Commit
Β·
368f482
1
Parent(s):
50c423b
Upgraded gradio interface
Browse files- app.py +47 -39
- prompts/devstral_coding_prompt.py +2 -0
app.py
CHANGED
@@ -224,11 +224,11 @@ def upload_file_handler(files):
|
|
224 |
return files
|
225 |
return []
|
226 |
|
227 |
-
async def generate_plan(history, file_cache
|
228 |
"""Generate a plan using the planning prompt and Gemini API"""
|
229 |
|
230 |
# Build conversation history
|
231 |
-
|
232 |
|
233 |
conversation_history = ""
|
234 |
if history:
|
@@ -236,7 +236,7 @@ async def generate_plan(history, file_cache, progress=gr.Progress()):
|
|
236 |
conversation_history += f"User: {user_msg}\n"
|
237 |
if ai_msg:
|
238 |
conversation_history += f"Assistant: {ai_msg}\n"
|
239 |
-
|
240 |
try:
|
241 |
mcp_tool_func = modal.Function.from_name("HuggingFace-MCP","connect_and_get_tools")
|
242 |
hf_query_gen_tool_details = mcp_tool_func.remote()
|
@@ -249,14 +249,14 @@ async def generate_plan(history, file_cache, progress=gr.Progress()):
|
|
249 |
Tool_Details=hf_query_gen_tool_details
|
250 |
) + "\n\n" + conversation_history
|
251 |
# Get plan from Gemini
|
252 |
-
|
253 |
|
254 |
plan = generate_with_gemini(formatted_prompt, "Planning with gemini")
|
255 |
# Parse the plan
|
256 |
parsed_plan = parse_json_codefences(plan)
|
257 |
print(parsed_plan)
|
258 |
# Call tool to get tool calls
|
259 |
-
|
260 |
|
261 |
try:
|
262 |
mcp_call_tool_func = modal.Function.from_name(app_name="HuggingFace-MCP",name="call_tool")
|
@@ -267,7 +267,7 @@ async def generate_plan(history, file_cache, progress=gr.Progress()):
|
|
267 |
print(str(e))
|
268 |
tool_calls = []
|
269 |
print(tool_calls)
|
270 |
-
|
271 |
|
272 |
if tool_calls!=[]:
|
273 |
formatted_context_prompt = hf_context_gen_prompt.format(
|
@@ -284,19 +284,19 @@ async def generate_plan(history, file_cache, progress=gr.Progress()):
|
|
284 |
Results="Couldn't generate the tool calls results but use your knowledge about huggingface platform(models, datasets, spaces, training libraries, transfomers library etc.) as backup to generate the plan"
|
285 |
)
|
286 |
context = generate_with_gemini(formatted_context_prompt, "Generating context for plan")
|
287 |
-
|
288 |
|
289 |
-
|
290 |
-
|
291 |
-
def generate_code_with_devstral(plan_text, history, file_cache, progress=gr.Progress()):
|
292 |
"""Generate code using the deployed Devstral model via Modal"""
|
293 |
-
|
294 |
|
295 |
if not MODAL_AVAILABLE:
|
296 |
-
|
|
|
297 |
|
298 |
-
if not plan_text or not plan_text.strip():
|
299 |
-
|
|
|
300 |
|
301 |
# try:
|
302 |
# Extract user query from conversation history
|
@@ -341,7 +341,7 @@ def generate_code_with_devstral(plan_text, history, file_cache, progress=gr.Prog
|
|
341 |
api_key = os.getenv("DEVSTRAL_API_KEY")
|
342 |
print(f"π Generating code using Devstral...")
|
343 |
print(f"π‘ Connecting to: {base_url}")
|
344 |
-
|
345 |
|
346 |
try:
|
347 |
devstral_inference_func = modal.Function.from_name("devstral-inference-client", "run_devstral_inference")
|
@@ -353,28 +353,30 @@ def generate_code_with_devstral(plan_text, history, file_cache, progress=gr.Prog
|
|
353 |
mode="single"
|
354 |
)
|
355 |
if result and "response" in result:
|
356 |
-
progress(1, desc="Code has been generated")
|
357 |
-
|
358 |
code_output = result["response"]
|
359 |
-
|
360 |
else:
|
361 |
-
|
362 |
-
|
363 |
-
return "β **Error:** No response received from Devstral model."
