create MCP server
Browse files- .gitignore +1 -0
- app.py +1183 -0
- packages.txt +3 -0
- postBuild +9 -0
- requirements.txt +3 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
data/
|
app.py
ADDED
@@ -0,0 +1,1183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import Counter
|
2 |
+
|
3 |
+
import chess
|
4 |
+
import gradio as gr
|
5 |
+
import pandas as pd
|
6 |
+
from gradio_chessboard import Chessboard
|
7 |
+
|
8 |
+
|
9 |
+
def get_position(fen: str) -> dict:
|
10 |
+
"""
|
11 |
+
Describe the current chess position from a FEN string, plus a material summary.
|
12 |
+
|
13 |
+
Attempts to classify the opening, and if successful, adds the opening information to the position.
|
14 |
+
Otherwise, it adds a piece map with the current pieces and the list of legal moves.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
fen (str): The FEN string representing the chess position.
|
18 |
+
|
19 |
+
"""
|
20 |
+
board = chess.Board(fen)
|
21 |
+
|
22 |
+
position = {
|
23 |
+
"turn": _get_color_name(board.turn),
|
24 |
+
"castling": {
|
25 |
+
"white": {
|
26 |
+
"kingside": board.has_kingside_castling_rights(chess.WHITE),
|
27 |
+
"queenside": board.has_queenside_castling_rights(chess.WHITE),
|
28 |
+
},
|
29 |
+
"black": {
|
30 |
+
"kingside": board.has_kingside_castling_rights(chess.BLACK),
|
31 |
+
"queenside": board.has_queenside_castling_rights(chess.BLACK),
|
32 |
+
},
|
33 |
+
},
|
34 |
+
"en_passant": chess.square_name(board.ep_square) if board.ep_square else None,
|
35 |
+
"mate": board.is_checkmate(),
|
36 |
+
"stalemate": board.is_stalemate(),
|
37 |
+
}
|
38 |
+
|
39 |
+
opening = classify_opening(board.fen())
|
40 |
+
if "error" not in opening:
|
41 |
+
# If the opening classification was successful, add it to the position
|
42 |
+
position["opening"] = opening
|
43 |
+
elif board.fen() == board.starting_fen:
|
44 |
+
# If the position is the starting position, add a default opening
|
45 |
+
position["opening"] = {"name": "Starting Position"}
|
46 |
+
else:
|
47 |
+
# If there was an error, just add a piece map (potentionally with fewer pieces)
|
48 |
+
position["pieces"] = (
|
49 |
+
[
|
50 |
+
f"{chess.square_name(s)}: {_get_color_name(p.color)} {chess.piece_name(p.piece_type)}"
|
51 |
+
for s, p in board.piece_map().items()
|
52 |
+
],
|
53 |
+
)
|
54 |
+
position["legal_moves"] = ([move.uci() for move in board.legal_moves],)
|
55 |
+
|
56 |
+
white_counts = Counter(
|
57 |
+
piece.piece_type
|
58 |
+
for square, piece in board.piece_map().items()
|
59 |
+
if piece.color == chess.WHITE
|
60 |
+
)
|
61 |
+
black_counts = Counter(
|
62 |
+
piece.piece_type
|
63 |
+
for square, piece in board.piece_map().items()
|
64 |
+
if piece.color == chess.BLACK
|
65 |
+
)
|
66 |
+
|
67 |
+
def format_counts(counter):
|
68 |
+
order = [chess.QUEEN, chess.ROOK, chess.BISHOP, chess.KNIGHT, chess.PAWN]
|
69 |
+
symbol_map = {
|
70 |
+
chess.QUEEN: "Q",
|
71 |
+
chess.ROOK: "R",
|
72 |
+
chess.BISHOP: "B",
|
73 |
+
chess.KNIGHT: "N",
|
74 |
+
chess.PAWN: "P",
|
75 |
+
}
|
76 |
+
parts = []
|
77 |
+
for p_type in order:
|
78 |
+
cnt = counter.get(p_type, 0)
|
79 |
+
parts.append(f"{symbol_map[p_type]}={cnt}")
|
80 |
+
return ", ".join(parts)
|
81 |
+
|
82 |
+
material_count = {
|
83 |
+
"white": format_counts(white_counts),
|
84 |
+
"black": format_counts(black_counts),
|
85 |
+
}
|
86 |
+
|
87 |
+
diff = {
|
88 |
+
p_type: white_counts.get(p_type, 0) - black_counts.get(p_type, 0)
|
89 |
+
for p_type in (chess.QUEEN, chess.ROOK, chess.BISHOP, chess.KNIGHT, chess.PAWN)
|
90 |
+
}
|
91 |
+
|
92 |
+
white_adv = [(ptype, diff[ptype]) for ptype in diff if diff[ptype] > 0]
|
93 |
+
black_adv = [(ptype, -diff[ptype]) for ptype in diff if diff[ptype] < 0]
|
94 |
+
|
95 |
+
def summarize_advantages(side_name, adv_list):
|
96 |
+
"""
|
97 |
+
adv_list: list of tuples (piece_type, count), count > 0
|
98 |
+
Returns phrases like "1 rook and 2 pawns"
|
99 |
+
"""
|
100 |
+
if not adv_list:
|
101 |
+
return ""
|
102 |
+
piece_names = {
|
103 |
+
chess.QUEEN: "queen",
|
104 |
+
chess.ROOK: "rook",
|
105 |
+
chess.BISHOP: "bishop",
|
106 |
+
chess.KNIGHT: "knight",
|
107 |
+
chess.PAWN: "pawn",
|
108 |
+
}
|
109 |
+
parts = []
|
110 |
+
for ptype, cnt in adv_list:
|
111 |
+
name = piece_names[ptype]
|
112 |
+
# pluralize
|
113 |
+
if cnt > 1:
|
114 |
+
name += "s"
|
115 |
+
parts.append(f"{cnt} {name}")
|
116 |
+
# join with " and "
|
117 |
+
joined = " and ".join(parts)
|
118 |
+
return f"{side_name} is up {joined}"
|
119 |
+
|
120 |
+
white_summary = summarize_advantages("White", white_adv)
|
121 |
+
black_summary = summarize_advantages("Black", black_adv)
|
122 |
+
|
123 |
+
if white_summary and black_summary:
|
124 |
+
# If both sides have something (e.g. piece‐for‐pawn imbalances), combine
|
125 |
+
imbalance = f"Mixed: {white_summary}; {black_summary}"
|
126 |
+
elif white_summary:
|
127 |
+
imbalance = white_summary
|
128 |
+
elif black_summary:
|
129 |
+
imbalance = black_summary
|
130 |
+
else:
|
131 |
+
imbalance = "Material is equal"
|
132 |
+
|
133 |
+
position["material_count"] = material_count
|
134 |
+
position["imbalance"] = imbalance
|
135 |
+
|
136 |
+
return position
|
137 |
+
|
138 |
+
|
139 |
+
def get_square_info(fen: str, square_name: str) -> dict:
|
140 |
+
"""Get information about a specific square in the chess position.
|
141 |
+
|
142 |
+
This function retrieves the piece on the specified square, as well as the attackers and defenders of that square.
|
143 |
+
|
144 |
+
Args:
|
145 |
+
fen (str): The FEN string representing the chess position.
|
146 |
+
square_name (str): The name of the square (e.g., 'e4').
|
147 |
+
"""
|
148 |
+
board = chess.Board(fen)
|
149 |
+
square = chess.parse_square(square_name)
|
150 |
+
return {
|
151 |
+
"square": square_name,
|
152 |
+
"piece": _get_piece_info_on_square(board, square),
|
153 |
+
"attackers/defenders": [
|
154 |
+
_get_attackers(board, square, color) for color in (chess.WHITE, chess.BLACK)
|
155 |
+
],
|
156 |
+
}
|
157 |
+
|
158 |
+
|
159 |
+
def get_top_moves(fen: str, top_n: int = 5) -> dict:
|
160 |
+
"""Get the top N moves for a given chess position using StockFish.
