""
            You are an AI assistant specialised in Python programming that must break a single user query into {num_questions} distinct, non-overlapping sub-questions.
            Each sub-question should explore a different technical angle of the original request.
            Output must be valid JSON with a top-level key "sub_questions" whose value is an array of strings—no extra keys, no extra prose.

            User Request: "{user_request}"

            Respond with exactly:
            {{
            "sub_questions": [
                "First enhanced sub-question …",
                "Second enhanced sub-question …",
                ........ more added as necessary
            ]
            }}
            """
            
            messages = [{"role": "user", "content": prompt_text}]
            response_format = {
                "type": "json_object",
                "object": {
                    "sub_questions": {
                        "type": "array",
                        "items": {"type": "string"},
                    }
                },
            }

            logger.info(
                "The LLM provider is: %s and the model is: %s",
                api_config.llm_provider,
                model_config.get_model_for_provider("question_enhancer", api_config.llm_provider)
            )
            
            raw_output = make_llm_completion(
                model=model_config.get_model_for_provider("question_enhancer", api_config.llm_provider),
                messages=messages,
                temperature=0.7,
                response_format=response_format
            )
            
            parsed = extract_json_from_text(raw_output)
            
            if "sub_questions" not in parsed:
                raise ValidationError("JSON does not contain a 'sub_questions' key.")
            
            sub_questions = parsed["sub_questions"]
            if not isinstance(sub_questions, list) or not all(isinstance(q, str) for q in sub_questions):
                raise ValidationError("Expected 'sub_questions' to be a list of strings.")
            
            logger.info(f"Successfully generated {len(sub_questions)} sub-questions")
            return {"sub_questions": sub_questions}
            
        except (ValidationError, APIError) as e:
            logger.error(f"Question enhancement failed: {str(e)}")
            return {"error": str(e), "sub_questions": []}
        except Exception as e:
            logger.error(f"Unexpected error in question enhancement: {str(e)}")
            return {"error": f"Unexpected error: {str(e)}", "sub_questions": []}

class WebSearchAgent:
    """
    Agent responsible for performing web searches using the Tavily API.

    This agent handles web search operations to gather information from the internet.
    It provides both synchronous and asynchronous search capabilities with configurable
    result limits and search depth. Results include summaries, URLs, and content snippets.
    """
    
    def __init__(self):
        if not api_config.tavily_api_key:
            raise APIError("Tavily", "API key not configured")
        self.client = TavilyClient(api_key=api_config.tavily_api_key)
    
    @with_performance_tracking("web_search")
    @rate_limited("tavily")
    @circuit_protected("tavily")
    @cached(ttl=600)  # Cache for 10 minutes
    def search(self, query: str) -> Dict[str, Any]:
        """
        Perform a web search using the Tavily API to gather internet information.

        Executes a synchronous web search with the specified query and returns
        structured results including search summaries, URLs, and content snippets.
        Results are cached for performance optimization.

        Args:
            query (str): The search query string to look up on the web

        Returns:
            Dict[str, Any]: A dictionary containing search results, summaries, and metadata
                           or error information if the search fails
        """
        try:
            validate_non_empty_string(query, "Search query")
            logger.info(f"Performing web search: {query}")
            
            response = self.client.search(
                query=query,
                search_depth="basic",
                max_results=app_config.max_search_results,
                include_answer=True
            )
            
            logger.info(f"Search completed, found {len(response.get('results', []))} results")
            return {
                "query": response.get("query", query),
                "tavily_answer": response.get("answer"),
                "results": response.get("results", []),
                "data_source": "Tavily Search API",
            }
            
        except ValidationError as e:
            logger.error(f"Web search validation failed: {str(e)}")
            return {"error": str(e), "query": query, "results": []}
        except Exception as e:
            logger.error(f"Web search failed: {str(e)}")
            return {"error": f"Tavily API Error: {str(e)}", "query": query, "results": []}
    
    @with_performance_tracking("async_web_search")
    @rate_limited("tavily")
    @circuit_protected("tavily")
    async def search_async(self, query: str) -> Dict[str, Any]:
        """
        Perform an asynchronous web search using aiohttp for better performance.

        Executes an async web search with the specified query using direct HTTP calls
        to the Tavily API. Falls back to synchronous search if async fails.
        Provides better performance for concurrent operations.

        Args:
            query (str): The search query string to look up on the web

        Returns:
            Dict[str, Any]: A dictionary containing search results, summaries, and metadata
                           or falls back to synchronous search on error
        """
        try:
            validate_non_empty_string(query, "Search query")
            logger.info(f"Performing async web search: {query}")
            
            # Use async HTTP client for better performance
            async with aiohttp.ClientSession() as session:
                headers = {
                    'Authorization': f'Bearer {api_config.tavily_api_key}',
                    'Content-Type': 'application/json'
                }
                
                payload = {
                    'query': query,
                    'search_depth': 'basic',
                    'max_results': app_config.max_search_results,
                    'include_answer': True
                }
                
                async with session.post(
                    'https://api.tavily.com/search',
                    json=payload,
                    headers=headers,
                    timeout=aiohttp.ClientTimeout(total=30)
                ) as response:
                    if response.status == 200:
                        data = await response.json()
                        logger.info(f"Async search completed, found {len(data.get('results', []))} results")
                        return {
                            "query": data.get("query", query),
                            "tavily_answer": data.get("answer"),
                            "results": data.get("results", []),
                            "data_source": "Tavily Search API (Async)",
                        }
                    else:
                        error_text = await response.text()
                        raise Exception(f"HTTP {response.status}: {error_text}")
            
        except ValidationError as e:
            logger.error(f"Async web search validation failed: {str(e)}")
            return {"error": str(e), "query": query, "results": []}
        except Exception as e:
            logger.error(f"Async web search failed: {str(e)}")
            # Fallback to sync version on error
            logger.info("Falling back to synchronous search")
            return self.search(query)

class LLMProcessorAgent:
    """
    Agent responsible for processing text using Large Language Models for various tasks.

    This agent handles text processing operations including summarization, reasoning,
    and keyword extraction using configured LLM providers. It supports both synchronous
    and asynchronous processing with configurable temperature and response formats.    """
    
    @with_performance_tracking("llm_processing")
    @rate_limited("nebius")
    @circuit_protected("nebius")
    def process(self, text_input: str, task: str, context: str = None) -> Dict[str, Any]:
        """
        Process text using LLM for summarization, reasoning, or keyword extraction.

        Applies the configured LLM model to process the input text according to the
        specified task type. Supports summarization for condensing content, reasoning
        for analytical tasks, and keyword extraction for identifying key terms.

        Args:
            text_input (str): The input text to be processed by the LLM
            task (str): The processing task ('summarize', 'reason', or 'extract_keywords')
            context (str, optional): Additional context to guide the processing

        Returns:
            Dict[str, Any]: A dictionary containing the processed output and metadata
                           or error information if processing fails
        """
        try:
            validate_non_empty_string(text_input, "Input text")
            validate_non_empty_string(task, "Task")
            logger.info(f"Processing text with task: {task}")
            
            task_lower = task.lower()
            if task_lower not in ["reason", "summarize", "extract_keywords"]:
                raise ValidationError(
                    f"Unsupported LLM task: {task}. Choose 'summarize', 'reason', or 'extract_keywords'."
                )
            
            prompt_text = self._build_prompt(text_input, task_lower, context)
            messages = [{"role": "user", "content": prompt_text}]

            logger.info(f"LLM provider is: {api_config.llm_provider}, model used: {model_config.get_model_for_provider('llm_processor', api_config.llm_provider)}")
            
            output_text = make_llm_completion(
                model=model_config.get_model_for_provider("llm_processor", api_config.llm_provider),
                messages=messages,
                temperature=app_config.llm_temperature
            )
            
            logger.info(f"LLM processing completed for task: {task}")
            return {
                "input_text": text_input,
                "task": task,
                "provided_context": context,
                "llm_processed_output": output_text,
                "llm_model_used": model_config.get_model_for_provider("llm_processor", api_config.llm_provider),
            }
            
        except (ValidationError, APIError) as e:
            logger.error(f"LLM processing failed: {str(e)}")
            return {"error": str(e), "input_text": text_input, "processed_output": None}
        except Exception as e:
            logger.error(f"Unexpected error in LLM processing: {str(e)}")
            return {"error": f"Unexpected error: {str(e)}", "input_text": text_input, "processed_output": None}

    @with_performance_tracking("async_llm_processing")
    @rate_limited("nebius")
    @circuit_protected("nebius")
    async def async_process(self, text_input: str, task: str, context: str = None) -> Dict[str, Any]:
        """
        Process text using async LLM for summarization, reasoning, or keyword extraction.

        Asynchronous version of the text processing function that provides better
        performance for concurrent operations. Uses async LLM completion calls
        for improved throughput when processing multiple texts simultaneously.

