Add progress bars
Browse files
app.py
CHANGED
@@ -224,17 +224,19 @@ def upload_file_handler(files):
|
|
224 |
return files
|
225 |
return []
|
226 |
|
227 |
-
async def generate_plan(history, file_cache):
|
228 |
"""Generate a plan using the planning prompt and Gemini API"""
|
229 |
|
230 |
# Build conversation history
|
|
|
|
|
231 |
conversation_history = ""
|
232 |
if history:
|
233 |
for user_msg, ai_msg in history:
|
234 |
conversation_history += f"User: {user_msg}\n"
|
235 |
if ai_msg:
|
236 |
conversation_history += f"Assistant: {ai_msg}\n"
|
237 |
-
|
238 |
try:
|
239 |
mcp_tool_func = modal.Function.from_name("HuggingFace-MCP","connect_and_get_tools")
|
240 |
hf_query_gen_tool_details = mcp_tool_func.remote()
|
@@ -247,12 +249,15 @@ async def generate_plan(history, file_cache):
|
|
247 |
Tool_Details=hf_query_gen_tool_details
|
248 |
) + "\n\n" + conversation_history
|
249 |
# Get plan from Gemini
|
|
|
|
|
250 |
plan = generate_with_gemini(formatted_prompt, "Planning with gemini")
|
251 |
-
|
252 |
# Parse the plan
|
253 |
parsed_plan = parse_json_codefences(plan)
|
254 |
print(parsed_plan)
|
255 |
# Call tool to get tool calls
|
|
|
|
|
256 |
try:
|
257 |
mcp_call_tool_func = modal.Function.from_name(app_name="HuggingFace-MCP",name="call_tool")
|
258 |
tool_calls = []
|
@@ -262,6 +267,8 @@ async def generate_plan(history, file_cache):
|
|
262 |
print(str(e))
|
263 |
tool_calls = []
|
264 |
print(tool_calls)
|
|
|
|
|
265 |
if tool_calls!=[]:
|
266 |
formatted_context_prompt = hf_context_gen_prompt.format(
|
267 |
Conversation=conversation_history,
|
@@ -277,12 +284,14 @@ async def generate_plan(history, file_cache):
|
|
277 |
Results="Couldn't generate the tool calls results but use your knowledge about huggingface platform(models, datasets, spaces, training libraries, transfomers library etc.) as backup to generate the plan"
|
278 |
)
|
279 |
context = generate_with_gemini(formatted_context_prompt, "Generating context for plan")
|
|
|
280 |
|
281 |
return context
|
282 |
|
283 |
-
def generate_code_with_devstral(plan_text, history, file_cache):
|
284 |
"""Generate code using the deployed Devstral model via Modal"""
|
285 |
-
|
|
|
286 |
if not MODAL_AVAILABLE:
|
287 |
return "β Modal not available. Please install Modal to use code generation."
|
288 |
|
@@ -332,6 +341,7 @@ def generate_code_with_devstral(plan_text, history, file_cache):
|
|
332 |
api_key = os.getenv("DEVSTRAL_API_KEY")
|
333 |
print(f"π Generating code using Devstral...")
|
334 |
print(f"π‘ Connecting to: {base_url}")
|
|
|
335 |
|
336 |
try:
|
337 |
devstral_inference_func = modal.Function.from_name("devstral-inference-client", "run_devstral_inference")
|
@@ -343,16 +353,28 @@ def generate_code_with_devstral(plan_text, history, file_cache):
|
|
343 |
mode="single"
|
344 |
)
|
345 |
if result and "response" in result:
|
|
|
|
|
346 |
code_output = result["response"]
|
347 |
return f"π **Generated Code:**\n\n{code_output}"
|
348 |
else:
|
|
|
|
|
349 |
return "β **Error:** No response received from Devstral model."
