Master-warrier's picture
Devstral integration with coding gen support and UI changes
e31b53b
raw
history blame
21 kB
import gradio as gr
import pandas as pd
import requests
import json
import os
from utils.google_genai_llm import get_response, generate_with_gemini
from utils.utils import parse_json_codefences
from prompts.requirements_gathering import requirements_gathering_system_prompt
from prompts.planning import hf_query_gen_prompt
from prompts.devstral_coding_prompt import devstral_code_gen_sys_prompt, devstral_code_gen_user_prompt
from dotenv import load_dotenv
import os
load_dotenv()
# Import Modal inference function
import sys
sys.path.append(os.path.join(os.path.dirname(__file__), 'modal'))
try:
from modal import App
# Import the Modal inference function and app from separate file
import subprocess
from devstral_inference import run_devstral_inference, app as devstral_app
MODAL_AVAILABLE = True
except ImportError:
MODAL_AVAILABLE = False
devstral_app = None
print("Warning: Modal not available. Code generation will be disabled.")
from PIL import Image
import tempfile
import traceback
import hashlib
# Import Marker for document processing
try:
from marker.converters.pdf import PdfConverter
from marker.models import create_model_dict
from marker.output import text_from_rendered
MARKER_AVAILABLE = True
except ImportError:
MARKER_AVAILABLE = False
print("Warning: Marker library not available. PDF, PPT, and DOCX processing will be limited.")
# Load environment variables
MODAL_API_URL = os.getenv("MODAL_API_URL")
BEARER_TOKEN = os.getenv("BEARER_TOKEN")
CODING_MODEL = os.getenv("CODING_MODEL")
def get_file_hash(file_path):
"""Generate a hash of the file for caching purposes"""
try:
with open(file_path, 'rb') as f:
file_hash = hashlib.md5(f.read()).hexdigest()
return file_hash
except Exception:
return None
def extract_text_with_marker(file_path):
"""Extract text from PDF, PPT, or DOCX using Marker"""
if not MARKER_AVAILABLE:
return "Marker library not available for document processing.", ""
try:
# Create converter with model artifacts
converter = PdfConverter(
artifact_dict=create_model_dict(),
)
# Convert document
rendered = converter(file_path)
# Extract text from rendered output
text, _, images = text_from_rendered(rendered)
# Get basic stats
word_count = len(text.split())
char_count = len(text)
stats = f"Extracted text ({word_count} words, {char_count} characters)"
return stats, text
except Exception as e:
error_msg = f"Error processing document: {str(e)}"
return error_msg, ""
def process_user_input(message, history, uploaded_files, file_cache):
"""Process user input and generate AI response using requirements gathering prompt"""
# Build conversation history from chat history
conversation_history = ""
if history:
for i, (user_msg, ai_msg) in enumerate(history):
conversation_history += f"User: {user_msg}\n"
if ai_msg:
conversation_history += f"Assistant: {ai_msg}\n"
# Add file information to conversation if files are uploaded
if uploaded_files:
file_info = f"\n[UPLOADED_FILES]\n"
new_file_cache = file_cache.copy() if file_cache else {}
for file_path in uploaded_files:
try:
file_name = file_path.split('/')[-1]
file_extension = os.path.splitext(file_name)[1].lower()
file_hash = get_file_hash(file_path)
cache_key = f"{file_name}_{file_hash}"
# Handle CSV files
if file_extension == '.csv':
df = pd.read_csv(file_path)
file_info += f"- {file_name}: CSV file with {len(df)} rows and {len(df.columns)} columns\n"
file_info += f" Columns: {', '.join(df.columns.tolist())}\n"
# Handle Excel files
elif file_extension in ['.xlsx', '.xls']:
df = pd.read_excel(file_path)
file_info += f"- {file_name}: Excel file with {len(df)} rows and {len(df.columns)} columns\n"
file_info += f" Columns: {', '.join(df.columns.tolist())}\n"
# Handle document files with Marker (PDF, PPT, DOCX)
elif file_extension in ['.pdf', '.ppt', '.pptx', '.doc', '.docx']:
file_size = os.path.getsize(file_path)
file_size_mb = round(file_size / (1024 * 1024), 2)
# Check if file is already processed and cached
if cache_key in new_file_cache:
# Use cached text
extraction_stats = new_file_cache[cache_key]['stats']
extracted_text = new_file_cache[cache_key]['text']
status = "(cached)"
else:
# Process new file with Marker
extraction_stats, extracted_text = extract_text_with_marker(file_path)