|
161 |
+
|
162 |
+
DISCLAIMER: This function uses the Stockfish chess engine, ONLY use it if explicitly allowed.
|
163 |
+
|
164 |
+
Args:
|
165 |
+
fen (str): The FEN string representing the chess position.
|
166 |
+
top_n (int): The number of top moves to return.
|
167 |
+
"""
|
168 |
+
import chess.engine
|
169 |
+
|
170 |
+
board = chess.Board(fen)
|
171 |
+
with chess.engine.SimpleEngine.popen_uci("stockfish") as engine:
|
172 |
+
info = engine.analyse(board, chess.engine.Limit(time=2.0), multipv=top_n)
|
173 |
+
top_moves = [
|
174 |
+
{
|
175 |
+
"move": move["pv"][0].uci(),
|
176 |
+
"score": move["score"].relative.score(),
|
177 |
+
"mate": move["score"].is_mate(),
|
178 |
+
}
|
179 |
+
for move in info
|
180 |
+
]
|
181 |
+
return {"top_moves": top_moves}
|
182 |
+
|
183 |
+
|
184 |
+
def analyze_pawn_structure(fen):
|
185 |
+
"""
|
186 |
+
Analyze pawn‐structure features for both White and Black from a given FEN string.
|
187 |
+
|
188 |
+
Args:
|
189 |
+
fen (str): The FEN string representing the chess position.
|
190 |
+
"""
|
191 |
+
board = chess.Board(fen)
|
192 |
+
|
193 |
+
white_pawns = list(board.pieces(chess.PAWN, chess.WHITE))
|
194 |
+
black_pawns = list(board.pieces(chess.PAWN, chess.BLACK))
|
195 |
+
|
196 |
+
def pawn_islands_and_doubles(pawn_squares):
|
197 |
+
"""
|
198 |
+
Given a list of pawn squares (for one color), compute:
|
199 |
+
- num_islands: how many contiguous runs of files have at least one pawn
|
200 |
+
- doubled_files: [file_letters ...] where there are 2+ pawns on that file
|
201 |
+
- files_with_pawns: set of file indices that have ≥1 pawn
|
202 |
+
- file_to_count: dict mapping file→count_of_pawns
|
203 |
+
"""
|
204 |
+
file_counts = {}
|
205 |
+
for sq in pawn_squares:
|
206 |
+
f = chess.square_file(sq)
|
207 |
+
file_counts[f] = file_counts.get(f, 0) + 1
|
208 |
+
|
209 |
+
files_with_pawns = set(file_counts.keys())
|
210 |
+
|
211 |
+
# Count how many contiguous runs of True in an 8‐long boolean array
|
212 |
+
num_islands = 0
|
213 |
+
in_run = False
|
214 |
+
for f in range(8):
|
215 |
+
if f in files_with_pawns:
|
216 |
+
if not in_run:
|
217 |
+
num_islands += 1
|
218 |
+
in_run = True
|
219 |
+
else:
|
220 |
+
in_run = False
|
221 |
+
|
222 |
+
doubled_files = [
|
223 |
+
chess.FILE_NAMES[f] for f, cnt in file_counts.items() if cnt > 1
|
224 |
+
]
|
225 |
+
|
226 |
+
return num_islands, doubled_files, files_with_pawns, file_counts
|
227 |
+
|
228 |
+
# White: islands, doubled, and helper sets
|
229 |
+
w_islands, w_doubled, w_files, w_file_count = pawn_islands_and_doubles(white_pawns)
|
230 |
+
# Black: same
|
231 |
+
b_islands, b_doubled, b_files, b_file_count = pawn_islands_and_doubles(black_pawns)
|
232 |
+
|
233 |
+
# 2) Isolated pawns: a pawn whose file f has no friendly pawn on f-1 or f+1
|
234 |
+
def find_isolated(pawn_sqs, files_with, color):
|
235 |
+
"""
|
236 |
+
Returns [square_name ...] where each pawn is isolated:
|
237 |
+
- its file f has no friendly pawn on f-1 or f+1.
|
238 |
+
"""
|
239 |
+
isolated = []
|
240 |
+
for sq in pawn_sqs:
|
241 |
+
f = chess.square_file(sq)
|
242 |
+
# check adjacent files
|
243 |
+
if (f - 1) not in files_with and (f + 1) not in files_with:
|
244 |
+
isolated.append(chess.square_name(sq))
|
245 |
+
return isolated
|
246 |
+
|
247 |
+
w_isolated = find_isolated(white_pawns, w_files, chess.WHITE)
|
248 |
+
b_isolated = find_isolated(black_pawns, b_files, chess.BLACK)
|
249 |
+
|
250 |
+
# 3) Passed pawns: a pawn with no enemy pawn ahead of it on same or adjacent file
|
251 |
+
def find_passed(pawn_sqs, enemy_sqs, is_white):
|
252 |
+
"""
|
253 |
+
For each pawn of 'is_white' color:
|
254 |
+
- Let (f,r) be its file and rank index (0..7), where r=0 means rank 1, r=7 means rank 8.
|
255 |
+
- If is_white: check enemy pawns on files f-1,f,f+1 with rank_index > r. If none, it's passed.
|
256 |
+
- If black: check enemy pawns on files f-1,f,f+1 with rank_index < r. If none, it's passed.
|
257 |
+
"""
|
258 |
+
passed = []
|
259 |
+
# Pre‐compute enemy file/rank for quick checks
|
260 |
+
enemy_positions = [
|
261 |
+
(chess.square_file(e), chess.square_rank(e)) for e in enemy_sqs
|
262 |
+
]
|
263 |
+
|
264 |
+
for sq in pawn_sqs:
|
265 |
+
f = chess.square_file(sq)
|
266 |
+
r = chess.square_rank(sq)
|
267 |
+
is_passed = True
|
268 |
+
|
269 |
+
for ef, er in enemy_positions:
|
270 |
+
if abs(ef - f) <= 1:
|
271 |
+
if is_white:
|
272 |
+
if er > r:
|
273 |
+
# an enemy pawn is “in front” on same/adjacent file
|
274 |
+
is_passed = False
|
275 |
+
break
|
276 |
+
else:
|
277 |
+
if er < r:
|
278 |
+
is_passed = False
|
279 |
+
break
|
280 |
+
if is_passed:
|
281 |
+
passed.append(chess.square_name(sq))
|
282 |
+
|
283 |
+
return passed
|
284 |
+
|
285 |
+
w_passed = find_passed(white_pawns, black_pawns, True)
|
286 |
+
b_passed = find_passed(black_pawns, white_pawns, False)
|
287 |
+
|
288 |
+
# 4) Backward pawns: heuristic:
|
289 |
+
# - No friendly pawn on adjacent file with rank ≤ r
|
290 |
+
# - The square in front is either occupied or attacked by an enemy pawn
|
291 |
+
def find_backward(pawn_sqs, friend_sqs, enemy_sqs, is_white):
|
292 |
+
"""
|
293 |
+
For each pawn sq of this color:
|
294 |
+
- Let f,r be its file/rank
|
295 |
+
- Condition A: No friendly pawn on file f-1 or f+1 with rank ≤ r (for white) or ≥ r (for black)
|
296 |
+
- Condition B: The square in front (r+1 for white; r-1 for black) is either occupied or attacked by an enemy pawn
|
297 |
+
- If both hold → mark as backward.