        Args:
            text_input (str): The input text to be processed by the LLM
            task (str): The processing task ('summarize', 'reason', or 'extract_keywords')
            context (str, optional): Additional context to guide the processing

        Returns:
            Dict[str, Any]: A dictionary containing the processed output and metadata
                           or error information if processing fails
        """
        try:
            validate_non_empty_string(text_input, "Input text")
            validate_non_empty_string(task, "Task")
            logger.info(f"Processing text async with task: {task}")
            
            task_lower = task.lower()
            if task_lower not in ["reason", "summarize", "extract_keywords"]:
                raise ValidationError(
                    f"Unsupported LLM task: {task}. Choose 'summarize', 'reason', or 'extract_keywords'."
                )
            
            prompt_text = self._build_prompt(text_input, task_lower, context)
            messages = [{"role": "user", "content": prompt_text}]

            logger.info(f"LLM provider is: {api_config.llm_provider}, model used: {model_config.get_model_for_provider('llm_processor', api_config.llm_provider)}")
            
            from mcp_hub.utils import make_async_llm_completion
            output_text = await make_async_llm_completion(
                model=model_config.get_model_for_provider("llm_processor", api_config.llm_provider),
                messages=messages,
                temperature=app_config.llm_temperature
            )
            
            logger.info(f"Async LLM processing completed for task: {task}")
            return {
                "input_text": text_input,
                "task": task,
                "provided_context": context,
                "llm_processed_output": output_text,
                "llm_model_used": model_config.get_model_for_provider("llm_processor", api_config.llm_provider),
            }
            
        except (ValidationError, APIError) as e:
            logger.error(f"Async LLM processing failed: {str(e)}")
            return {"error": str(e), "input_text": text_input, "processed_output": None}
        except Exception as e:
            logger.error(f"Unexpected error in async LLM processing: {str(e)}")
            return {"error": f"Unexpected error: {str(e)}", "input_text": text_input, "processed_output": None}
    
    def _build_prompt(self, text_input: str, task: str, context: str = None) -> str:
        """Build the appropriate prompt based on the task."""
        prompts = {
            "reason": f"Analyze this text and provide detailed reasoning (less than 250):\n\n{text_input} with this context {context if context else ''} for {task}",
            "summarize": f"Summarize in detail (less than 250):\n\n{text_input} with this context {context if context else ''} for {task}",
            "extract_keywords": f"Extract key terms/entities (comma-separated) from:\n\n{text_input}"
        }
        
        prompt = prompts[task]
        
        if context:
            context_additions = {
                "reason": f"\n\nAdditional context: {context}",
                "summarize": f"\n\nKeep in mind this context: {context}",
                "extract_keywords": f"\n\nFocus on this context: {context}"
            }
            prompt += context_additions[task]
        
        task_endings = {
            "reason": "\n\nReasoning:",
            "summarize": "\n\nSummary:",
            "extract_keywords": "\n\nKeywords:"
        }
        prompt += task_endings[task]
        
        return prompt

class CitationFormatterAgent:
    """
    Agent responsible for formatting citations from text content.

    This agent extracts URLs from text blocks and produces properly formatted
    APA-style citations. It handles the automated creation of academic references
    from web sources found in research content.
    """
    
    @with_performance_tracking("citation_formatting")
    def format_citations(self, text_block: str) -> Dict[str, Any]:
        """
        Extract URLs from text and produce APA-style citations.

        Analyzes the provided text block to identify URLs and automatically
        generates properly formatted academic citations following APA style
        guidelines for web sources.

        Args:
            text_block (str): The text content containing URLs to be cited

        Returns:
            Dict[str, Any]: A dictionary containing formatted citations array
                           or error information if extraction fails
        """
        try:
            validate_non_empty_string(text_block, "Text block")
            logger.info("Formatting citations from text block")
            
            urls = extract_urls_from_text(text_block)
            if not urls:
                return {"error": "No URLs found to cite.", "formatted_citations": []}
            
            citations = []
            for url in urls:
                citation = create_apa_citation(url)
                citations.append(citation)
            
            logger.info(f"Successfully formatted {len(citations)} citations")
            return {"formatted_citations": citations, "error": None}
            
        except ValidationError as e:
            logger.error(f"Citation formatting validation failed: {str(e)}")
            return {"error": str(e), "formatted_citations": []}
        except Exception as e:
            logger.error(f"Citation formatting failed: {str(e)}")
            return {"error": f"Unexpected error: {str(e)}", "formatted_citations": []}

class CodeGeneratorAgent:
    """
    Agent responsible for generating Python code based on user requests and context.

    This agent generates secure Python code using LLM models with built-in security
    checks and validation. It enforces restrictions on dangerous function calls and
    modules, ensures code compilation, and provides iterative error correction.
    """

    # List of disallowed function calls for security    
    DISALLOWED_CALLS = {
        "input", "eval", "exec", "compile", "__import__", "open", 
        "file", "raw_input", "execfile", "reload", "quit", "exit"
    }
    
    def _uses_disallowed_calls(self, code_str: str) -> tuple[bool, list[str]]:
        """Check if code uses disallowed function calls."""
        violations = []
        try:
            tree = ast.parse(code_str)
            for node in ast.walk(tree):
                if isinstance(node, ast.Call):
                    if isinstance(node.func, ast.Name) and node.func.id in self.DISALLOWED_CALLS:
                        violations.append(node.func.id)
                elif isinstance(node, ast.Import):
                    for alias in node.names:
                        if alias.name in ["os", "subprocess", "sys"]:
                            violations.append(f"import {alias.name}")
                elif isinstance(node, ast.ImportFrom):
                    if node.module in ["os", "subprocess", "sys"]:
                        violations.append(f"from {node.module} import ...")        
        except SyntaxError:
            # Don't treat syntax errors as security violations - let them be handled separately
            return False, []
        
        return len(violations) > 0, violations

    def _make_prompt(self, user_req: str, ctx: str, prev_err: str = "") -> str:
        """Create a prompt for code generation with error feedback."""
        disallowed_list = ", ".join(self.DISALLOWED_CALLS)
        prev_error_text = ""
        if prev_err:
            prev_error_text = f"Previous attempt failed:\n{prev_err}\nFix it."
        
        return f"""
                You are an expert Python developer. **Rules**:
                - Never use these functions: {disallowed_list}
                - Never import os, subprocess, or sys modules
                - After defining functions/classes, call them and print the result.
                - Always include print statements to show output
                {prev_error_text}

                USER REQUEST:
                \"\"\"{user_req}\"\"\"

                CONTEXT:
                \"\"\"{ctx}\"\"\"

                Provide only valid Python code that can be executed safely.

                Provide only the Python code and never under any circumstance include any
                explanations in your response. **Do not include back ticks or the word python
                and dont include input fields**

                for example,

                import requests
                response = requests.get("https://api.example.com/data")
                print(response.json())

                or

                def add_numbers(a, b):
                    return a + b
                result = add_numbers(5, 10)
                print(result)

                NEVER include input() or Never use input(), even in disguised forms like raw_input()

                ALWAYS return valid Python code that can be executed without errors. The code returned should be
                a function or class depending on the complexity. For simple requests, return a function, 
                and for more complex requests, return a class with methods that can be called.

                After the creation of classes or functions, classes should be instantiated or functions should be called
                to demonstrate their usage. The final step is include the print function of the result of the class and/or function.

                for example

                class DataFetcher:
                def __init__(self, url):
                    self.url = url
                def fetch_data(self):
                    response = requests.get(self.url)
                    return response.json()
                fetcher = DataFetcher("https://api.example.com/data")
                data = fetcher.fetch_data()
                print(data)

                if the code requires and data manipulation etc, generate the code to test the code and print the result.

                for example;
                def process_data(data):
                    # Perform some data manipulation
                    return data * 2
                data = 5

                or 

                For example, to get the mean of a column in a pandas DataFrame:

                import pandas as pd

                def get_mean_of_column(df, column_name):
                    return df[column_name].mean()

                df = pd.DataFrame({{'A': [1, 2, 3], 'B': [4, 5, 6]}})
                mean_value = get_mean_of_column(df, 'A')
                print(mean_value)

                # If you want to pretty-print the DataFrame:
                import json
                print(json.dumps(df.to_dict(), indent=2))

                Never wrap dictionaries or lists in f-strings in print statements (e.g., avoid print(f"{{my_dict}}")).

                To print a dict or list, use print(my_dict) or, if you want pretty output, use the json module:

                import json
                print(json.dumps(my_dict, indent=2))
                If you need to include a variable in a string, only use f-strings with simple values, not dicts or lists.


                
                Never wrap dictionaries or lists in f-strings in print statements, like this:

                # ❌ BAD EXAMPLE — NEVER DO THIS:
                my_dict = {{'A': [1,2,3], 'B': [4,5,6]}}
                print(f"{{my_dict}}")

                # ❌ BAD EXAMPLE — NEVER DO THIS:
                my_list = [1, 2, 3]
                print(f"{{my_list}}")

                # ✅ GOOD EXAMPLES — ALWAYS DO THIS INSTEAD:
                print(my_dict)
                print(my_list)

                # ✅ Or, for pretty output, do:
                import json
                print(json.dumps(my_dict, indent=2))

                If you need to include a variable in a string, only use f-strings with simple scalar values, not dicts or lists. For example:

                # ✅ Good f-string with a simple value:
                mean = 3.5
                print(f"The mean is {{mean}}")

                # ❌ Bad f-string with a dict:
                print(f"The data is {{my_dict}}")   # <-- NEVER DO THIS

                # ✅ Good way to show a dict:
                print("The data is:", my_dict)

                Generated code like this is stricly forbidden due to the word python and the backticks
                ```python
                import x
                import y
                def my_function(i):
                    return i + 1
                ```

                ### **Summary**

                - Repeat the "NEVER wrap dicts/lists in f-strings" rule.
                - Use all-caps or bold/emoji to make "NEVER" and "ALWAYS" pop out.
                - Finish the prompt by *repeating* the most important style rule.
                - **NEVER** include backticks like this ` or the word "python" in the response.
                - Return **ONLY** the actual code as a string without any additional text.
                """

    @with_performance_tracking("code_generation")
    @rate_limited("nebius")    
    @circuit_protected("nebius")
    def generate_code(
        self, user_request: str, grounded_context: str
    ) -> tuple[Dict[str, Any], str]:
        """
        Generate Python code based on user request and grounded context with enhanced security.

        Creates safe, executable Python code using LLM models with built-in security
        validation. Includes iterative error correction, syntax checking, and
        security violation detection to ensure safe code generation.