|
364 |
except Exception as e:
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
progress(0, desc="Starting Code Execution")
|
370 |
|
371 |
try:
|
372 |
-
|
|
|
|
|
373 |
|
|
|
374 |
code = parse_python_codefences(code_output)
|
375 |
print(code)
|
376 |
-
|
377 |
-
|
|
|
|
|
|
|
|
|
378 |
result = code_eval(code)
|
379 |
if isinstance(result, dict):
|
380 |
result_str = json.dumps(result, indent=4)
|
@@ -383,13 +385,9 @@ def execute_code(code_output, progress=gr.Progress()):
|
|
383 |
else:
|
384 |
result_str = str(result)
|
385 |
|
386 |
-
|
387 |
-
|
388 |
-
return result_str
|
389 |
except Exception as e:
|
390 |
-
|
391 |
-
|
392 |
-
return f"β **Error:** {str(e)}"
|
393 |
|
394 |
# Custom CSS for a sleek design
|
395 |
custom_css = """
|
@@ -465,6 +463,14 @@ custom_css = """
|
|
465 |
font-size: 1.2em !important;
|
466 |
margin-bottom: 30px !important;
|
467 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
468 |
"""
|
469 |
|
470 |
# Create the Gradio interface
|
@@ -490,18 +496,20 @@ with gr.Blocks(css=custom_css, title="Data Science Requirements Gathering Agent"
|
|
490 |
)
|
491 |
|
492 |
plan_output = gr.Markdown(
|
|
|
493 |
label="Generated Plan",
|
494 |
-
|
495 |
-
max_height=150,
|
496 |
)
|
497 |
|
498 |
code_output = gr.Markdown(
|
|
|
499 |
label="Generated Code",
|
500 |
-
|
501 |
)
|
502 |
execution_output = gr.Markdown(
|
|
|
503 |
label="Execution Output",
|
504 |
-
|
505 |
)
|
506 |
with gr.Row():
|
507 |
with gr.Column(scale=4):
|
|
|
224 |
return files
|
225 |
return []
|
226 |
|
227 |
+
async def generate_plan(history, file_cache):
|
228 |
"""Generate a plan using the planning prompt and Gemini API"""
|
229 |
|
230 |
# Build conversation history
|
231 |
+
yield "**β³ Generating plan...** (Starting)"
|
232 |
|
233 |
conversation_history = ""
|
234 |
if history:
|
|
|
236 |
conversation_history += f"User: {user_msg}\n"
|
237 |
if ai_msg:
|
238 |
conversation_history += f"Assistant: {ai_msg}\n"
|
239 |
+
yield "**β³ Generating plan...** (Getting HF MCP tools)"
|
240 |
try:
|
241 |
mcp_tool_func = modal.Function.from_name("HuggingFace-MCP","connect_and_get_tools")
|
242 |
hf_query_gen_tool_details = mcp_tool_func.remote()
|
|
|
249 |
Tool_Details=hf_query_gen_tool_details
|
250 |
) + "\n\n" + conversation_history
|
251 |
# Get plan from Gemini
|
252 |
+
yield "**β³ Generating plan...** (Strategizing which tools to call)"
|
253 |
|
254 |
plan = generate_with_gemini(formatted_prompt, "Planning with gemini")
|
255 |
# Parse the plan
|
256 |
parsed_plan = parse_json_codefences(plan)
|
257 |
print(parsed_plan)
|
258 |
# Call tool to get tool calls
|
259 |
+
yield "**β³ Generating plan...** (calling HF platform tools and getting data)"
|
260 |
|
261 |
try:
|
262 |
mcp_call_tool_func = modal.Function.from_name(app_name="HuggingFace-MCP",name="call_tool")
|
|
|
267 |
print(str(e))
|
268 |
tool_calls = []
|
269 |
print(tool_calls)
|
270 |
+
yield "**β³ Generating plan...** (Generating Plan context from tool call info)"
|
271 |
|
272 |
if tool_calls!=[]:
|
273 |
formatted_context_prompt = hf_context_gen_prompt.format(
|
|
|
284 |
Results="Couldn't generate the tool calls results but use your knowledge about huggingface platform(models, datasets, spaces, training libraries, transfomers library etc.) as backup to generate the plan"
|
285 |
)
|
286 |
context = generate_with_gemini(formatted_context_prompt, "Generating context for plan")
|
287 |
+
yield context
|
288 |
|
289 |
+
def generate_code_with_devstral(plan_text, history, file_cache):
|
|
|
|
|
290 |
"""Generate code using the deployed Devstral model via Modal"""
|
291 |
+
yield "**β³ Generating code...** (Starting Codegen)"
|
292 |
|
293 |
if not MODAL_AVAILABLE:
|
294 |
+
yield "β Modal not available. Please install Modal to use code generation."