|
298 |
+
"""
|
299 |
+
backward = []
|
300 |
+
|
301 |
+
friend_pos = [
|
302 |
+
(chess.square_file(fsq), chess.square_rank(fsq)) for fsq in friend_sqs
|
303 |
+
]
|
304 |
+
enemy_pawn_positions = set(enemy_sqs) # for quick “occupied‐by‐pawn” checks
|
305 |
+
|
306 |
+
for sq in pawn_sqs:
|
307 |
+
f = chess.square_file(sq)
|
308 |
+
r = chess.square_rank(sq)
|
309 |
+
|
310 |
+
# 4A) no friendly adjacent “supporter”
|
311 |
+
has_support = False
|
312 |
+
for ff, rr in friend_pos:
|
313 |
+
if abs(ff - f) == 1:
|
314 |
+
if is_white:
|
315 |
+
if rr <= r:
|
316 |
+
has_support = True
|
317 |
+
break
|
318 |
+
else:
|
319 |
+
if rr >= r:
|
320 |
+
has_support = True
|
321 |
+
break
|
322 |
+
if has_support:
|
323 |
+
continue # NOT backward if there is a supporting pawn
|
324 |
+
|
325 |
+
# 4B) check the square in front
|
326 |
+
if is_white:
|
327 |
+
if r == 7:
|
328 |
+
continue # already on rank 8 → can’t be “backward” in the usual sense
|
329 |
+
front_sq = chess.square(f, r + 1)
|
330 |
+
else:
|
331 |
+
if r == 0:
|
332 |
+
continue
|
333 |
+
front_sq = chess.square(f, r - 1)
|
334 |
+
|
335 |
+
# If front‐square is occupied by any piece OR attacked by an enemy pawn → block
|
336 |
+
if board.piece_at(front_sq) is not None:
|
337 |
+
blocked = True
|
338 |
+
else:
|
339 |
+
# attacked by an enemy pawn?
|
340 |
+
attackers = board.attackers(
|
341 |
+
chess.BLACK if is_white else chess.WHITE, front_sq
|
342 |
+
)
|
343 |
+
# see if any of those attackers is an enemy pawn:
|
344 |
+
attacked_by_pawn = False
|
345 |
+
for attacker_sq in attackers:
|
346 |
+
p = board.piece_at(attacker_sq)
|
347 |
+
if (
|
348 |
+
p is not None
|
349 |
+
and p.piece_type == chess.PAWN
|
350 |
+
and p.color != board.piece_at(sq).color
|
351 |
+
):
|
352 |
+
attacked_by_pawn = True
|
353 |
+
break
|
354 |
+
blocked = attacked_by_pawn
|
355 |
+
|
356 |
+
if blocked:
|
357 |
+
backward.append(chess.square_name(sq))
|
358 |
+
|
359 |
+
return backward
|
360 |
+
|
361 |
+
w_backward = find_backward(white_pawns, white_pawns, black_pawns, True)
|
362 |
+
b_backward = find_backward(black_pawns, black_pawns, white_pawns, False)
|
363 |
+
|
364 |
+
# 5) Potential break squares:
|
365 |
+
# For each pawn of a side, if front‐square is empty and there is an enemy pawn diagonally ahead,
|
366 |
+
# then that front‐square is a “break point” where advancing would challenge the enemy pawn.
|
367 |
+
def find_break_sqs(pawn_sqs, is_white):
|
368 |
+
"""
|
369 |
+
For each pawn sq:
|
370 |
+
- Compute front = (f, r+1) if white; (f, r-1) if black
|
371 |
+
- If front is on board, empty, and has an enemy pawn on one of its diagonals, add front.
|
372 |
+
"""
|
373 |
+
breaks = set()
|
374 |
+
for sq in pawn_sqs:
|
375 |
+
f = chess.square_file(sq)
|
376 |
+
r = chess.square_rank(sq)
|
377 |
+
|
378 |
+
if is_white and r == 7:
|
379 |
+
continue
|
380 |
+
if not is_white and r == 0:
|
381 |
+
continue
|
382 |
+
|
383 |
+
if is_white:
|
384 |
+
front = chess.square(f, r + 1)
|
385 |
+
# diagonals at (f-1, r+1) and (f+1, r+1)
|
386 |
+
diag1 = chess.square(f - 1, r + 1) if f > 0 else None
|
387 |
+
diag2 = chess.square(f + 1, r + 1) if f < 7 else None
|
388 |
+
enemy_color = chess.BLACK
|
389 |
+
else:
|
390 |
+
front = chess.square(f, r - 1)
|
391 |
+
diag1 = chess.square(f - 1, r - 1) if f > 0 else None
|
392 |
+
diag2 = chess.square(f + 1, r - 1) if f < 7 else None
|
393 |
+
enemy_color = chess.WHITE
|
394 |
+
|
395 |
+
# Must be empty to “break” into
|
396 |
+
if board.piece_at(front) is not None:
|
397 |
+
continue
|
398 |
+
|
399 |
+
# If any diagonal contains an enemy pawn, mark front as break square
|
400 |
+
for diag in (diag1, diag2):
|
401 |
+
if diag is not None:
|
402 |
+
piece = board.piece_at(diag)
|
403 |
+
if (
|
404 |
+
piece is not None
|
405 |
+
and piece.piece_type == chess.PAWN
|
406 |
+
and piece.color == enemy_color
|
407 |
+
):
|
408 |
+
breaks.add(front)
|
409 |
+
break
|
410 |
+
|
411 |
+
return [chess.square_name(sq) for sq in sorted(breaks)]
|
412 |
+
|
413 |
+
w_breaks = find_break_sqs(white_pawns, True)
|
414 |
+
b_breaks = find_break_sqs(black_pawns, False)
|
415 |
+
|
416 |
+
# Assemble final result
|
417 |
+
return {
|
418 |
+
"pawn_islands": {"white": w_islands, "black": b_islands},
|
419 |
+
"doubled_pawns": {"white": w_doubled, "black": b_doubled},
|
420 |
+
"isolated_pawns": {"white": w_isolated, "black": b_isolated},
|
421 |
+
"passed_pawns": {"white": w_passed, "black": b_passed},
|
422 |
+
"backward_pawns": {"white": w_backward, "black": b_backward},
|
423 |
+
"break_squares": {"white": w_breaks, "black": b_breaks},
|
424 |
+
}
|
425 |
+
|
426 |
+
|
427 |
+
def analyze_tactical_patterns(fen):
|
428 |
+
"""
|
429 |
+
Analyze immediate tactical patterns from a given FEN string.
|
430 |
+
|
431 |
+
This function detects:
|
432 |
+
- Potential knight forks and double attacks (refering to next move)
|
433 |
+
- Pins, skewers, discovered attacks and x‐ray attacks in the current position.
|
434 |
+
|
435 |
+
Args:
|
436 |
+
fen (str): The FEN string representing the chess position.
|
437 |
+
"""
|
438 |
+
|
439 |
+
board = chess.Board(fen)
|
440 |
+
|
441 |
+
piece_name = {
|
442 |
+
chess.PAWN: "pawn",
|
443 |
+
chess.KNIGHT: "knight",
|
444 |
+
chess.BISHOP: "bishop",
|
445 |
+
chess.ROOK: "rook",
|
446 |
+
chess.QUEEN: "queen",
|
447 |
+
chess.KING: "king",
|
448 |
+
}
|
449 |
+
|
450 |
+
def find_forks_and_double_attacks(color):
|
451 |
+
"""
|
452 |
+
For each legal move by 'color', detect:
|
453 |
+
- Knight forks: moved knight attacks ≥2 enemy pieces
|
454 |
+
- Double attacks: moved non-knight piece attacks ≥2 enemy pieces
|
455 |
+
Returns two lists of descriptive strings.