        Args:
            user_request (str): The user's request describing what code to generate
            grounded_context (str): Contextual information to inform code generation

        Returns:
            tuple[Dict[str, Any], str]: A tuple containing the generation result dictionary
                                       and the raw generated code string
        """
        try:
            validate_non_empty_string(user_request, "User request")
            logger.info("Generating Python code with security checks")

            prev_error = ""
            
            for attempt in range(1, app_config.max_code_generation_attempts + 1):
                try:
                    logger.info(f"Code generation attempt {attempt}")

                    prompt_text = self._make_prompt(user_request, grounded_context, prev_error)
                    messages = [{"role": "user", "content": prompt_text}]
                    
                    logger.info(f"LLM provider is: {api_config.llm_provider}, model used: {model_config.get_model_for_provider('code_generator', api_config.llm_provider)}")

                    raw_output = make_llm_completion(
                        model=model_config.get_model_for_provider("code_generator", api_config.llm_provider),
                        messages=messages,
                        temperature=app_config.code_gen_temperature,
                    )
                    logger.info(f"Generated code (attempt {attempt}):\n{raw_output}\n")
                    
                    # First, validate that the code compiles (syntax check)
                    try:
                        code_compiled = compile(raw_output, "<string>", "exec")
                    except SyntaxError as syntax_err:
                        prev_error = f"Syntax error: {str(syntax_err)}"
                        logger.warning(f"Generated code syntax error (attempt {attempt}): {syntax_err}")
                        if attempt == app_config.max_code_generation_attempts:
                            raise CodeGenerationError(
                                f"Failed to generate valid Python syntax after {attempt} attempts"
                            )
                        continue
                    
                    # Then security check: look for disallowed calls (only if syntax is valid)
                    has_violations, violations = self._uses_disallowed_calls(raw_output)
                    if has_violations:
                        prev_error = f"Security violation - used disallowed functions: {', '.join(violations)}"
                        logger.warning(f"Security violation in attempt {attempt}: {violations}")
                        if attempt == app_config.max_code_generation_attempts:
                            raise CodeGenerationError(f"Code contains security violations: {violations}")
                        continue

                    logger.info(f"The generated code is as follows: \n\n{raw_output}\n")
                    logger.info("Code generation successful with security checks passed")

                    return {"status": "success", "generated_code": code_compiled, "code": code_compiled}, raw_output

                except SyntaxError as e:
                    prev_error = f"Syntax error: {str(e)}"
                    logger.warning(f"Generated code syntax error (attempt {attempt}): {e}")
                    if attempt == app_config.max_code_generation_attempts:
                        raise CodeGenerationError(
                            f"Failed to generate valid Python after {attempt} attempts"
                        )
                    continue

                except APIError as e:
                    raise CodeGenerationError(f"Unexpected API error: {e}") from e

                except Exception as e:
                    prev_error = f"Unexpected error: {str(e)}"
                    logger.error(f"Code generation error (attempt {attempt}): {e}")
                    if attempt == app_config.max_code_generation_attempts:
                        raise CodeGenerationError(f"Unexpected error: {e}")
                    continue

            raise CodeGenerationError("No valid code produced after all attempts")        
        except (ValidationError, APIError, CodeGenerationError) as e:
            logger.error("Code generation failed: %s", e)
            return {"error": str(e), "generated_code": ""}, ""
            
        except Exception as e:
            logger.error("Unexpected error in code generation: %s", e)
            return {"error": f"Unexpected error: {e}", "generated_code": ""}, ""

    
    def _get_enhanced_image(self):
        """Get Modal image with enhanced security and performance packages."""
        return (
            modal.Image.debian_slim(python_version="3.12")
            .pip_install([
                "numpy", "pandas", "matplotlib", "seaborn", "plotly",
                "requests", "beautifulsoup4", "lxml", "scipy", "scikit-learn",
                "pillow", "opencv-python-headless", "wordcloud", "textblob"
            ])
            .apt_install(["curl", "wget", "git"])
            .env({"PYTHONUNBUFFERED": "1", "PYTHONDONTWRITEBYTECODE": "1"})
            .run_commands([
                "python -m pip install --upgrade pip",
                "pip install --no-cache-dir jupyter ipython"
            ])
        )

class CodeRunnerAgent:
    """
    Agent responsible for executing code in Modal sandbox with enhanced security.

    This agent provides secure code execution in isolated Modal sandbox environments
    with warm sandbox pools for performance optimization. It includes safety shims,
    package management, and both synchronous and asynchronous execution capabilities.
    """
    
    def __init__(self):
        self.app = modal.App.lookup(app_config.modal_app_name, create_if_missing=True)
        # Create enhanced image with common packages for better performance
        self.image = self._create_enhanced_image()
        # Initialize warm sandbox pool
        self.sandbox_pool = None
        self._pool_initialized = False
    
    def _create_enhanced_image(self):
        """Create a lean Modal image with only essential packages pre-installed."""
        # Only include truly essential packages in the base image to reduce cold start time
        essential_packages = [
            "numpy",
            "pandas", 
            "matplotlib",
            "requests",
            "scikit-learn",
        ]
        
        try:
            return (
                modal.Image.debian_slim()
                .pip_install(*essential_packages)
                .apt_install(["curl", "wget", "git"])
                .env({"PYTHONUNBUFFERED": "1", "PYTHONDONTWRITEBYTECODE": "1"})
            )
        except Exception as e:
            logger.warning(f"Failed to create enhanced image, using basic: {e}")
            return modal.Image.debian_slim()
    
    async def _ensure_pool_initialized(self):
        """Ensure the sandbox pool is initialized (lazy initialization)."""
        if not self._pool_initialized:
            from mcp_hub.sandbox_pool import WarmSandboxPool
            self.sandbox_pool = WarmSandboxPool(
                app=self.app,
                image=self.image,
                pool_size=5,  # Increased from 3 to reduce cold starts
                max_age_seconds=600,  # Increased from 300 (10 minutes)
                max_uses_per_sandbox=10
            )
            await self.sandbox_pool.start()
            self._pool_initialized = True
            logger.info("Warm sandbox pool initialized")
    
    async def get_pool_stats(self):
        """Get sandbox pool statistics."""
        if self.sandbox_pool:
            return self.sandbox_pool.get_stats()
        return {"error": "Pool not initialized"}
    
    @asynccontextmanager
    async def _sandbox_context(self, **kwargs):
        """Context manager for safe sandbox lifecycle management."""
        sb = None
        try:
            sb = modal.Sandbox.create(
                app=self.app, 
                image=self.image,
                cpu=1.0,
                memory=512,  # MB
                timeout=30,  # seconds
                **kwargs
            )
            yield sb
        except Exception as e:
            logger.error(f"Sandbox creation failed: {e}")
            raise CodeExecutionError(f"Failed to create sandbox: {e}")
        finally:
            if sb:                
                try:
                    sb.terminate()
                except Exception as e:
                    logger.warning(f"Failed to terminate sandbox: {e}")

    def _add_safety_shim(self, code: str) -> str:
        """Return code wrapped in the security shim, for file-based execution."""
        try:
            safety_shim = f"""
import sys
import types
import functools
import builtins
import marshal
import traceback

RESTRICTED_BUILTINS = {{
    'open', 'input', 'eval', 'compile', '__import__',
    'getattr', 'setattr', 'delattr', 'hasattr', 'globals', 'locals',
    'pty', 'subprocess', 'socket', 'threading', 'ssl', 'email', 'smtpd'
}}

if isinstance(__builtins__, dict):
    _original_builtins = __builtins__.copy()
else:
    _original_builtins = __builtins__.__dict__.copy()

_safe_builtins = {{k: v for k, v in _original_builtins.items() if k not in RESTRICTED_BUILTINS}}
_safe_builtins['print'] = print

def safe_exec(code_obj, globals_dict=None, locals_dict=None):
    if not isinstance(code_obj, types.CodeType):
        raise TypeError("safe_exec only accepts a compiled code object")
    if globals_dict is None:
        globals_dict = {{"__builtins__": types.MappingProxyType(_safe_builtins)}}
    return _original_builtins['exec'](code_obj, globals_dict, locals_dict)

_safe_builtins['exec'] = safe_exec

def safe_import(name, *args, **kwargs):
    ALLOWED_MODULES = (
        set(sys.stdlib_module_names)
        .difference(RESTRICTED_BUILTINS)
        .union({{
    "aiokafka", "altair", "anthropic", "apache-airflow", "apsw", "bokeh", "black", "bottle", "catboost", "click",
    "confluent-kafka", "cryptography", "cupy", "dask", "dash", "datasets", "dagster", "django", "distributed", "duckdb",
    "duckdb-engine", "elasticsearch", "evidently", "fastapi", "fastparquet", "flake8", "flask", "folium", "geopandas", "geopy",
    "gensim", "google-cloud-aiplatform", "google-cloud-bigquery", "google-cloud-pubsub", "google-cloud-speech", "google-cloud-storage",
    "google-cloud-texttospeech", "google-cloud-translate", "google-cloud-vision", "google-genai", "great-expectations", "holoviews",
    "html5lib", "httpx", "huggingface_hub", "hvplot", "imbalanced-learn", "imageio", "isort", "jax", "jaxlib",
    "jsonschema",  # added for data validation
    "langchain", "langchain_aws", "langchain_aws_bedrock", "langchain_aws_dynamodb", "langchain_aws_lambda", "langchain_aws_s3",
    "langchain_aws_sagemaker", "langchain_azure", "langchain_azure_openai", "langchain_chroma", "langchain_community",
    "langchain_core", "langchain_elasticsearch", "langchain_google_vertex", "langchain_huggingface", "langchain_mongodb",
    "langchain_openai", "langchain_ollama", "langchain_pinecone", "langchain_redis", "langchain_sqlalchemy",
    "langchain_text_splitters", "langchain_weaviate", "lightgbm", "llama-cpp-python", "lxml", "matplotlib", "mlflow", "modal", "mypy",
    "mysql-connector-python", "networkx", "neuralprophet", "nltk", "numba", "numpy", "openai", "opencv-python", "optuna", "panel",
    "pandas", "pendulum", "poetry", "polars", "prefect", "prophet", "psycopg2", "pillow", "pyarrow", "pydeck",
    "pyjwt", "pylint", "pymongo", "pymupdf", "pyproj", "pypdf", "pypdf2", "pytest", "python-dateutil", "pytorch-lightning",
    "ray", "ragas", "rapidsai-cuda11x",  # optional: GPU dataframe ops
    "redis", "reportlab", "requests", "rich", "ruff", "schedule", "scikit-image", "scikit-learn", "scrapy", "scipy",
    "seaborn", "sentence-transformers", "shap", "shapely", "sqlite-web", "sqlalchemy", "starlette", "statsmodels", "streamlit",
    "sympy", "tensorflow", "torch", "transformers", "tqdm", "typer", "vllm", "wandb", "watchdog", "xgboost",
}})
    )
    if name in ALLOWED_MODULES:
        return _original_builtins['__import__'](name, *args, **kwargs)
    raise ImportError(f"Module {{name!r}} is not allowed in this environment")