# Cache the results
new_file_cache[cache_key] = {
'stats': extraction_stats,
'text': extracted_text,
'file_name': file_name,
'file_path': file_path
}
status = "(newly processed)"
# Determine document type
if file_extension == '.pdf':
doc_type = "PDF document"
elif file_extension in ['.ppt', '.pptx']:
doc_type = "PowerPoint presentation"
else:
doc_type = "Word document"
file_info += f"- {file_name}: {doc_type}, Size: {file_size_mb} MB {status}\n"
file_info += f" Content: {extraction_stats}\n"
# Include extracted text in conversation context for better AI understanding
if extracted_text and len(extracted_text.strip()) > 0:
# Truncate very long texts for context (keep first 2000 chars)
text_preview = extracted_text[:200000] + "..." if len(extracted_text) > 200000 else extracted_text
file_info += f" Text Preview: {text_preview}\n"
# Handle image files
elif file_extension in ['.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff', '.webp']:
with Image.open(file_path) as img:
width, height = img.size
mode = img.mode
file_size = os.path.getsize(file_path)
file_size_mb = round(file_size / (1024 * 1024), 2)
file_info += f"- {file_name}: {file_extension.upper()[1:]} image file\n"
file_info += f" Dimensions: {width}x{height} pixels, Mode: {mode}, Size: {file_size_mb} MB\n"
# Handle JSON files
elif file_extension == '.json':
file_size = os.path.getsize(file_path)
file_size_kb = round(file_size / 1024, 2)
file_info += f"- {file_name}: JSON file, Size: {file_size_kb} KB\n"
# Handle text files
elif file_extension == '.txt':
with open(file_path, 'r', encoding='utf-8') as f:
lines = len(f.readlines())
file_size = os.path.getsize(file_path)
file_size_kb = round(file_size / 1024, 2)
file_info += f"- {file_name}: Text file with {lines} lines, Size: {file_size_kb} KB\n"
# Handle other files
else:
file_size = os.path.getsize(file_path)
file_size_kb = round(file_size / 1024, 2)
file_info += f"- {file_name}: File uploaded, Size: {file_size_kb} KB\n"
except Exception as e:
file_info += f"- {file_path.split('/')[-1]}: File uploaded (unable to preview: {str(e)})\n"
print(f"Error processing file {file_path}: {traceback.format_exc()}")
conversation_history += file_info
# Update the cache
file_cache.update(new_file_cache)
# Format the prompt with conversation history and current query
formatted_prompt = requirements_gathering_system_prompt.format(
conversation_history=conversation_history,
query=message
)
# Get AI response
ai_response = get_response(formatted_prompt)
return ai_response, file_cache
def chat_interface(message, history, uploaded_files, file_cache):
"""Main chat interface function"""
# Get AI response with updated cache
ai_response, updated_cache = process_user_input(message, history, uploaded_files, file_cache)
# Add to history
history.append((message, ai_response))
return history, history, "", updated_cache
def clear_chat():
"""Clear the chat history and file cache"""
return [], [], {}
def upload_file_handler(files):
"""Handle file uploads"""
if files:
return files
return []
def generate_plan(history, file_cache):
"""Generate a plan using the planning prompt and Gemini API"""
# Build conversation history
conversation_history = ""
if history:
for user_msg, ai_msg in history:
conversation_history += f"User: {user_msg}\n"
if ai_msg:
conversation_history += f"Assistant: {ai_msg}\n"
# Format the prompt
formatted_prompt = hf_query_gen_prompt + "\n\n" + conversation_history
# Get plan from Gemini
plan = generate_with_gemini(formatted_prompt, "Planning with gemini")
# Parse the plan
parsed_plan = parse_json_codefences(plan)
return parsed_plan
def generate_code_with_devstral(plan_text, history, file_cache):
"""Generate code using the deployed Devstral model via Modal"""
if not MODAL_AVAILABLE:
return "❌ Modal not available. Please install Modal to use code generation."
if not plan_text or not plan_text.strip():
return "❌ Please generate a plan first before generating code."
try:
# Extract user query from conversation history
user_query = ""
if history:
# Get the latest user message as the main query
for user_msg, ai_msg in reversed(history):
if user_msg and user_msg.strip():
user_query = user_msg.strip()
break
if not user_query:
user_query = "Generate Python code based on the provided plan and context."