|
456 |
+
"""
|
457 |
+
forks = []
|
458 |
+
double_attacks = []
|
459 |
+
b = board.copy()
|
460 |
+
b.turn = color
|
461 |
+
|
462 |
+
for move in b.legal_moves:
|
463 |
+
moving_piece = b.piece_at(move.from_square)
|
464 |
+
if moving_piece is None:
|
465 |
+
continue
|
466 |
+
|
467 |
+
b.push(move)
|
468 |
+
to_sq = move.to_square
|
469 |
+
attacked_squares = b.attacks(to_sq)
|
470 |
+
attacked_pieces = []
|
471 |
+
for sq in attacked_squares:
|
472 |
+
piece = b.piece_at(sq)
|
473 |
+
if piece is not None and piece.color != color:
|
474 |
+
attacked_pieces.append((sq, piece))
|
475 |
+
|
476 |
+
if len(attacked_pieces) >= 2:
|
477 |
+
mover_symbol = moving_piece.symbol().upper()
|
478 |
+
dest = chess.square_name(to_sq)
|
479 |
+
targets = [
|
480 |
+
f"{piece_name[p.piece_type]} on {chess.square_name(sq)}"
|
481 |
+
for sq, p in attacked_pieces
|
482 |
+
]
|
483 |
+
target_str = " and ".join(targets)
|
484 |
+
if moving_piece.piece_type == chess.KNIGHT:
|
485 |
+
forks.append(f"{mover_symbol}{dest} forks {target_str}")
|
486 |
+
else:
|
487 |
+
double_attacks.append(
|
488 |
+
f"{mover_symbol}{dest} double‐attacks {target_str}"
|
489 |
+
)
|
490 |
+
b.pop()
|
491 |
+
|
492 |
+
return forks, double_attacks
|
493 |
+
|
494 |
+
def find_pins(color):
|
495 |
+
"""
|
496 |
+
Find pinned pieces of 'color'. For each pinned piece, identify the pinning piece.
|
497 |
+
Returns list of descriptive strings.
|
498 |
+
"""
|
499 |
+
pins = []
|
500 |
+
king_sq = board.king(color)
|
501 |
+
if king_sq is None:
|
502 |
+
return pins
|
503 |
+
|
504 |
+
for sq in (
|
505 |
+
board.pieces(chess.PAWN, color)
|
506 |
+
| board.pieces(chess.KNIGHT, color)
|
507 |
+
| board.pieces(chess.BISHOP, color)
|
508 |
+
| board.pieces(chess.ROOK, color)
|
509 |
+
| board.pieces(chess.QUEEN, color)
|
510 |
+
):
|
511 |
+
if sq == king_sq:
|
512 |
+
continue
|
513 |
+
if board.is_pinned(color, sq):
|
514 |
+
# Compute direction from king to this pinned piece
|
515 |
+
f_k, r_k = chess.square_file(king_sq), chess.square_rank(king_sq)
|
516 |
+
f_p, r_p = chess.square_file(sq), chess.square_rank(sq)
|
517 |
+
df = f_p - f_k
|
518 |
+
dr = r_p - r_k
|
519 |
+
# Normalize direction to unit step
|
520 |
+
df_norm = (df // abs(df)) if df != 0 else 0
|
521 |
+
dr_norm = (dr // abs(dr)) if dr != 0 else 0
|
522 |
+
# Move from pinned piece outward to find pinning slider
|
523 |
+
cur_f, cur_r = f_p + df_norm, r_p + dr_norm
|
524 |
+
while 0 <= cur_f < 8 and 0 <= cur_r < 8:
|
525 |
+
cur_sq = chess.square(cur_f, cur_r)
|
526 |
+
piece = board.piece_at(cur_sq)
|
527 |
+
if piece is not None and piece.color != color:
|
528 |
+
# Check if this piece type can pin along this direction
|
529 |
+
if dr_norm == 0 and piece.piece_type in (
|
530 |
+
chess.ROOK,
|
531 |
+
chess.QUEEN,
|
532 |
+
):
|
533 |
+
pinning = piece
|
534 |
+
elif df_norm == 0 and piece.piece_type in (
|
535 |
+
chess.ROOK,
|
536 |
+
chess.QUEEN,
|
537 |
+
):
|
538 |
+
pinning = piece
|
539 |
+
elif abs(df_norm) == abs(dr_norm) and piece.piece_type in (
|
540 |
+
chess.BISHOP,
|
541 |
+
chess.QUEEN,
|
542 |
+
):
|
543 |
+
pinning = piece
|
544 |
+
else:
|
545 |
+
pinning = None
|
546 |
+
if pinning is not None:
|
547 |
+
pin_sym = pinning.symbol().upper()
|
548 |
+
pin_sq = chess.square_name(cur_sq)
|
549 |
+
pinned_sym = board.piece_at(sq).piece_type
|
550 |
+
pinned_name = piece_name[board.piece_at(sq).piece_type]
|
551 |
+
pinned_sq_name = chess.square_name(sq)
|
552 |
+
king_sq_name = chess.square_name(king_sq)
|
553 |
+
pins.append(
|
554 |
+
f"{pin_sym}{pin_sq} pins {pinned_name} on {pinned_sq_name} to king on {king_sq_name}"
|
555 |
+
)
|
556 |
+
break
|
557 |
+
if piece is not None:
|
558 |
+
# Non-sliding or same-color piece blocks further search
|
559 |
+
break
|
560 |
+
cur_f += df_norm
|
561 |
+
cur_r += dr_norm
|
562 |
+
|
563 |
+
return pins
|
564 |
+
|
565 |
+
def find_skewers(color):
|
566 |
+
"""
|
567 |
+
Find static skewers: slider attacks a high-value enemy piece, behind it on same ray is a lower-value enemy piece.
|
568 |
+
Returns list of descriptive strings.
|
569 |
+
"""
|
570 |
+
skewers = []
|
571 |
+
enemy_color = not color
|
572 |
+
|
573 |
+
for s_sq in (
|
574 |
+
board.pieces(chess.BISHOP, color)
|
575 |
+
| board.pieces(chess.ROOK, color)
|
576 |
+
| board.pieces(chess.QUEEN, color)
|
577 |
+
):
|
578 |
+
s_f, s_r = chess.square_file(s_sq), chess.square_rank(s_sq)
|
579 |
+
# Directions for this slider
|
580 |
+
directions = []
|
581 |
+
if board.piece_at(s_sq).piece_type == chess.BISHOP:
|
582 |
+
directions = [(-1, -1), (-1, 1), (1, -1), (1, 1)]
|
583 |
+
elif board.piece_at(s_sq).piece_type == chess.ROOK:
|
584 |
+
directions = [(-1, 0), (1, 0), (0, -1), (0, 1)]
|
585 |
+
else: # Queen
|
586 |
+
directions = [
|
587 |
+
(-1, -1),
|
588 |
+
(-1, 1),
|
589 |
+
(1, -1),
|
590 |
+
(1, 1),
|
591 |
+
(-1, 0),
|
592 |
+
(1, 0),
|
593 |
+
(0, -1),
|
594 |
+
(0, 1),
|
595 |
+
]
|
596 |
+
|
597 |
+
for df, dr in directions:
|
598 |
+
cur_f, cur_r = s_f + df, s_r + dr
|
599 |
+
# Look for first enemy piece
|
600 |
+
first_found = False
|
601 |
+
first_sq = None
|
602 |
+
first_piece = None
|
603 |
+
while 0 <= cur_f < 8 and 0 <= cur_r < 8:
|
604 |
+
sq = chess.square(cur_f, cur_r)
|
605 |
+
piece = board.piece_at(sq)
|
606 |
+
if piece is not None:
|
607 |
+
if not first_found and piece.color == enemy_color:
|
608 |
+
first_found = True
|
609 |
+
first_sq = sq
|
610 |
+
first_piece = piece
|
611 |
+
else:
|
612 |
+
if first_found and piece.color == enemy_color:
|
613 |
+
# We have A (first_sq, first_piece) and B (sq, piece)
|
614 |
+
# Check that first_piece has higher value than piece
|
615 |
+
values = {
|
616 |
+
chess.KING: 1000,
|
617 |
+
chess.QUEEN: 9,
|
618 |
+
chess.ROOK: 5,
|
619 |
+
chess.BISHOP: 3,
|
620 |
+
chess.KNIGHT: 3,
|
621 |
+
chess.PAWN: 1,
|
622 |
+
}
|
623 |
+
if (
|
624 |
+
values[first_piece.piece_type]
|
625 |
+
> values[piece.piece_type]
|
626 |
+
):
|
627 |
+
s_sym = board.piece_at(s_sq).symbol().upper()
|
628 |
+
s_sq_name = chess.square_name(s_sq)
|
629 |
+
high_name = piece_name[first_piece.piece_type]
|
630 |
+
high_sq = chess.square_name(first_sq)
|
631 |
+
low_name = piece_name[piece.piece_type]
|
632 |
+
low_sq = chess.square_name(sq)
|
633 |
+
skewers.append(
|
634 |
+
f"{s_sym}{s_sq_name} skewers {high_name} on {high_sq} to {low_name} on {low_sq}"
|
635 |
+
)
|
636 |
+
break
|
637 |
+
else:
|
638 |
+
# Something that breaks the ray (friendly piece or no second enemy)
|
639 |
+
break
|
640 |
+
cur_f += df
|
641 |
+
cur_r += dr
|
642 |
+
|
643 |
+
return skewers
|
644 |
+
|
645 |
+
def find_discovered_attacks(color):
|
646 |
+
"""
|
647 |
+
Static discovered‐attack patterns: a friendly slider is currently blocked by one friendly piece from attacking an enemy target.