_safe_builtins['__import__'] = safe_import

try:
{self._indent_code(code)}
except Exception as e:
    print(f"Error: {{e}}", file=sys.stderr)
    traceback.print_exc()
"""
            return safety_shim
        except Exception as e:
            logger.error(f"Failed to add safety shim: {str(e)}")
            raise CodeExecutionError(f"Failed to prepare safe code execution: {str(e)}")

    def _indent_code(self, code: str, indent: int = 4) -> str:
        return "\n".join((" " * indent) + line if line.strip() else "" for line in code.splitlines())

    
    @with_performance_tracking("async_code_execution")
    @rate_limited("modal")
    async def run_code_async(self, code_or_obj) -> str:
        """
        Execute Python code or a code object in a Modal sandbox asynchronously.
        This method supports both string code and compiled code objects, ensuring
        that the code is executed in a secure, isolated environment with safety checks.
        Args:
            code_or_obj (str or types.CodeType): The Python code to execute, either as a string
                                                 or a compiled code object
        Returns:
            str: The output of the executed code, including any print statements
        """
        await self._ensure_pool_initialized()
        
        if isinstance(code_or_obj, str):
            payload = code_or_obj
        elif isinstance(code_or_obj, types.CodeType):
            b64 = base64.b64encode(marshal.dumps(code_or_obj)).decode()
            payload = textwrap.dedent(f"""
                import base64, marshal, types, traceback
                code = marshal.loads(base64.b64decode({b64!r}))
                try:
                    exec(code, {{'__name__': '__main__'}})
                except Exception:
                    traceback.print_exc()
            """).lstrip()
        else:
            raise CodeExecutionError("Input must be str or types.CodeType")

        # Analyze code for required packages
        start_analysis = time.time()
        required_packages = self._analyze_code_dependencies(payload)
        analysis_time = time.time() - start_analysis
        if analysis_time > 0.1:  # Only log if analysis takes significant time
            logger.info(f"Code dependency analysis took {analysis_time:.2f}s")

        # Add safety shim
        safe_code = self._add_safety_shim(payload)
        filename = "temp_user_code.py"
        write_cmd = f"cat > {filename} <<'EOF'\n{safe_code}\nEOF"

        try:
            async with self.sandbox_pool.get_sandbox() as sb:
                try:
                    # Install additional packages if needed
                    if required_packages:
                        install_start = time.time()
                        await self._install_packages_in_sandbox(sb, required_packages)
                        install_time = time.time() - install_start
                        logger.info(f"Package installation took {install_time:.2f}s")

                    logger.info(f"Writing code to sandbox file: {filename}")
                    sb.exec("bash", "-c", write_cmd)
                    logger.info(f"Executing code from file: {filename}")
                    exec_start = time.time()
                    proc = sb.exec("python", filename)
                    exec_time = time.time() - exec_start
                    logger.info(f"Code execution took {exec_time:.2f}s")
                    
                    output = ""
                    if hasattr(proc, "stdout") and hasattr(proc.stdout, "read"):
                        output = proc.stdout.read()
                        if hasattr(proc, "stderr") and hasattr(proc.stderr, "read"):
                            output += proc.stderr.read()
                    else:
                        output = str(proc)
                    logger.info("Async code execution completed successfully (warm pool)")
                    return output
                except Exception as e:
                    if "finished" in str(e) or "NOT_FOUND" in str(e):
                        logger.warning(f"Sandbox died during use, terminating: {e}")
                        try:
                            result = sb.terminate()
                            if asyncio.iscoroutine(result):
                                await result
                        except Exception as term_e:
                            logger.warning(f"Failed to terminate sandbox after error: {term_e}")
                        async with self.sandbox_pool.get_sandbox() as new_sb:
                            # Re-install packages if needed for retry
                            if required_packages:
                                await self._install_packages_in_sandbox(new_sb, required_packages)
                            new_sb.exec("bash", "-c", write_cmd)
                            proc = new_sb.exec("python", filename)
                            output = ""
                            if hasattr(proc, "stdout") and hasattr(proc.stdout, "read"):
                                output = proc.stdout.read()
                                if hasattr(proc, "stderr") and hasattr(proc.stderr, "read"):
                                    output += proc.stderr.read()
                            else:
                                output = str(proc)
                        logger.info("Async code execution completed successfully on retry")
                        return output
                    else:
                        logger.error(f"Async code execution failed: {e}")
                        raise CodeExecutionError(f"Error executing code in Modal sandbox: {str(e)}")
        except CodeExecutionError:
            raise
        except asyncio.TimeoutError:
            logger.error("Async code execution timed out")
            raise CodeExecutionError("Code execution timed out after 30 seconds")
        except Exception as e:
            logger.error(f"Async code execution failed: {str(e)}")
            raise CodeExecutionError(f"Error executing code in Modal sandbox: {str(e)}")

    def _analyze_code_dependencies(self, code: str) -> List[str]:
        """Analyze code to determine what packages need to be installed."""
        try:
            from mcp_hub.package_utils import extract_imports_from_code, get_packages_to_install
            
            # Extract imports from the code
            detected_imports = extract_imports_from_code(code)
            logger.debug(f"Detected imports: {detected_imports}")
            
            # Determine what packages need to be installed
            packages_to_install = get_packages_to_install(detected_imports)
            
            if packages_to_install:
                logger.info(f"Additional packages needed: {packages_to_install}")
            else:
                logger.debug("No additional packages needed")
                
            return packages_to_install
            
        except Exception as e:
            logger.warning(f"Failed to analyze code dependencies: {e}")
            return []

    async def _install_packages_in_sandbox(self, sandbox: modal.Sandbox, packages: List[str]):
        """Install additional packages in the sandbox."""
        try:
            from mcp_hub.package_utils import create_package_install_command
            
            install_cmd = create_package_install_command(packages)
            if not install_cmd:
                return
                
            logger.info(f"Installing packages: {' '.join(packages)}")
            
            # Execute pip install command
            proc = await asyncio.get_event_loop().run_in_executor(
                None,
                lambda: sandbox.exec("bash", "-c", install_cmd, timeout=60)
            )
            
            # Check installation success
            if hasattr(proc, 'stdout') and hasattr(proc.stdout, 'read'):
                output = proc.stdout.read()
                if "Successfully installed" in output or "Requirement already satisfied" in output:
                    logger.info("Package installation completed successfully")
                else:
                    logger.warning(f"Package installation output: {output}")
            
        except Exception as e:
            logger.error(f"Failed to install packages {packages}: {e}")
            # Don't raise exception - continue with execution, packages might already be available

      
    @with_performance_tracking("sync_code_execution")
    @rate_limited("modal")
    def run_code(self, code_or_obj) -> str:
        """
        Execute Python code or a code object in a Modal sandbox synchronously.
        This method supports both string code and compiled code objects, ensuring
        that the code is executed in a secure, isolated environment with safety checks.
        Args:
            code_or_obj (str or types.CodeType): The Python code to execute, either as a string
                                                 or a compiled code object
        Returns:
            str: The output of the executed code, including any print statements
        """
        try:
            logger.info("Executing code synchronously in Modal sandbox")
            
            if isinstance(code_or_obj, str):
                payload = code_or_obj
            elif isinstance(code_or_obj, types.CodeType):
                b64 = base64.b64encode(marshal.dumps(code_or_obj)).decode()
                payload = textwrap.dedent(f"""
                    import base64, marshal, types, traceback
                    code = marshal.loads(base64.b64decode({b64!r}))
                    try:
                        exec(code, {{'__name__': '__main__'}})
                    except Exception:
                        traceback.print_exc()
                """).lstrip()
            else:
                raise CodeExecutionError("Input must be str or types.CodeType")
           
            # Add safety shim
            safe_code = self._add_safety_shim(payload)
            filename = "temp_user_code.py"
            write_cmd = f"cat > {filename} <<'EOF'\n{safe_code}\nEOF"
            
            # Create sandbox synchronously
            sb = None
            try:
                sb = modal.Sandbox.create(
                    app=self.app,
                    image=self.image,
                    cpu=2.0,
                    memory=1024,
                    timeout=35,
                )
                
                sb.exec("bash", "-c", write_cmd)
                proc = sb.exec("python", filename)
                output = ""

                if hasattr(proc, "stdout") and hasattr(proc.stdout, "read"):
                    output = proc.stdout.read()
                    if hasattr(proc, "stderr") and hasattr(proc.stderr, "read"):
                        output += proc.stderr.read()
                else:
                    output = str(proc)
                    
                logger.info("Sync code execution completed successfully")
                return output
                        

            except Exception as e:
                logger.warning(f"Error reading sandbox output: {e}")
                output = str(proc)

            logger.info("Sync code execution completed successfully")
            return output

        except CodeExecutionError:
            raise
        except Exception as e:
            logger.error(f"Sync code execution failed: {str(e)}")
            raise CodeExecutionError(f"Error executing code in Modal sandbox: {str(e)}")
    
    async def cleanup_pool(self):
        """Cleanup the sandbox pool when shutting down."""
        if self.sandbox_pool and self._pool_initialized:
            await self.sandbox_pool.stop()
            logger.info("Sandbox pool cleaned up")

class OrchestratorAgent:
    """
    Main orchestrator that coordinates all agents for the complete workflow.