# Build context from file cache and conversation
context = ""
if file_cache:
context += "Available Data Files:\n"
for cache_key, file_info in file_cache.items():
context += f"- {file_info.get('file_name', 'Unknown file')}\n"
if 'stats' in file_info:
context += f" {file_info['stats']}\n"
# Add conversation context
if history:
context += "\nConversation Context:\n"
for user_msg, ai_msg in history[-3:]: # Last 3 exchanges
context += f"User: {user_msg}\n"
if ai_msg:
context += f"Assistant: {ai_msg}\n"
# Format the user prompt with variables
formatted_user_prompt = devstral_code_gen_user_prompt.format(
user_query=user_query,
plan=plan_text,
context=context
)
# Use Modal app.run() pattern like in the examples
base_url = "https://abhinav-bhatnagar--devstral-vllm-deployment-serve.modal.run"
api_key = "ak-zMwhIPjqvBj30jbm1DmKqx"
print(f"πŸš€ Generating code using Devstral...")
print(f"πŸ“‘ Connecting to: {base_url}")
# Call Modal inference using the proper app.run() context
with devstral_app.run():
result = run_devstral_inference.remote(
base_url=base_url,
api_key=api_key,
prompts=[formatted_user_prompt],
system_prompt=devstral_code_gen_sys_prompt,
mode="single"
)
if result and "response" in result:
code_output = result["response"]
return f"πŸš€ **Generated Code:**\n\n{code_output}"
else:
return "❌ **Error:** No response received from Devstral model."
except Exception as e:
return f"❌ **Error:** {str(e)}"
# Custom CSS for a sleek design
custom_css = """
.gradio-container {
max-width: 900px !important;
margin: auto !important;
}
.chat-container {
height: 600px !important;
}
#component-0 {
height: 100vh;
}
.message {
padding: 15px !important;
margin: 10px 0 !important;
border-radius: 15px !important;
}
.user-message {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
color: white !important;
margin-left: 20% !important;
}
.bot-message {
background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%) !important;
color: white !important;
margin-right: 20% !important;
}
.upload-area {
border: 2px dashed #4f46e5 !important;
border-radius: 10px !important;
padding: 20px !important;
text-align: center !important;
background: linear-gradient(135deg, #f0f4ff 0%, #e0e7ff 100%) !important;
}
.btn-primary {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
border: none !important;
border-radius: 25px !important;
padding: 10px 25px !important;
font-weight: bold !important;
}
.btn-secondary {
background: linear-gradient(135deg, #ffeaa7 0%, #fab1a0 100%) !important;
border: none !important;
border-radius: 25px !important;
padding: 10px 25px !important;
font-weight: bold !important;
color: #2d3436 !important;
}
.title {
text-align: center !important;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
-webkit-background-clip: text !important;
-webkit-text-fill-color: transparent !important;
font-size: 2.5em !important;
font-weight: bold !important;
margin-bottom: 20px !important;
}
.subtitle {
text-align: center !important;
color: #6c757d !important;
font-size: 1.2em !important;
margin-bottom: 30px !important;
}
"""
# Create the Gradio interface
with gr.Blocks(css=custom_css, title="Data Science Requirements Gathering Agent") as app:
# Header
gr.HTML("""
<div class="title">πŸ”¬ Data Science Consultant</div>
<div class="subtitle">
Transform your vague ideas into reality
</div>
""")
with gr.Row():
with gr.Column(scale=3):
# Chat interface
chatbot = gr.Chatbot(
label="Requirements Gathering Conversation",
height=500,
show_copy_button=True,
bubble_full_width=False,
elem_classes=["chat-container"]
)
plan_output = gr.Textbox(
label="Generated Plan",
interactive=False,
visible=True,
lines=10,
max_lines=20
)
code_output = gr.Textbox(
label="Generated Code",
interactive=False,
visible=True,
lines=15,
max_lines=30,
placeholder="Generated Python code will appear here..."