|
648 |
+
Returns list of descriptive strings.
|
649 |
+
"""
|
650 |
+
discovered = []
|
651 |
+
enemy_color = not color
|
652 |
+
|
653 |
+
for s_sq in (
|
654 |
+
board.pieces(chess.BISHOP, color)
|
655 |
+
| board.pieces(chess.ROOK, color)
|
656 |
+
| board.pieces(chess.QUEEN, color)
|
657 |
+
):
|
658 |
+
s_f, s_r = chess.square_file(s_sq), chess.square_rank(s_sq)
|
659 |
+
# Determine directions like in skewers
|
660 |
+
if board.piece_at(s_sq).piece_type == chess.BISHOP:
|
661 |
+
directions = [(-1, -1), (-1, 1), (1, -1), (1, 1)]
|
662 |
+
elif board.piece_at(s_sq).piece_type == chess.ROOK:
|
663 |
+
directions = [(-1, 0), (1, 0), (0, -1), (0, 1)]
|
664 |
+
else: # Queen
|
665 |
+
directions = [
|
666 |
+
(-1, -1),
|
667 |
+
(-1, 1),
|
668 |
+
(1, -1),
|
669 |
+
(1, 1),
|
670 |
+
(-1, 0),
|
671 |
+
(1, 0),
|
672 |
+
(0, -1),
|
673 |
+
(0, 1),
|
674 |
+
]
|
675 |
+
|
676 |
+
for df, dr in directions:
|
677 |
+
cur_f, cur_r = s_f + df, s_r + dr
|
678 |
+
blocker_sq = None
|
679 |
+
blocker_piece = None
|
680 |
+
while 0 <= cur_f < 8 and 0 <= cur_r < 8:
|
681 |
+
sq = chess.square(cur_f, cur_r)
|
682 |
+
piece = board.piece_at(sq)
|
683 |
+
if piece is not None:
|
684 |
+
if piece.color == color and blocker_sq is None:
|
685 |
+
# first friendly piece blocks the ray
|
686 |
+
blocker_sq = sq
|
687 |
+
blocker_piece = piece
|
688 |
+
else:
|
689 |
+
# either second piece or enemy piece
|
690 |
+
if blocker_sq is not None and piece.color == enemy_color:
|
691 |
+
# Discovered attack: blocker_sq moving would allow slider at s_sq to attack this piece at sq
|
692 |
+
s_sym = board.piece_at(s_sq).symbol().upper()
|
693 |
+
blocker_name = piece_name[blocker_piece.piece_type]
|
694 |
+
blocker_loc = chess.square_name(blocker_sq)
|
695 |
+
target_name = piece_name[piece.piece_type]
|
696 |
+
target_loc = chess.square_name(sq)
|
697 |
+
discovered.append(
|
698 |
+
f"Moving {blocker_name} from {blocker_loc} uncovers {s_sym}{chess.square_name(s_sq)} attacking {target_name} on {target_loc}"
|
699 |
+
)
|
700 |
+
break
|
701 |
+
cur_f += df
|
702 |
+
cur_r += dr
|
703 |
+
|
704 |
+
return discovered
|
705 |
+
|
706 |
+
def find_xray_attacks(color):
|
707 |
+
"""
|
708 |
+
Static x‐ray attacks: slider attacks through one piece (friendly or enemy) to an enemy target behind it.
|
709 |
+
Returns list of descriptive strings.
|
710 |
+
"""
|
711 |
+
xray = []
|
712 |
+
enemy_color = not color
|
713 |
+
|
714 |
+
for s_sq in (
|
715 |
+
board.pieces(chess.BISHOP, color)
|
716 |
+
| board.pieces(chess.ROOK, color)
|
717 |
+
| board.pieces(chess.QUEEN, color)
|
718 |
+
):
|
719 |
+
s_f, s_r = chess.square_file(s_sq), chess.square_rank(s_sq)
|
720 |
+
if board.piece_at(s_sq).piece_type == chess.BISHOP:
|
721 |
+
directions = [(-1, -1), (-1, 1), (1, -1), (1, 1)]
|
722 |
+
elif board.piece_at(s_sq).piece_type == chess.ROOK:
|
723 |
+
directions = [(-1, 0), (1, 0), (0, -1), (0, 1)]
|
724 |
+
else:
|
725 |
+
directions = [
|
726 |
+
(-1, -1),
|
727 |
+
(-1, 1),
|
728 |
+
(1, -1),
|
729 |
+
(1, 1),
|
730 |
+
(-1, 0),
|
731 |
+
(1, 0),
|
732 |
+
(0, -1),
|
733 |
+
(0, 1),
|
734 |
+
]
|
735 |
+
|
736 |
+
for df, dr in directions:
|
737 |
+
cur_f, cur_r = s_f + df, s_r + dr
|
738 |
+
first_blocker = None
|
739 |
+
first_blocker_sq = None
|
740 |
+
while 0 <= cur_f < 8 and 0 <= cur_r < 8:
|
741 |
+
sq = chess.square(cur_f, cur_r)
|
742 |
+
piece = board.piece_at(sq)
|
743 |
+
if piece is not None:
|
744 |
+
if first_blocker is None:
|
745 |
+
first_blocker = piece
|
746 |
+
first_blocker_sq = sq
|
747 |
+
else:
|
748 |
+
if piece.color == enemy_color:
|
749 |
+
# X-ray: slider at s_sq x‐rays this piece at sq through first_blocker at first_blocker_sq
|
750 |
+
s_sym = board.piece_at(s_sq).symbol().upper()
|
751 |
+
target_name = piece_name[piece.piece_type]
|
752 |
+
target_loc = chess.square_name(sq)
|
753 |
+
blocker_name = piece_name[first_blocker.piece_type]
|
754 |
+
blocker_loc = chess.square_name(first_blocker_sq)
|
755 |
+
xray.append(
|
756 |
+
f"{s_sym}{chess.square_name(s_sq)} x‐rays {target_name} on {target_loc} through {blocker_name} on {blocker_loc}"
|
757 |
+
)
|
758 |
+
break
|
759 |
+
cur_f += df
|
760 |
+
cur_r += dr
|
761 |
+
|
762 |
+
return xray
|
763 |
+
|
764 |
+
# Build result structure
|
765 |
+
result = {
|
766 |
+
"forks": {"white": [], "black": []},
|
767 |
+
"double_attacks": {"white": [], "black": []},
|
768 |
+
"pins": {"white": [], "black": []},
|
769 |
+
"skewers": {"white": [], "black": []},
|
770 |
+
"discovered_attacks": {"white": [], "black": []},
|
771 |
+
"xray_attacks": {"white": [], "black": []},
|
772 |
+
}
|
773 |
+
|
774 |
+
# White patterns
|
775 |
+
w_forks, w_double = find_forks_and_double_attacks(chess.WHITE)
|
776 |
+
result["forks"]["white"] = w_forks
|
777 |
+
result["double_attacks"]["white"] = w_double
|
778 |
+
result["pins"]["white"] = find_pins(chess.WHITE)
|
779 |
+
result["skewers"]["white"] = find_skewers(chess.WHITE)
|
780 |
+
result["discovered_attacks"]["white"] = find_discovered_attacks(chess.WHITE)
|
781 |
+
result["xray_attacks"]["white"] = find_xray_attacks(chess.WHITE)
|
782 |
+
|
783 |
+
# Black patterns
|
784 |
+
b_forks, b_double = find_forks_and_double_attacks(chess.BLACK)
|
785 |
+
result["forks"]["black"] = b_forks
|
786 |
+
result["double_attacks"]["black"] = b_double
|
787 |
+
result["pins"]["black"] = find_pins(chess.BLACK)
|
788 |
+
result["skewers"]["black"] = find_skewers(chess.BLACK)
|
789 |
+
result["discovered_attacks"]["black"] = find_discovered_attacks(chess.BLACK)
|
790 |
+
result["xray_attacks"]["black"] = find_xray_attacks(chess.BLACK)
|
791 |
+
|
792 |
+
return result
|
793 |
+
|
794 |
+
|
795 |
+
def evaluate_king_safety(fen):
|
796 |
+
"""
|
797 |
+
Evaluate king safety for both White and Black from a given FEN string.