    This agent manages the end-to-end workflow by coordinating question enhancement,
    web search, LLM processing, citation formatting, code generation, and code execution.
    It provides the primary interface for complex multi-step AI-assisted tasks.
    """
    
    def __init__(self):
        self.question_enhancer = QuestionEnhancerAgent()
        self.web_search = WebSearchAgent()
        self.llm_processor = LLMProcessorAgent()
        self.citation_formatter = CitationFormatterAgent()
        self.code_generator = CodeGeneratorAgent()
        self.code_runner = CodeRunnerAgent()
    
    def orchestrate(self, user_request: str) -> tuple[Dict[str, Any], str]:
        """
        Orchestrate the complete workflow: enhance question → search → generate code → execute.

        Manages the full AI-assisted workflow by coordinating all agents to provide
        comprehensive research, code generation, and execution. Returns both structured
        data and natural language summaries of the complete process.

        Args:
            user_request (str): The user's original request or question

        Returns:
            tuple[Dict[str, Any], str]: A tuple containing the complete result dictionary
                                       and a natural language summary of the process
        """
        try:
            logger.info(f"Starting orchestration for: {user_request[:100]}...")
            
            # Step 1: Enhance the question
            logger.info("Step 1: Enhancing question...")
            enhanced_result = self.question_enhancer.enhance_question(user_request, num_questions=3)
            sub_questions = enhanced_result.get('sub_questions', [user_request])
              # Step 2: Search for information
            logger.info("Step 2: Searching for information...")
            search_results = []            
            search_summaries = []
            
            for i, question in enumerate(sub_questions[:2]):  # Limit to 2 questions to avoid too many searches
                logger.info(f"Processing question {i+1}: {question}")
                try:
                    search_result = self.web_search.search(question)
                    logger.info(f"Search result for question {i+1}: {search_result}")

                    # Extract results and summary regardless of status key
                    results = search_result.get('results', [])
                    summary = search_result.get('tavily_answer', search_result.get('summary', ''))

                    if results or summary:  # Treat as success if any results or summary found
                        logger.info(f"Question {i+1} - Found {len(results)} results")
                        logger.info(f"Question {i+1} - Summary: {summary[:100]}...")

                        # Add to collections
                        search_results.extend(results)
                        search_summaries.append(summary)

                        logger.info(f"Question {i+1} - Successfully added {len(results)} results to collection")
                        logger.info(f"Question {i+1} - Current total search_results: {len(search_results)}")
                        logger.info(f"Question {i+1} - Current total search_summaries: {len(search_summaries)}")
                    else:
                        error_msg = search_result.get('error', 'Unknown error or no results returned') 
                        logger.warning(f"Search failed for question {i+1}: {error_msg}")

                except Exception as e:
                    logger.error(f"Exception during search for question '{question}': {e}")
                    import traceback
                    logger.error(f"Traceback: {traceback.format_exc()}")
            
            logger.info(f"Total search results collected: {len(search_results)}")
            logger.info(f"Total search summaries: {len(search_summaries)}")
            for i, result in enumerate(search_results[:3]):
                logger.info(f"Search result {i+1}: {result.get('title', 'No title')[:50]}...")
            
            # Step 3: Create grounded context
            logger.info("Step 3: Creating grounded context...")
            grounded_context = ""
            if search_results:
                # Combine search results into context
                context_parts = []
                for result in search_results[:5]:  # Limit to top 5 results
                    context_parts.append(f"Title: {result.get('title', 'N/A')}")
                    context_parts.append(f"Content: {result.get('content', 'N/A')}")
                    context_parts.append(f"URL: {result.get('url', 'N/A')}")
                    context_parts.append("---")
                
                grounded_context = "\n".join(context_parts)
            
            # If no search results, use a generic context
            if not grounded_context:
                grounded_context = f"User request: {user_request}\nNo additional web search context available."
              # Step 4: Generate code
            logger.info("Step 4: Generating code...")
            logger.info(f"Grounded context length: {len(grounded_context)}")
            code_result, code_summary = self.code_generator.generate_code(user_request, grounded_context)
            logger.info(f"Code generation result: {code_result}")
            logger.info(f"Code generation summary: {code_summary[:200]}...")
            
            code_string = ""
            if code_result.get('status') == 'success':
                # Use raw_output (string) for display, generated_code (compiled) for execution
                code_string = code_summary  # This is the raw string output
                logger.info(f"Successfully extracted code_string with length: {len(code_string)}")
                logger.info(f"Code preview: {code_string[:200]}...")
            else:
                logger.warning(f"Code generation failed: {code_result.get('error', 'Unknown error')}")
            
            # Step 5: Execute code if available
            execution_output = ""
            if code_string:
                logger.info("Step 5: Executing code...")
                try:
                    # Use async execution for better performance
                    import asyncio
                    execution_output = asyncio.run(self.code_runner.run_code_async(code_string))
                except Exception as e:
                    execution_output = f"Execution failed: {str(e)}"
                    logger.warning(f"Code execution failed: {e}")
            
            # Step 6: Format citations
            logger.info("Step 6: Formatting citations...")
            citations = []
            for result in search_results:
                if result.get('url'):
                    citations.append(f"{result.get('title', 'Untitled')} - {result.get('url')}")
              # Compile final result
            logger.info("=== PRE-FINAL RESULT DEBUG ===")
            logger.info(f"search_results length: {len(search_results)}")
            logger.info(f"search_summaries length: {len(search_summaries)}")
            logger.info(f"code_string length: {len(code_string)}")
            logger.info(f"execution_output length: {len(execution_output)}")
            logger.info(f"citations length: {len(citations)}")
            

            logger.info("=== GENERATING EXECUTIVE SUMMARY ===")
            # Sample first search result
            if search_results:
                logger.info(f"First search result: {search_results[0]}")

            prompt = f"""
            The user asked about {user_request} which yielded this summary: {search_summaries} 
            
            During the orchestration, you generated the following code: {code_string}

            The code was executed in a secure sandbox environment, and the output was <executed_code>{execution_output}</executed_code>.

            If there was no output in the executed_code tags, please state how to answer the user's request showing the code required.
            State that the code you are giving them has not been executed, and that they should run it in their own environment.

            Please provide a short and concise summary of the code that you wrote, including the user request, the summaries provided and the code generated.
            Explain how the code addresses the user's request, what it does, and any important details about its execution.

            Touch upon the other methods available that were found in the search results, and how they relate to the user's request.
            
            Please return the result in natural language only, without any code blocks, unless as stated above, there was no code executed in the sandbox and then you should give them the code
            as a code block.
            References to code can be made to explain why particular code has been used regardless of sandbox execution, e.g. discuss why the LinerRegression module was used  from scikit-learn etc.
            
            If no code was generated, apologise, please state that clearly the code generation failed in the sandbox, this could be due to restriction
            or the code being too complex for the sandbox to handle.

            Note, if appropriate, indicate how the code can be modified to include human input etc. as this is a banned keyword in the sandbox.

            The response should be directed at the user, in a friendly and helpful manner, as if you were a human assistant helping the user with their request.

            **Summary Requirements:**

            - The summary should be concise, no more than 500 words.
            - It should clearly explain how the code addresses the user's request.
            - It should only include code if there was no execution output, and then it should be in a code block. (if there is executed_code, this will be returned by
            another process and therefor you dont need to do it here)
            - The summary should be written in a friendly and helpful tone, as if you were a human assistant helping the user with their request.

            """

            messages = [{"role": "user", 
                         "content": prompt}]
            
            logger.info(f"LLM provider is: {api_config.llm_provider}, model used: {model_config.get_model_for_provider('llm_processor', api_config.llm_provider)}")
            # Last call to LLM to summarize the entire orchestration
            overall_summary = make_llm_completion(
                model=model_config.get_model_for_provider("llm_processor", api_config.llm_provider),
                messages=messages,
                temperature=app_config.llm_temperature
            )            
            logger.info("Overall summary generated:")
            
            final_result = {
                "status": "success",
                "user_request": user_request,
                "sub_questions": sub_questions,
                "search_results": search_results[:5],
                "search_summaries": search_summaries,
                "code_string": code_string,
                "execution_output": execution_output,
                "citations": citations,
                "final_summary": f"{overall_summary}",
                "message": "Orchestration completed successfully"
            }
            
            # Create clean summary for display
            final_narrative = f"## 🎯 Request: {user_request}\n\n{overall_summary}"
            
            logger.info("Orchestration completed successfully")
            return final_result, final_narrative
            
        except (ValidationError, APIError, CodeGenerationError) as e:
            logger.error(f"Orchestration failed: {str(e)}")
            # Create execution log for error case
            execution_log = f"Error during orchestration: {str(e)}"
            return {"error": str(e), "execution_log": execution_log}, str(e)
        except Exception as e:
            logger.error(f"Unexpected error in orchestration: {str(e)}")
            # Create execution log for error case
            execution_log = f"Unexpected error: {str(e)}"
            return {"error": f"Unexpected error: {str(e)}", "execution_log": execution_log}, str(e)
    
    def _format_search_results(self, results):
        """Format search results into a combined text snippet."""
        formatted_parts = []
        for result in results:
            title = result.get('title', 'No title')
            content = result.get('content', 'No content')
            url = result.get('url', 'No URL')
            formatted_parts.append(f"Title: {title}\nContent: {content}\nURL: {url}\n---")
        
        return "\n".join(formatted_parts)
    
    async def _run_subquestion_async(self, sub_question: str, user_request: str) -> tuple:
        """Process a single sub-question asynchronously."""
        try:
            # Search
            search_result = await self.web_search.search_async(sub_question)
            if search_result.get("error"):
                logger.warning(f"Async search failed for sub-question: {search_result['error']}")
                return None, None
            
            # Format search results
            results = search_result.get("results", [])[:app_config.max_search_results]
            formatted_text = self._format_search_results(results)
            
            # Process search results
            llm_summary = await self.llm_processor.async_process(
                formatted_text, 
                "summarize", 
                f"Context of user request: {user_request}"
            )
            
            # Prepare result
            result_data = {
                "status": "success",
                "sub_question": sub_question,
                "user_request": user_request,
                "search_results": results,
                "search_summary": llm_summary.get('llm_processed_output', '')
            }
            