)
with gr.Row():
with gr.Column(scale=4):
msg = gr.Textbox(
placeholder="Describe your data science project or ask a question...",
label="Your Message",
lines=2,
max_lines=5
)
with gr.Column(scale=1):
send_btn = gr.Button("Send πŸ“€", variant="primary", elem_classes=["btn-primary"])
with gr.Row():
clear_btn = gr.Button("Clear Chat πŸ—‘οΈ", variant="secondary", elem_classes=["btn-secondary"])
with gr.Column(scale=1):
# File upload section
gr.HTML("<h3 style='text-align: center; color: #4f46e5;'>πŸ“ Upload Data Files</h3>")
file_upload = gr.File(
label="Upload your files (CSV, Excel, PDF, PPT, DOCX, Images, etc.)",
file_count="multiple",
file_types=[".csv", ".xlsx", ".xls", ".json", ".txt", ".pdf", ".ppt", ".pptx", ".doc", ".docx", ".png", ".jpg", ".jpeg", ".gif", ".bmp", ".tiff", ".webp"],
elem_classes=["upload-area"]
)
uploaded_files_display = gr.File(
label="Uploaded Files",
file_count="multiple",
interactive=False,
visible=True
)
# Instructions
gr.HTML("""
<div style="padding: 15px; background: linear-gradient(135deg, #e3f2fd 0%, #f3e5f5 100%);
border-radius: 10px; margin-top: 20px;">
<h4 style="color: #4f46e5; margin-bottom: 10px;">πŸ’‘ How it works:</h4>
<ol style="color: #555; font-size: 14px; line-height: 1.6;">
<li>Describe your data science project</li>
<li>Upload your files (data, documents, images)</li>
<li>Answer clarifying questions</li>
<li>Generate a plan for your project</li>
<li>Generate Python code using Devstral AI</li>
</ol>
<p style="color: #666; font-size: 12px; margin-top: 10px;">
πŸ“„ Supports: CSV, Excel, PDF, PowerPoint, Word docs, Images, JSON, Text files<br>
πŸ’» Code generation powered by Mistral Devstral-Small-2505
</p>
</div>
""")
# Action buttons section
with gr.Column():
plan_btn = gr.Button("Generate Plan πŸ“‹", variant="secondary", elem_classes=["btn-secondary"], size="lg")
code_btn = gr.Button("Generate Code πŸ’»", variant="secondary", elem_classes=["btn-secondary"], size="lg")
# State for conversation history and file cache
chat_history = gr.State([])
file_cache = gr.State({})
# Event handlers
def handle_send(message, history, files, cache):
if message.strip():
new_history, updated_history, cleared_input, updated_cache = chat_interface(message, history, files, cache)
return new_history, updated_history, cleared_input, updated_cache
return history, history, message, cache
# Wire up the interface
send_btn.click(
handle_send,
inputs=[msg, chat_history, uploaded_files_display, file_cache],
outputs=[chatbot, chat_history, msg, file_cache]
)
msg.submit(
handle_send,
inputs=[msg, chat_history, uploaded_files_display, file_cache],
outputs=[chatbot, chat_history, msg, file_cache]
)
clear_btn.click(
clear_chat,
outputs=[chatbot, chat_history, file_cache]
)
plan_btn.click(
generate_plan,
inputs=[chat_history, file_cache],
outputs=[plan_output]
)
code_btn.click(
generate_code_with_devstral,
inputs=[plan_output, chat_history, file_cache],
outputs=[code_output]
)
file_upload.change(
lambda files: files,
inputs=[file_upload],
outputs=[uploaded_files_display]
)
# Welcome message
app.load(
lambda: [(None, "πŸ‘‹ Hello! I'm your Data Science Project Agent. I'll help you transform your project ideas into reality .\n\nπŸš€ **Let's get started!** Tell me about your data science project or what you're trying to achieve.")],
outputs=[chatbot]
)
if __name__ == "__main__":
app.launch(share=True, show_error=True, mcp_server=True)