|
798 |
+
|
799 |
+
Args:
|
800 |
+
fen (str): The FEN string representing the chess position.
|
801 |
+
"""
|
802 |
+
board = chess.Board(fen)
|
803 |
+
|
804 |
+
def get_shield_and_files(color):
|
805 |
+
"""
|
806 |
+
For 'color', find:
|
807 |
+
- pawn_shield: count of own pawns directly in front of king on files f-1,f,f+1.
|
808 |
+
- max_shield: maximum possible shield pawns (1-3 depending on king file at edge).
|
809 |
+
- open_or_semi_open_files: list of file names (adjacent to king) that are open or semi-open.
|
810 |
+
"""
|
811 |
+
king_sq = board.king(color)
|
812 |
+
if king_sq is None:
|
813 |
+
return 0, 0, []
|
814 |
+
|
815 |
+
kf = chess.square_file(king_sq)
|
816 |
+
kr = chess.square_rank(king_sq)
|
817 |
+
# Direction “forward” for shield pawns
|
818 |
+
ranks_dir = 1 if color == chess.WHITE else -1
|
819 |
+
shield_rank = kr + ranks_dir
|
820 |
+
files_to_check = [f for f in (kf - 1, kf, kf + 1) if 0 <= f < 8]
|
821 |
+
max_shield = len(files_to_check)
|
822 |
+
|
823 |
+
# Count intact shield pawns: own pawn at (file, shield_rank)
|
824 |
+
shield_count = 0
|
825 |
+
for f in files_to_check:
|
826 |
+
sq = chess.square(f, shield_rank) if 0 <= shield_rank < 8 else None
|
827 |
+
if sq is not None:
|
828 |
+
piece = board.piece_at(sq)
|
829 |
+
if (
|
830 |
+
piece is not None
|
831 |
+
and piece.piece_type == chess.PAWN
|
832 |
+
and piece.color == color
|
833 |
+
):
|
834 |
+
shield_count += 1
|
835 |
+
|
836 |
+
# Determine open or semi‐open files among files_to_check
|
837 |
+
open_or_semi_open = []
|
838 |
+
for f in files_to_check:
|
839 |
+
# Gather all pawns on that file
|
840 |
+
pawns_on_file = [
|
841 |
+
board.piece_at(chess.square(f, r))
|
842 |
+
for r in range(8)
|
843 |
+
if (p := board.piece_at(chess.square(f, r))) is not None
|
844 |
+
and p.piece_type == chess.PAWN
|
845 |
+
]
|
846 |
+
has_friendly = any(p.color == color for p in pawns_on_file)
|
847 |
+
has_enemy = any(p.color != color for p in pawns_on_file)
|
848 |
+
file_name = chess.FILE_NAMES[f]
|
849 |
+
if not pawns_on_file:
|
850 |
+
# fully open file
|
851 |
+
open_or_semi_open.append(file_name)
|
852 |
+
elif has_enemy and not has_friendly:
|
853 |
+
# semi‐open (enemy pawn only)
|
854 |
+
open_or_semi_open.append(file_name)
|
855 |
+
|
856 |
+
return shield_count, max_shield, open_or_semi_open
|
857 |
+
|
858 |
+
def get_attacker_count(color):
|
859 |
+
"""
|
860 |
+
Count unique enemy pieces attacking any of the up to 8 squares adjacent to the king.
|
861 |
+
"""
|
862 |
+
king_sq = board.king(color)
|
863 |
+
if king_sq is None:
|
864 |
+
return 0
|
865 |
+
enemy_color = not color
|
866 |
+
kf = chess.square_file(king_sq)
|
867 |
+
kr = chess.square_rank(king_sq)
|
868 |
+
|
869 |
+
attackers = set()
|
870 |
+
# Loop over the eight neighbors
|
871 |
+
for df in (-1, 0, 1):
|
872 |
+
for dr in (-1, 0, 1):
|
873 |
+
if df == 0 and dr == 0:
|
874 |
+
continue
|
875 |
+
f = kf + df
|
876 |
+
r = kr + dr
|
877 |
+
if 0 <= f < 8 and 0 <= r < 8:
|
878 |
+
sq = chess.square(f, r)
|
879 |
+
for attacker_sq in board.attackers(enemy_color, sq):
|
880 |
+
attackers.add(attacker_sq)
|
881 |
+
return len(attackers)
|
882 |
+
|
883 |
+
def compute_shelter_score(shield_count, max_shield, open_count, attacker_count):
|
884 |
+
"""
|
885 |
+
Compute a composite shelter score in [0, 1], combining:
|
886 |
+
- shield_factor: shield_count / max_shield
|
887 |
+
- file_factor: 1 - (open_count / max_shield)
|
888 |
+
- attacker_factor: 1 - min(attacker_count, 8) / 8
|
889 |
+
Return average of the three, rounded to 2 decimals.