            # Create summary parts
            summary_parts = []
            summary_parts.append(f"## Subquestion: {sub_question}")
            summary_parts.append("### Research Summary:")
            summary_parts.append(llm_summary.get('llm_processed_output', 'No summary available'))
            
            # Add sources if available
            citations = []
            for result in results:
                if result.get('url'):
                    citations.append(f"{result.get('title', 'Untitled')} - {result.get('url')}")
            
            if citations:
                summary_parts.append("### Sources:")
                for i, citation in enumerate(citations, 1):
                    summary_parts.append(f"{i}. {citation}")
            
            clean_summary = "\n\n".join(summary_parts)
            
            logger.info("Subquestion processing completed successfully")
            return result_data, clean_summary
            
        except Exception as e:
            logger.error(f"Subquestion processing failed: {e}")
            error_result = {
                "status": "error",
                "user_request": user_request,
                "sub_question": sub_question,
                "error": str(e),
                "message": "Subquestion processing failed"
            }
            return error_result, f"❌ Error: {str(e)}"

# Initialize individual agents
question_enhancer = QuestionEnhancerAgent()
web_search = WebSearchAgent()
llm_processor = LLMProcessorAgent()
citation_formatter = CitationFormatterAgent()
code_generator = CodeGeneratorAgent()
code_runner = CodeRunnerAgent()

# Initialize orchestrator
orchestrator = OrchestratorAgent()

# ----------------------------------------
# Advanced Feature Functions
# ----------------------------------------

# Wrapper functions for backward compatibility with existing Gradio interface
def agent_orchestrator(user_request: str) -> tuple:
    """
    Wrapper for OrchestratorAgent with async-first approach and sync fallback.

    Provides a unified interface to the orchestrator that attempts async execution
    for better performance and falls back to synchronous execution if needed.
    Handles event loop management and thread pooling automatically.

    Args:
        user_request (str): The user's request to be processed

    Returns:
        tuple: A tuple containing the orchestration result and summary
    """
    try:
        # Try async orchestration first for better performance
        if hasattr(orchestrator, "orchestrate_async"):
            try:
                # Check if we're in an async context
                loop = asyncio.get_event_loop()
                if loop.is_running():
                    # If loop is already running (like in Gradio), we need to handle this differently
                    # Use asyncio.run_coroutine_threadsafe or run in thread pool
                    import concurrent.futures
                    
                    def run_async_in_thread():
                        # Create a new event loop for this thread
                        new_loop = asyncio.new_event_loop()
                        asyncio.set_event_loop(new_loop)
                        try:
                            return new_loop.run_until_complete(orchestrator.orchestrate_async(user_request))
                        finally:
                            new_loop.close()
                    
                    with concurrent.futures.ThreadPoolExecutor() as executor:
                        future = executor.submit(run_async_in_thread)
                        result = future.result()
                else:
                    # No loop running, safe to use run_until_complete
                    result = loop.run_until_complete(orchestrator.orchestrate_async(user_request))
                
                logger.info("Successfully used async orchestration")
                return result
                
            except RuntimeError as e:
                if "cannot be called from a running event loop" in str(e):
                    logger.warning("Cannot use asyncio.run from running event loop, trying thread approach")
                    # Fallback: run in a separate thread
                    import concurrent.futures
                    
                    def run_async_in_thread():
                        new_loop = asyncio.new_event_loop()
                        asyncio.set_event_loop(new_loop)
                        try:
                            return new_loop.run_until_complete(orchestrator.orchestrate_async(user_request))
                        finally:
                            new_loop.close()
                    
                    with concurrent.futures.ThreadPoolExecutor() as executor:
                        future = executor.submit(run_async_in_thread)
                        return future.result()
                else:
                    raise
                    
    except Exception as e:
        logger.warning(f"Async orchestration failed: {e}. Falling back to sync.")
    
    # Fallback to synchronous orchestration
    logger.info("Using synchronous orchestration as fallback")
    return orchestrator.orchestrate(user_request)

def agent_orchestrator_dual_output(user_request: str) -> tuple:
    """Wrapper for OrchestratorAgent that returns both JSON and natural language output.
    Provides a unified interface to the orchestrator that returns structured data
    and a natural language summary of the orchestration process.
    Args:
        user_request (str): The user's request to be processed
    
    Returns:
            tuple: A tuple containing the orchestration result as a JSON dictionary
                   and a natural language summary of the process
    """
    result = orchestrator.orchestrate(user_request)
    
    # Extract the natural language summary from the result
    if isinstance(result, tuple) and len(result) > 0:
        json_result = result[0] if result[0] else {}
        
        # Create a natural language summary
        if isinstance(json_result, dict):
            summary = json_result.get('final_summary', '')
            if not summary:
                summary = json_result.get('summary', '')
            if not summary and 'code_output' in json_result:
                summary = f"Code executed successfully. Output: {json_result.get('code_output', {}).get('output', 'No output')}"
            if not summary:
                summary = "Process completed successfully."
        else:
            summary = "Process completed successfully."
    else:
        summary = "No results available."
        json_result = {}
    
    # Start warmup in background thread using the start_sandbox_warmup function
    start_sandbox_warmup()
    
    return json_result, summary

# ----------------------------------------
# Advanced Feature Functions
# ----------------------------------------

def get_health_status() -> Dict[str, Any]:
    """
    Get comprehensive system health status including advanced monitoring features.

    Retrieves detailed health information about the system including availability
    of advanced features, system resources, and operational metrics. Returns
    basic information if advanced monitoring is not available.

    Returns:
        Dict[str, Any]: A dictionary containing system health status and metrics
    """
    if not ADVANCED_FEATURES_AVAILABLE:
        return {
            "status": "basic_mode",
            "message": "Advanced features not available. Install 'pip install psutil aiohttp' to enable health monitoring.",
            "system_info": {
                "python_version": f"{types.__module__}",
                "gradio_available": True,
                "modal_available": True
            }
        }
    
    try:
        return health_monitor.get_health_stats()
    except Exception as e:
        return {"error": f"Health monitoring failed: {str(e)}"}

def get_performance_metrics() -> Dict[str, Any]:
    """
    Get performance metrics and analytics for the MCP Hub system.

    Collects and returns performance metrics including execution times,
    success rates, error counts, and resource utilization. Provides
    basic information if advanced metrics collection is not available.

    Returns:
        Dict[str, Any]: A dictionary containing performance metrics and statistics
    """
    if not ADVANCED_FEATURES_AVAILABLE:
        return {
            "status": "basic_mode", 
            "message": "Performance metrics not available. Install 'pip install psutil aiohttp' to enable advanced monitoring.",
            "basic_info": {
                "system_working": True,
                "features_loaded": False
            }
        }
    try:
        return metrics_collector.get_metrics_summary()
    except Exception as e:
        return {"error": f"Performance metrics failed: {str(e)}"}

def get_cache_status() -> Dict[str, Any]:
    """Get cache status and statistics."""
    if not ADVANCED_FEATURES_AVAILABLE:
        return {
            "status": "basic_mode",
            "message": "Cache monitoring not available. Install 'pip install psutil aiohttp' to enable cache statistics.",
            "cache_info": {
                "caching_available": False,
                "recommendation": "Install advanced features for intelligent caching"
            }
        }
    
    try:
        from mcp_hub.cache_utils import cache_manager
        return cache_manager.get_cache_status()
    except Exception as e:
        return {"error": f"Cache status failed: {str(e)}"}

async def get_sandbox_pool_status() -> Dict[str, Any]:
    """Get sandbox pool status and statistics."""
    try:
        # Create a temporary code runner to get pool stats
        code_runner = CodeRunnerAgent()
        stats = await code_runner.get_pool_stats()
        
        # Add warmup status information
        pool_size = stats.get("pool_size", 0)
        target_size = stats.get("target_pool_size", 0)
        
        if pool_size == 0:
            status_message = "🔄 Sandbox environment is warming up... This may take up to 2 minutes for the first execution."
            status = "warming_up"
        elif pool_size < target_size:
            status_message = f"⚡ Sandbox pool partially ready ({pool_size}/{target_size} sandboxes). More sandboxes warming up..."
            status = "partially_ready"
        else:
            status_message = f"✅ Sandbox pool fully ready ({pool_size}/{target_size} sandboxes available)"
            status = "ready"
        
        return {
            "status": status,
            "sandbox_pool": stats,
            "message": status_message,
            "user_message": status_message
        }
    except Exception as e:
        return {
            "status": "error",
            "error": f"Failed to get sandbox pool status: {str(e)}",
            "message": "Sandbox pool may not be initialized yet",
            "user_message": "🔄 Code execution environment is starting up... Please wait a moment."
        }

def get_sandbox_pool_status_sync() -> Dict[str, Any]:
    """Synchronous wrapper for sandbox pool status."""
    try:
        import asyncio
        return asyncio.run(get_sandbox_pool_status())
    except Exception as e:
        return {"error": f"Failed to get sandbox pool status: {str(e)}"}

def start_sandbox_warmup():
    """Start background sandbox warmup task."""
    try:
        import asyncio
        import threading
        
        def warmup_task():
            loop = asyncio.new_event_loop()
            asyncio.set_event_loop(loop)
            try:
                # Create a code runner to initialize the pool
                code_runner = CodeRunnerAgent()
                loop.run_until_complete(code_runner._ensure_pool_initialized())
                logger.info("Sandbox pool warmed up successfully")
            except Exception as e:
                logger.warning(f"Failed to warm up sandbox pool: {e}")
            finally:
                loop.close()
        
        # Start warmup in background thread
        warmup_thread = threading.Thread(target=warmup_task, daemon=True)
        warmup_thread.start()
        logger.info("Started background sandbox warmup")
        
    except Exception as e:
        logger.warning(f"Failed to start sandbox warmup: {e}")

class IntelligentCacheManager:
    """
    Advanced caching system for MCP Hub operations with TTL and eviction policies.