|
295 |
+
return
|
296 |
|
297 |
+
if not plan_text or not plan_text.strip() or "**Plan will be generated here...**" in plan_text:
|
298 |
+
yield "β Please generate a plan first before generating code."
|
299 |
+
return
|
300 |
|
301 |
# try:
|
302 |
# Extract user query from conversation history
|
|
|
341 |
api_key = os.getenv("DEVSTRAL_API_KEY")
|
342 |
print(f"π Generating code using Devstral...")
|
343 |
print(f"π‘ Connecting to: {base_url}")
|
344 |
+
yield "**β³ Generating code...** (Calling Devstral VLLM API server deployed on Modal)"
|
345 |
|
346 |
try:
|
347 |
devstral_inference_func = modal.Function.from_name("devstral-inference-client", "run_devstral_inference")
|
|
|
353 |
mode="single"
|
354 |
)
|
355 |
if result and "response" in result:
|
|
|
|
|
356 |
code_output = result["response"]
|
357 |
+
yield f"π **Generated Code:**\n\n{code_output}"
|
358 |
else:
|
359 |
+
yield "β **Error:** No response received from Devstral model."
|
|
|
|
|
360 |
except Exception as e:
|
361 |
+
yield f"β **Error:** {str(e)}"
|
362 |
+
def execute_code(code_output):
|
363 |
+
"""Executes Python code from a string and returns the output."""
|
364 |
+
yield "**β³ Executing code...** (Starting)"
|
|
|
365 |
|
366 |
try:
|
367 |
+
if "**Code will be generated here...**" in code_output or "Generated Code" not in code_output:
|
368 |
+
yield "β Please generate code first before executing."
|
369 |
+
return
|
370 |
|
371 |
+
yield "**β³ Executing code...** (Parsing code)"
|
372 |
code = parse_python_codefences(code_output)
|
373 |
print(code)
|
374 |
+
|
375 |
+
if not code or not code.strip():
|
376 |
+
yield "β No Python code found to execute."
|
377 |
+
return
|
378 |
+
|
379 |
+
yield "**β³ Executing code...** (Running in sandbox)"
|
380 |
result = code_eval(code)
|
381 |
if isinstance(result, dict):
|
382 |
result_str = json.dumps(result, indent=4)
|
|
|
385 |
else:
|
386 |
result_str = str(result)
|
387 |
|
388 |
+
yield f"**β
Execution Complete:**\n\n```\n{result_str}\n```"
|
|
|
|
|
389 |
except Exception as e:
|
390 |
+
yield f"β **Error executing code:** {str(e)}"
|
|
|
|
|
391 |
|
392 |
# Custom CSS for a sleek design
|
393 |
custom_css = """
|
|
|
463 |
font-size: 1.2em !important;
|
464 |
margin-bottom: 30px !important;
|
465 |
}
|
466 |
+
|
467 |
+
.output-markdown {
|
468 |
+
height: 250px;
|
469 |
+
overflow-y: auto !important;
|
470 |
+
border: 1px solid #e0e0e0;
|
471 |
+
padding: 10px;
|
472 |
+
border-radius: 5px;
|
473 |
+
}
|
474 |
"""
|
475 |
|
476 |
# Create the Gradio interface
|
|
|
496 |
)
|
497 |
|
498 |
plan_output = gr.Markdown(
|
499 |
+
"**Plan will be generated here...**",
|
500 |
label="Generated Plan",
|
501 |
+
elem_classes=["output-markdown"],
|
|
|
502 |
)
|
503 |
|
504 |
code_output = gr.Markdown(
|
505 |
+
"**Code will be generated here...**",
|
506 |
label="Generated Code",
|
507 |
+
elem_classes=["output-markdown"],
|
508 |
)
|
509 |
execution_output = gr.Markdown(
|
510 |
+
"**Execution output will be shown here...**",
|
511 |
label="Execution Output",
|
512 |
+
elem_classes=["output-markdown"],
|
513 |
)
|
514 |
with gr.Row():
|
515 |
with gr.Column(scale=4):
|
prompts/devstral_coding_prompt.py
CHANGED
@@ -14,4 +14,6 @@ devstral_code_gen_user_prompt ="""
|
|
14 |
{context}
|
15 |
|
16 |
Just return the full execution code block in a python codefence as shown below without any explanation or suffix or prefix text.
|
|
|
|
|
17 |
"""
|
|
|
14 |
{context}
|
15 |
|
16 |
Just return the full execution code block in a python codefence as shown below without any explanation or suffix or prefix text.
|
17 |
+
|
18 |
+
Ensure that the code is EXECUTABLE and does not contain any errors.
|
19 |
"""
|