|
890 |
+
"""
|
891 |
+
if max_shield == 0:
|
892 |
+
shield_factor = 0
|
893 |
+
file_factor = 0
|
894 |
+
else:
|
895 |
+
shield_factor = shield_count / max_shield
|
896 |
+
file_factor = 1 - (open_count / max_shield)
|
897 |
+
attacker_factor = 1 - min(attacker_count, 8) / 8
|
898 |
+
return round((shield_factor + file_factor + attacker_factor) / 3, 2)
|
899 |
+
|
900 |
+
result = {
|
901 |
+
"pawn_shield": {"white": "", "black": ""},
|
902 |
+
"open_files": {"white": [], "black": []},
|
903 |
+
"attacker_count": {"white": 0, "black": 0},
|
904 |
+
"shelter_score": {"white": 0.0, "black": 0.0},
|
905 |
+
}
|
906 |
+
|
907 |
+
# White evaluation
|
908 |
+
w_shield, w_max_shield, w_open = get_shield_and_files(chess.WHITE)
|
909 |
+
w_attackers = get_attacker_count(chess.WHITE)
|
910 |
+
w_shelter = compute_shelter_score(w_shield, w_max_shield, len(w_open), w_attackers)
|
911 |
+
result["pawn_shield"]["white"] = f"{w_shield} of {w_max_shield} shield pawns"
|
912 |
+
result["open_files"]["white"] = w_open
|
913 |
+
result["attacker_count"]["white"] = w_attackers
|
914 |
+
result["shelter_score"]["white"] = w_shelter
|
915 |
+
|
916 |
+
# Black evaluation
|
917 |
+
b_shield, b_max_shield, b_open = get_shield_and_files(chess.BLACK)
|
918 |
+
b_attackers = get_attacker_count(chess.BLACK)
|
919 |
+
b_shelter = compute_shelter_score(b_shield, b_max_shield, len(b_open), b_attackers)
|
920 |
+
result["pawn_shield"]["black"] = f"{b_shield} of {b_max_shield} shield pawns"
|
921 |
+
result["open_files"]["black"] = b_open
|
922 |
+
result["attacker_count"]["black"] = b_attackers
|
923 |
+
result["shelter_score"]["black"] = b_shelter
|
924 |
+
|
925 |
+
return result
|
926 |
+
|
927 |
+
|
928 |
+
def classify_opening(fen: str) -> dict:
|
929 |
+
"""
|
930 |
+
Attempt to classify a chess opening using the Lichess openings database.
|
931 |
+
Return the ECO code, name, moves and main sub-variations of the opening.
|
932 |
+
|
933 |
+
Args:
|
934 |
+
fen (str): The FEN string representing the chess position.
|
935 |
+
"""
|
936 |
+
board = chess.Board(fen)
|
937 |
+
epd_key = board.epd()
|
938 |
+
|
939 |
+
df = _load_lichess_openings()
|
940 |
+
match = df[df["epd"] == epd_key]
|
941 |
+
if match.empty:
|
942 |
+
return {"error": f"No ECO code found for position: {fen}"}
|
943 |
+
|
944 |
+
eco_code = match.iloc[0]["eco"]
|
945 |
+
opening_name = match.iloc[0]["name"]
|
946 |
+
base_pgn = match.iloc[0]["pgn"]
|
947 |
+
base_uci = match.iloc[0]["uci"]
|
948 |
+
base_len = len(base_uci.split())
|
949 |
+
|
950 |
+
def next_move(uci_str: str) -> str | None:
|
951 |
+
parts = uci_str.split()
|
952 |
+
if not parts[:base_len] == base_uci.split():
|
953 |
+
return None
|
954 |
+
return parts[base_len] if len(parts) > base_len else None
|
955 |
+
|
956 |
+
df["next_move"] = df["uci"].apply(next_move)
|
957 |
+
subs = (
|
958 |
+
df[df["next_move"].notna()]
|
959 |
+
.sort_values("uci")
|
960 |
+
.drop_duplicates("next_move", keep="first")
|
961 |
+
)
|
962 |
+
|
963 |
+
subvariants = [
|
964 |
+
{"name": row["name"], "pgn": row["pgn"], "fen": row["epd"]}
|
965 |
+
for _, row in subs.iterrows()
|
966 |
+
]
|
967 |
+
|
968 |
+
return {
|
969 |
+
"eco": eco_code,
|
970 |
+
"name": opening_name,
|
971 |
+
"pgn": base_pgn,
|
972 |
+
"subvariants": subvariants,
|
973 |
+
}
|
974 |
+
|
975 |
+
|
976 |
+
def find_opening_by_name(name: str) -> dict:
|
977 |
+
"""
|
978 |
+
Search for a chess opening by its name in the Lichess openings database.
|
979 |
+
Return the ECO code, name, PGN, FEN and sub-variations of a chess opening by its name.
|
980 |
+
The name is matched case-insensitively.
|
981 |
+
|
982 |
+
Args:
|
983 |
+
name (str): The name of the chess opening to search for (e.g. Caro-Kann Defense: Advance Variation).
|
984 |
+
"""
|
985 |
+
df = _load_lichess_openings()
|
986 |
+
|
987 |
+
mask = df["name"].str.contains(name, case=False, regex=False)
|
988 |
+
matches = df[mask]
|
989 |
+
if matches.empty:
|
990 |
+
return {"error": f"No opening found matching name: '{name}'"}
|
991 |
+
|
992 |
+
row = matches.iloc[0]
|
993 |
+
eco_code = row["eco"]
|
994 |
+
full_name = row["name"]
|
995 |
+
base_pgn = row["pgn"]
|
996 |
+
base_uci = row["uci"]
|
997 |
+
epd = row["epd"]
|
998 |
+
fen = f"{epd} 0 1"
|
999 |
+
|
1000 |
+
base_moves = base_uci.split()
|
1001 |
+
base_len = len(base_moves)
|
1002 |
+
|
1003 |
+
def next_move(uci_str: str) -> str | None:
|
1004 |
+
parts = uci_str.split()
|
1005 |
+
if not parts[:base_len] == base_uci.split():
|
1006 |
+
return None
|
1007 |
+
return parts[base_len] if len(parts) > base_len else None
|
1008 |
+
|
1009 |
+
df["next_move"] = df["uci"].apply(next_move)
|
1010 |
+
subs = (
|
1011 |
+
df[df["next_move"].notna()]
|
1012 |
+
.sort_values("uci")
|
1013 |
+
.drop_duplicates("next_move", keep="first")
|
1014 |
+
)
|
1015 |
+
|
1016 |
+
subvariants = [
|
1017 |
+
{"name": sub_row["name"], "pgn": sub_row["pgn"], "fen": sub_row["epd"]}
|
1018 |
+
for _, sub_row in subs.iterrows()
|
1019 |
+
]
|
1020 |
+
|
1021 |
+
return {
|
1022 |
+
"eco": eco_code,
|
1023 |
+
"name": full_name,
|
1024 |
+
"pgn": base_pgn,
|
1025 |
+
"fen": fen,
|
1026 |
+
"subvariants": subvariants,
|
1027 |
+
}
|
1028 |
+
|
1029 |
+
|
1030 |
+
def _get_color_name(color: chess.Color) -> str:
|
1031 |
+
return "white" if color == chess.WHITE else "black"
|
1032 |
+
|
1033 |
+
|
1034 |
+
def _get_piece_info_on_square(board: chess.Board, square: chess.Square) -> str:
|
1035 |
+
piece = board.piece_at(square)
|
1036 |
+
if piece is None:
|
1037 |
+
return f"No piece on {chess.square_name(square)}"
|
1038 |
+
color = _get_color_name(piece.color)
|
1039 |
+
result = f"There is a {color} {chess.piece_name(piece.piece_type)} on {chess.square_name(square)}."
|
1040 |
+
legal_moves = [
|
1041 |
+
chess.square_name(m.to_square)
|
1042 |
+
for m in board.legal_moves
|
1043 |
+
if m.from_square == square
|
1044 |
+
]
|
1045 |
+
if not legal_moves:
|
1046 |
+
result += f" It can't move because"
|
1047 |
+
if board.turn != piece.color:
|
1048 |
+
result += f" it is not {_get_color_name(piece.color)}'s turn."
|
1049 |
+
elif board.is_pinned(piece.color, square):
|
1050 |
+
result += " it is pinned."
|
1051 |
+
elif board.is_check():
|
1052 |
+
result += f" it is a check and the {chess.piece_name(piece.piece_type)} can't block"
|
1053 |
+
else:
|
1054 |
+
result += " it is blocked."
|
1055 |
+
result += f" However, it attacks the following squares: {', '.join([chess.square_name(s) for s in board.attacks(square)])}."
|
1056 |
+
else:
|
1057 |
+
result += f" It can move to the following squares: {', '.join(legal_moves)}."