    Provides intelligent caching capabilities with time-to-live (TTL) support,
    automatic eviction of expired entries, and comprehensive cache statistics.
    Optimizes performance by caching operation results and managing memory usage.
    """
    
    def __init__(self):
        self.cache = {}
        self.cache_stats = {
            'hits': 0,
            'misses': 0,
            'total_requests': 0
        }
        self.max_cache_size = 1000
        self.default_ttl = 3600  # 1 hour        
    def _generate_cache_key(self, operation: str, **kwargs) -> str:
        """
        Generate a unique cache key based on operation and parameters.

        Creates a deterministic cache key by combining the operation name with
        parameter values. Uses MD5 hashing to ensure consistent key generation
        while keeping keys manageable in size.

        Args:
            operation (str): The operation name to include in the cache key
            **kwargs: Parameter values to include in the key generation

        Returns:
            str: A unique cache key as an MD5 hash string
        """
        import hashlib
        key_data = f"{operation}:{json.dumps(kwargs, sort_keys=True)}"        
        return hashlib.md5(key_data.encode()).hexdigest()
    
    def get(self, operation: str, **kwargs):
        """
        Retrieve cached data for a specific operation with automatic cleanup.

        Fetches cached data for the given operation and parameters. Automatically
        removes expired entries and updates cache statistics. Returns None if no
        valid cached data is found.

        Args:
            operation (str): The operation name to look up in cache
            **kwargs: Parameter values used to generate the cache key

        Returns:
            Any: The cached data if found and valid, otherwise None
        """
        cache_key = self._generate_cache_key(operation, **kwargs)
        self.cache_stats['total_requests'] += 1
        
        if cache_key in self.cache:
            entry = self.cache[cache_key]
            current_time = time.time()
            
            if current_time < entry['expires_at']:
                self.cache_stats['hits'] += 1
                logger.info(f"Cache hit for operation: {operation}")
                return entry['data']
            else:
                # Remove expired entry
                del self.cache[cache_key]
        
        self.cache_stats['misses'] += 1
        return None
    
    def set(self, operation: str, data: Any, ttl: int = None, **kwargs):
        """Cache the result with TTL."""
        cache_key = self._generate_cache_key(operation, **kwargs)
        expires_at = time.time() + (ttl or self.default_ttl)
        
        # Remove oldest entries if cache is full
        if len(self.cache) >= self.max_cache_size:
            self._evict_oldest_entries(int(self.max_cache_size * 0.1))
        
        self.cache[cache_key] = {
            'data': data,
            'expires_at': expires_at,
            'created_at': time.time()
        }
        logger.info(f"Cached result for operation: {operation}")
    
    def _evict_oldest_entries(self, count: int):
        """Remove the oldest entries from cache."""
        sorted_items = sorted(
            self.cache.items(),
            key=lambda x: x[1]['created_at']
        )
        for i in range(min(count, len(sorted_items))):
            del self.cache[sorted_items[i][0]]
    
    def get_stats(self) -> Dict[str, Any]:
        """Get cache performance statistics."""
        hit_rate = (self.cache_stats['hits'] / max(1, self.cache_stats['total_requests'])) * 100
        return {
            'cache_size': len(self.cache),
            'max_cache_size': self.max_cache_size,
            'hit_rate': round(hit_rate, 2),
            'total_hits': self.cache_stats['hits'],
            'total_misses': self.cache_stats['misses'],
            'total_requests': self.cache_stats['total_requests']
        }
    
    def clear(self):
        """Clear all cached entries."""
        self.cache.clear()
        logger.info("Cache cleared")


def agent_research_request(user_request):
    """
    This function researches a coding request from the user, generates code, executes it,
    and returns a clean summary of the results.

    This is an mcp server function that responds to research coding requests from users.

    Args:
        user_request (str): The user's request or question to be processed
    Returns:
        tuple: A tuple containing the JSON result from the orchestrator and a clean summary
    """
    # Get the full response (which is a tuple)
    orchestrator_result = agent_orchestrator(user_request)
    
    # Extract the JSON result (first element of tuple)
    if isinstance(orchestrator_result, tuple) and len(orchestrator_result) > 0:
        json_result = orchestrator_result[0]
    else:
        json_result = orchestrator_result
    
    # Extract and format the clean output
    clean_summary = ""
    if isinstance(json_result, dict):                
        if 'final_summary' in json_result:
            clean_summary += f"## 📋 Summary\n{json_result['final_summary']}\n\n"
        if 'code_string' in json_result and json_result['code_string']:
            clean_summary += f"## 💻 Generated Code\n```python\n{json_result['code_string']}\n```\n\n"
        
        if 'execution_output' in json_result and json_result['execution_output']:
            clean_summary += f"## ▶️ Execution Result\n```\n{json_result['execution_output']}\n```\n\n"
        
        if 'code_output' in json_result and json_result['code_output']:
            # Handle both string and dict formats for code_output
            code_output = json_result['code_output']
            if isinstance(code_output, dict):
                output = code_output.get('output', '')
            else:
                output = str(code_output)
            
            if output:
                clean_summary += f"## ▶️ Code Output\n```\n{output}\n```\n\n"
        
        if 'citations' in json_result and json_result['citations']:
            clean_summary += "## 📚 Sources\n"
            for i, citation in enumerate(json_result['citations'], 1):
                clean_summary += f"{i}. {citation}\n"
            clean_summary += "\n"
        
        if 'sub_questions' in json_result:
            clean_summary += "## 🔍 Research Questions Explored\n"
            for i, q in enumerate(json_result['sub_questions'], 1):
                clean_summary += f"{i}. {q}\n"
                
        # If we have sub-summaries, show them too
        if 'sub_summaries' in json_result and json_result['sub_summaries']:
            clean_summary += "\n## 📖 Research Summaries\n"
            for i, summary in enumerate(json_result['sub_summaries'], 1):
                clean_summary += f"### {i}. {summary}...\n"
    
    if not clean_summary:
        clean_summary = "## ⚠️ Processing Complete\nThe request was processed but no detailed results were generated."
    
    return json_result, clean_summary
# ----------------------------------------
# Gradio UI / MCP Server Setup
# ----------------------------------------

def agent_question_enhancer(user_request: str) -> dict:
    """
    Wrapper for QuestionEnhancerAgent to provide question enhancement.

    Args:
        user_request (str): The original user request to enhance

    Returns:
        dict: Enhanced question result with sub-questions
    """
    return question_enhancer.enhance_question(user_request, num_questions=2)

def agent_web_search(query: str) -> dict:
    """
    Wrapper for WebSearchAgent to perform web searches.

    Args:
        query (str): The search query to execute

    Returns:
        dict: Web search results with summaries and URLs
    """
    return web_search.search(query)

def agent_llm_processor(text_input: str, task: str, context: str | None = None) -> dict:
    """
    Wrapper for LLMProcessorAgent to process text with LLM.

    Args:
        text_input (str): The input text to process
        task (str): The processing task ('summarize', 'reason', or 'extract_keywords')
        context (str | None): Optional context for processing

    Returns:
        dict: LLM processing result with output and metadata
    """
    return llm_processor.process(text_input, task, context)

def agent_citation_formatter(text_block: str) -> dict:
    """
    Wrapper for CitationFormatterAgent to format citations.

    Args:
        text_block (str): The text containing URLs to cite

    Returns:
        dict: Formatted citations result with APA-style references
    """
    return citation_formatter.format_citations(text_block)

def agent_code_generator(user_request: str, grounded_context: str) -> tuple:
    """
    Wrapper for CodeGeneratorAgent to generate Python code.

    Args:
        user_request (str): The user's request for code generation
        grounded_context (str): Context information to guide generation

    Returns:
        tuple: A tuple containing the generation result and raw code
    """
    return code_generator.generate_code(user_request, grounded_context)

def code_runner_wrapper(code_or_obj) -> str:
    """
    Wrapper for CodeRunnerAgent that uses async execution with warm pool.

    Ensures a sandbox is spawned if not already present, waits for readiness,
    and then executes the code. Provides user-friendly error messages.

    Args:
        code_or_obj: The code string or object to be executed

    Returns:
        str: The execution result or user-friendly error message
    """
    try:
        import asyncio

        async def ensure_and_run():
            # Ensure the sandbox pool is initialized and ready
            await code_runner._ensure_pool_initialized()
            # Wait for at least one sandbox to be available
            pool_status = await get_sandbox_pool_status()
            user_message = pool_status.get("user_message", "")
            if pool_status.get("status") == "warming_up":
                return f"{user_message}\n\nPlease try again in a moment once the environment is ready."
            # Run the code in the sandbox
            return await code_runner.run_code_async(code_or_obj)

        return asyncio.run(ensure_and_run())

    except CodeExecutionError as e:
        error_msg = str(e)
        if "Failed to get sandbox" in error_msg or "timeout" in error_msg.lower():
            return (
                "🔄 The code execution environment is still starting up. Please wait a moment and try again.\n\n"
                "This is normal for the first execution after startup (can take 1-2 minutes)."
            )
        return error_msg
    except Exception as e:
        logger.error(f"Code runner wrapper error: {e}")
        return f"Error: {str(e)}"
    

def research_code(user_request: str) -> tuple:
    """
    This function serves as an MCP (Model Context Protocol) tool that orchestrates 
    comprehensive research and code generation workflows. It enhances user requests 
    through intelligent processing, performs web searches for relevant information, 
    generates appropriate code solutions, executes the code safely, and provides 
    clean, actionable summaries.
    The function is designed to be used as a tool within MCP frameworks, providing
    autonomous research capabilities that combine web search, code generation, and
    execution in a single workflow.
        user_request (str): The user's request, question, or problem statement to be 
                           processed. Can include coding problems, research questions, 
                           or requests for information gathering and analysis.
        tuple: A two-element tuple containing:
            - JSON result (dict): Structured data from the orchestrator containing 
              detailed research findings, generated code, execution results, and 
              metadata about the research process
            - Clean summary (str): A human-readable summary of the research findings 
              and generated solutions, formatted for easy consumption
    Example:
        >>> result, summary = research_code("How to implement a binary search in Python?")
        >>> print(summary)  # Clean explanation with code examples
        >>> print(result['code'])  # Generated code implementation
    Note:
        This function is optimized for use as an MCP tool and handles error cases
        gracefully, returning meaningful feedback even when research or code 
        generation encounters issues.
    """
    return agent_research_request(user_request)