|
1058 |
+
return result
|
1059 |
+
|
1060 |
+
|
1061 |
+
def _get_attackers(board: chess.Board, square: chess.Square, color: chess.Color) -> str:
|
1062 |
+
piece = board.piece_at(square)
|
1063 |
+
title = "attackers" if piece is None or piece.color != color else "defenders"
|
1064 |
+
attackers = board.attackers(color, square)
|
1065 |
+
color_name = _get_color_name(color)
|
1066 |
+
if not attackers:
|
1067 |
+
return f"No {color_name} {title} for {chess.square_name(square)}"
|
1068 |
+
return (
|
1069 |
+
f"{len(attackers)} {color_name.title()} {title} for {chess.square_name(square)}: "
|
1070 |
+
+ ", ".join(
|
1071 |
+
[
|
1072 |
+
f"{chess.piece_name(board.piece_at(s).piece_type)} on {chess.square_name(s)}"
|
1073 |
+
for s in attackers
|
1074 |
+
]
|
1075 |
+
)
|
1076 |
+
)
|
1077 |
+
|
1078 |
+
|
1079 |
+
def _load_lichess_openings(
|
1080 |
+
path_prefix: str = "data/lichess_openings/dist/",
|
1081 |
+
) -> pd.DataFrame:
|
1082 |
+
"""Load Lichess openings data from TSV files.
|
1083 |
+
Assumes files 'a.tsv', 'b.tsv', 'c.tsv', 'd.tsv', 'e.tsv' are in path_prefix.
|
1084 |
+
Each has columns: eco, name, pgn, uci, epd.
|
1085 |
+
"""
|
1086 |
+
files = [f"{path_prefix}{vol}.tsv" for vol in ("a", "b", "c", "d", "e")]
|
1087 |
+
dfs = []
|
1088 |
+
for fn in files:
|
1089 |
+
df = pd.read_csv(fn, sep="\t", usecols=["eco", "name", "pgn", "uci", "epd"])
|
1090 |
+
dfs.append(df)
|
1091 |
+
return pd.concat(dfs, ignore_index=True)
|
1092 |
+
|
1093 |
+
|
1094 |
+
get_position_tool = gr.Interface(
|
1095 |
+
fn=get_position,
|
1096 |
+
inputs=Chessboard(label="FEN String"),
|
1097 |
+
outputs=gr.JSON(label="Chess Position"),
|
1098 |
+
title="Chess Position Viewer",
|
1099 |
+
description="Enter a FEN string to view the current chess position.",
|
1100 |
+
)
|
1101 |
+
|
1102 |
+
get_square_info_tool = gr.Interface(
|
1103 |
+
fn=get_square_info,
|
1104 |
+
inputs=[Chessboard(label="FEN String"), gr.Textbox(label="Square Name")],
|
1105 |
+
outputs=gr.JSON(label="Square Info"),
|
1106 |
+
title="Chess Square Info",
|
1107 |
+
description="Enter a FEN string and a square name (e.g., 'e4') to get information about the piece on that square.",
|
1108 |
+
)
|
1109 |
+
|
1110 |
+
get_top_moves_tool = gr.Interface(
|
1111 |
+
fn=get_top_moves,
|
1112 |
+
inputs=[Chessboard(label="FEN String"), gr.Number(value=5, label="Top N Moves")],
|
1113 |
+
outputs=gr.JSON(label="Top Moves"),
|
1114 |
+
title="Top Moves Analyzer",
|
1115 |
+
description="Enter a FEN string to get the top moves for the current position using StockFish.",
|
1116 |
+
)
|
1117 |
+
|
1118 |
+
analyze_pawn_structure_tool = gr.Interface(
|
1119 |
+
fn=analyze_pawn_structure,
|
1120 |
+
inputs=Chessboard(label="FEN String"),
|
1121 |
+
outputs=gr.JSON(label="Pawn Structure Analysis"),
|
1122 |
+
title="Pawn Structure Analyzer",
|
1123 |
+
description="Enter a FEN string to analyze the pawn structure features for both White and Black.",
|
1124 |
+
)
|
1125 |
+
|
1126 |
+
analyze_tactical_patterns_tool = gr.Interface(
|
1127 |
+
fn=analyze_tactical_patterns,
|
1128 |
+
inputs=Chessboard(label="FEN String"),
|
1129 |
+
outputs=gr.JSON(label="Tactical Patterns Analysis"),
|
1130 |
+
title="Tactical Patterns Analyzer",
|
1131 |
+
description="Enter a FEN string to analyze immediate tactical patterns for both White and Black.",
|
1132 |
+
)
|
1133 |
+
|
1134 |
+
evaluate_king_safety_tool = gr.Interface(
|
1135 |
+
fn=evaluate_king_safety,
|
1136 |
+
inputs=Chessboard(label="FEN String"),
|
1137 |
+
outputs=gr.JSON(label="King Safety Evaluation"),
|
1138 |
+
title="King Safety Evaluator",
|
1139 |
+
description="Enter a FEN string to evaluate the safety of both kings in the current position.",
|
1140 |
+
)
|
1141 |
+
|
1142 |
+
classify_opening_tool = gr.Interface(
|
1143 |
+
fn=classify_opening,
|
1144 |
+
inputs=Chessboard(label="FEN String"),
|
1145 |
+
outputs=gr.JSON(label="Opening Classification"),
|
1146 |
+
title="Opening Classifier",
|
1147 |
+
description="Enter a FEN string to classify the opening and get its ECO code, name, and sub-variations.",
|
1148 |
+
)
|
1149 |
+
|
1150 |
+
find_opening_by_name_tool = gr.Interface(
|
1151 |
+
fn=find_opening_by_name,
|
1152 |
+
inputs=gr.Textbox(label="Opening Name"),
|
1153 |
+
outputs=gr.JSON(label="Opening Details"),
|
1154 |
+
title="Find Opening by Name",
|
1155 |
+
description="Enter the name of a chess opening to find its ECO code, PGN, FEN, and sub-variations.",
|
1156 |
+
)
|
1157 |
+
|
1158 |
+
app = gr.TabbedInterface(
|
1159 |
+
[
|
1160 |
+
get_position_tool,
|
1161 |
+
get_square_info_tool,
|
1162 |
+
get_top_moves_tool,
|
1163 |
+
analyze_pawn_structure_tool,
|
1164 |
+
analyze_tactical_patterns_tool,
|
1165 |
+
evaluate_king_safety_tool,
|
1166 |
+
classify_opening_tool,
|
1167 |
+
find_opening_by_name_tool,
|
1168 |
+
],
|
1169 |
+
tab_names=[
|
1170 |
+
"Get Position",
|
1171 |
+
"Get Square Info",
|
1172 |
+
"Get Top Moves",
|
1173 |
+
"Analyze Pawn Structure",
|
1174 |
+
"Analyze Tactical Patterns",
|
1175 |
+
"Evaluate King Safety",
|
1176 |
+
"Classify Opening",
|
1177 |
+
"Find Opening by Name",
|
1178 |
+
],
|
1179 |
+
title="Chess Tools",
|
1180 |
+
)
|
1181 |
+
|
1182 |
+
if __name__ == "__main__":
|
1183 |
+
app.launch(mcp_server=True)
|
packages.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
stockfish
|
2 |
+
make
|
3 |
+
git
|
postBuild
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
set -e
|
3 |
+
|
4 |
+
# 1. Clone the Lichess openings TSV dataset
|
5 |
+
git clone https://github.com/lichess-org/chess-openings.git data/lichess_openings
|
6 |
+
|
7 |
+
# 2. Build/prep with make
|
8 |
+
cd data/lichess_openings
|
9 |
+
make
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio[mcp]
|
2 |
+
gradio_chessboard
|
3 |
+
chess
|