CUSTOM_CSS = """
.app-title {
  text-align: center;
  font-family: 'Roboto', sans-serif;
  font-size: 3rem;
  font-weight: 700;
  letter-spacing: 1px;
  color: #10b981;
  text-shadow: 1px 1px 2px rgba(0,0,0,0.4);
  border-bottom: 4px solid #4f46e5;
  display: inline-block;
  padding-bottom: 0.5rem;
  margin: 2rem auto 1.5rem;
  max-width: 90%;
}
"""

# read the README.md file and convert it to a variable
with open("README.md", encoding="utf-8") as f:
    readme_content = f.read()


with gr.Blocks(title="Shallow Research Code Assistant Hub", 
               theme=gr.themes.Ocean(),
               fill_width=False,
               css=CUSTOM_CSS) as hub:
    
    with gr.Row():
        with gr.Column():
            gr.Markdown(
                """
                <h1 class="app-title" style="text-align: center; font-size: 2.5rem;">
                    Shallow Research Code Assistant Hub
                </h1>
                """,
                container=False,
            )

    with gr.Row():
        with gr.Column(scale=1, min_width=320):
            gr.Markdown(
                """
                <h2>Welcome</h2>
                This hub provides a streamlined interface for AI-assisted research and code generation.
                It integrates multiple agents to enhance your coding and research workflow.

                The application can be accessed via the MCP server at:
                <code>https://agents-mcp-hackathon-shallowcoderesearch.hf.space/gradio_api/mcp/sse</code>
                <br></br>
                """,
                container=True,
                height=200,
            )

        with gr.Column(scale=1, min_width=320):
            gr.Image(
                value="static/CodeAssist.png",
                label="MCP Hub Logo",
                height=200,
                show_label=False,
                elem_id="mcp_hub_logo"
            )
        
    gr.Markdown(
        """
        <h3>Agents And Flows:</h3>
        """
    )
    with gr.Tab("README", scale=1):
        gr.Markdown(
            f"""{readme_content[371:]}
            """)
    
    with gr.Tab("Orchestrator Flow", scale=1):
        gr.Markdown("## AI Research & Code Assistant")
        gr.Markdown("""
        **Workflow:** Splits into two or more sub-questions → Tavily search & summarization → Generate Python code → Execute via Modal → Return results with citations
        """)
        
        with gr.Row():
            with gr.Column(scale=1, min_width=320):
                input_textbox = gr.Textbox(
                    label="Your High-Level Request", lines=12,
                    placeholder="Describe the code you need or the research topic you want to explore…",
                )
                process_btn = gr.Button("🚀 Process Request", variant="primary", size="lg")

                json_output = gr.JSON(label="Complete Orchestrated Output", 
                                      container=True,
                                      height=300,
                                      )
            with gr.Column(scale=1, min_width=300):
                with gr.Accordion("🔎 Show detailed summary", open=True):
                    clean_output = gr.Markdown(label="Summary & Results")

        process_btn.click(
            fn=agent_research_request,
            inputs=[input_textbox],
            outputs=[json_output, clean_output],
        )

    with gr.Tab("Agent: Question Enhancer", scale=1):
        gr.Interface(
            fn=agent_question_enhancer,
            inputs=[
                gr.Textbox(
                    label="Original User Request",
                    lines=12,
                    placeholder="Enter your question to be split into 3 sub-questions…"
                )
            ],
            outputs=gr.JSON(label="Enhanced Sub-Questions",
            height=305),
            title="Question Enhancer Agent",
            description="Splits a single user query into 3 distinct sub-questions using Qwen models.",
            api_name="agent_question_enhancer_service",
        )

    with gr.Tab("Agent: Web Search", scale=1):
        gr.Interface(
            fn=agent_web_search,
            inputs=[gr.Textbox(label="Search Query", placeholder="Enter search term…", lines=12)],
            outputs=gr.JSON(label="Web Search Results (Tavily)", height=305),
            title="Web Search Agent",
            description="Perform a Tavily web search with configurable result limits.",
            api_name="agent_web_search_service",
        )

    with gr.Tab("Agent: LLM Processor", scale=1):
        gr.Interface(
            fn=agent_llm_processor,
            inputs=[
                gr.Textbox(label="Text to Process", lines=12, placeholder="Enter text for the LLM…"),
                gr.Dropdown(
                    choices=["summarize", "reason", "extract_keywords"],
                    value="summarize",
                    label="LLM Task",
                ),
                gr.Textbox(label="Optional Context", lines=12, placeholder="Background info…"),
            ],
            outputs=gr.JSON(label="LLM Processed Output", height=1200),
            title="LLM Processing Agent",
            description="Use configured LLM provider for text processing tasks.",
            api_name="agent_llm_processor_service",
        )

    with gr.Tab("Agent: Citation Formatter", scale=1):
        gr.Interface(
            fn=agent_citation_formatter,
            inputs=[gr.Textbox(label="Text Block with Citations", lines=12, placeholder="Enter text to format citations…")],
            outputs=gr.JSON(label="Formatted Citations", height=305),
            title="Citation Formatter Agent",
            description="Extracts and formats APA-style citations from text blocks.",
            api_name="agent_citation_formatter_service",
        )
    with gr.Tab("Agent: Code Generator", scale=1):
        gr.Interface(
            fn=agent_code_generator,
            inputs=[
                gr.Textbox(label="User Request", lines=12, placeholder="Describe the code you need…"),
                gr.Textbox(label="Grounded Context", lines=12, placeholder="Context for code generation…")
            ],
            outputs=gr.JSON(label="Generated Code", height=610),
            title="Code Generation Agent",
            description="Generates Python code based on user requests and context.",
            api_name="agent_code_generator_service",
        )
    with gr.Tab("Agent: Code Runner", scale=1):
        gr.Interface(
            fn=code_runner_wrapper,
            inputs=[gr.Textbox(label="Code to Execute", lines=12, placeholder="Enter Python code to run…")],
            outputs=gr.Textbox(label="Execution Output", lines=12),
            title="Code Runner Agent",
            description="Executes Python code in a secure environment and returns the output.",
            api_name="agent_code_runner_service",
        )

    with gr.Tab("Advanced Features", scale=1):
        gr.Markdown("## Advanced Features")
        gr.Markdown("""
        **Available Features**:
        - **Health Monitoring**: System health and performance metrics.
        - **Performance Analytics**: Detailed performance statistics.
        - **Intelligent Caching**: Advanced caching system for improved efficiency.
        - **Sandbox Pool Status**: Monitor warm sandbox pool performance and statistics.
        
        **Note**: Some features require additional dependencies. Install with `pip install psutil aiohttp` to enable all features.
        """)
        
        with gr.Row():
            health_btn = gr.Button("Get Health Status", variant="primary")
            metrics_btn = gr.Button("Get Performance Metrics", variant="primary")
            cache_btn = gr.Button("Get Cache Status", variant="primary")
            sandbox_btn = gr.Button("Get Sandbox Pool Status", variant="primary")
        
        health_output = gr.JSON(label="Health Status")
        metrics_output = gr.JSON(label="Performance Metrics")
        cache_output = gr.JSON(label="Cache Status")
        sandbox_output = gr.JSON(label="Sandbox Pool Status")
        
        health_btn.click(
            fn=get_health_status,
            inputs=[],
            outputs=health_output,
            api_name="get_health_status_service"
        )
        
        metrics_btn.click(
            fn=get_performance_metrics,
            inputs=[],
            outputs=metrics_output,
            api_name="get_performance_metrics_service"
        )
        
        cache_btn.click(
            fn=get_cache_status,
            inputs=[],
            outputs=cache_output,
            api_name="get_cache_status_service"
        )
        
        sandbox_btn.click(
            fn=get_sandbox_pool_status_sync,
            inputs=[],
            outputs=sandbox_output,
            api_name="get_sandbox_pool_status_service"
        )

# ----------------------------------------
# Main Entry Point
# ----------------------------------------
if __name__ == "__main__":
    import signal
    import atexit
    
    # Start the background warmup task for sandbox pool
    start_sandbox_warmup()
    
    # Register cleanup functions for graceful shutdown
    def cleanup_on_exit():
        """Cleanup function to run on exit."""
        try:
            import asyncio
            
            # Attempt to cleanup sandbox pool
            def run_cleanup():
                loop = asyncio.new_event_loop()
                asyncio.set_event_loop(loop)
                try:
                    code_runner = CodeRunnerAgent()
                    if code_runner._pool_initialized:
                        loop.run_until_complete(code_runner.cleanup_pool())
                        logger.info("Sandbox pool cleaned up on exit")
                except Exception as e:
                    logger.warning(f"Failed to cleanup sandbox pool on exit: {e}")
                finally:
                    loop.close()
            
            run_cleanup()
        except Exception as e:
            logger.warning(f"Error during cleanup: {e}")
    
    # Register cleanup handlers
    atexit.register(cleanup_on_exit)
    
    def signal_handler(signum, frame):
        """Handle shutdown signals."""
        logger.info(f"Received signal {signum}, initiating cleanup...")
        cleanup_on_exit()
        exit(0)
    
    signal.signal(signal.SIGINT, signal_handler)
    signal.signal(signal.SIGTERM, signal_handler) 
    
    try:
        hub.launch(
            mcp_server=True,
            server_name="0.0.0.0",
            server_port=7860,
            show_error=True,
            share=True
        )
    except KeyboardInterrupt:
        logger.info("Application interrupted by user")
        cleanup_on_exit()
    except Exception as e:
        logger.error(f"Application error: {e}")
        cleanup_on_exit()
        raise