|
350 |
except Exception as e:
|
|
|
|
|
351 |
return f"β **Error:** {str(e)}"
|
352 |
-
def execute_code(code_output):
|
|
|
|
|
353 |
try:
|
|
|
|
|
354 |
code = parse_python_codefences(code_output)
|
355 |
print(code)
|
|
|
|
|
356 |
result = code_eval(code)
|
357 |
if isinstance(result, dict):
|
358 |
result_str = json.dumps(result, indent=4)
|
@@ -360,8 +382,13 @@ def execute_code(code_output):
|
|
360 |
result_str = '\n'.join(str(x) for x in result)
|
361 |
else:
|
362 |
result_str = str(result)
|
|
|
|
|
|
|
363 |
return result_str
|
364 |
except Exception as e:
|
|
|
|
|
365 |
return f"β **Error:** {str(e)}"
|
366 |
|
367 |
# Custom CSS for a sleek design
|
|
|
224 |
return files
|
225 |
return []
|
226 |
|
227 |
+
async def generate_plan(history, file_cache, progress=gr.Progress()):
|
228 |
"""Generate a plan using the planning prompt and Gemini API"""
|
229 |
|
230 |
# Build conversation history
|
231 |
+
progress(0, desc="Starting")
|
232 |
+
|
233 |
conversation_history = ""
|
234 |
if history:
|
235 |
for user_msg, ai_msg in history:
|
236 |
conversation_history += f"User: {user_msg}\n"
|
237 |
if ai_msg:
|
238 |
conversation_history += f"Assistant: {ai_msg}\n"
|
239 |
+
progress(0.05, desc="Getting HF MCP tools")
|
240 |
try:
|
241 |
mcp_tool_func = modal.Function.from_name("HuggingFace-MCP","connect_and_get_tools")
|
242 |
hf_query_gen_tool_details = mcp_tool_func.remote()
|
|
|
249 |
Tool_Details=hf_query_gen_tool_details
|
250 |
) + "\n\n" + conversation_history
|
251 |
# Get plan from Gemini
|
252 |
+
progress(0.15, desc="Strategizing which tools to call")
|
253 |
+
|
254 |
plan = generate_with_gemini(formatted_prompt, "Planning with gemini")
|
|
|
255 |
# Parse the plan
|
256 |
parsed_plan = parse_json_codefences(plan)
|
257 |
print(parsed_plan)
|
258 |
# Call tool to get tool calls
|
259 |
+
progress(0.50, desc="calling HF platform tools and getting data")
|
260 |
+
|
261 |
try:
|
262 |
mcp_call_tool_func = modal.Function.from_name(app_name="HuggingFace-MCP",name="call_tool")
|
263 |
tool_calls = []
|
|
|
267 |
print(str(e))
|
268 |
tool_calls = []
|
269 |
print(tool_calls)
|
270 |
+
progress(0.75, desc="Generating Plan context from tool call info")
|
271 |
+
|
272 |
if tool_calls!=[]:
|
273 |
formatted_context_prompt = hf_context_gen_prompt.format(
|
274 |
Conversation=conversation_history,
|
|
|
284 |
Results="Couldn't generate the tool calls results but use your knowledge about huggingface platform(models, datasets, spaces, training libraries, transfomers library etc.) as backup to generate the plan"
|
285 |
)
|
286 |
context = generate_with_gemini(formatted_context_prompt, "Generating context for plan")
|
287 |
+
progress(1, desc="Complete Plan generated")
|
288 |
|
289 |
return context
|
290 |
|
291 |
+
def generate_code_with_devstral(plan_text, history, file_cache, progress=gr.Progress()):
|
292 |
"""Generate code using the deployed Devstral model via Modal"""
|
293 |
+
progress(0, desc="Starting Codegen")
|
294 |
+
|
295 |
if not MODAL_AVAILABLE:
|
296 |
return "β Modal not available. Please install Modal to use code generation."
|
297 |
|
|
|
341 |
api_key = os.getenv("DEVSTRAL_API_KEY")
|
342 |
print(f"π Generating code using Devstral...")
|
343 |
print(f"π‘ Connecting to: {base_url}")
|
344 |
+
progress(0.1, desc="Calling Devstral VLLM API server deployed on Modal")
|
345 |
|
346 |
try:
|
347 |
devstral_inference_func = modal.Function.from_name("devstral-inference-client", "run_devstral_inference")
|
|
|
353 |
mode="single"
|
354 |
)
|
355 |
if result and "response" in result:
|
356 |
+
progress(1, desc="Code has been generated")
|
357 |
+
|
358 |
code_output = result["response"]
|
359 |
return f"π **Generated Code:**\n\n{code_output}"
|
360 |
else:
|
361 |
+
progress(1, desc="Error")
|
362 |
+
|
363 |
return "β **Error:** No response received from Devstral model."
|
364 |
except Exception as e:
|
365 |
+
progress(1, desc="Error")
|
366 |
+
|
367 |
return f"β **Error:** {str(e)}"
|
368 |
+
def execute_code(code_output, progress=gr.Progress()):
|
369 |
+
progress(0, desc="Starting Code Execution")
|
370 |
+
|
371 |
try:
|
372 |
+
progress(0.05, desc="Parsing Python codefence")
|
373 |
+
|
374 |
code = parse_python_codefences(code_output)
|
375 |
print(code)
|
376 |
+
progress(0.1, desc="Running code in sandbox")
|
377 |
+
|
378 |
result = code_eval(code)
|
379 |
if isinstance(result, dict):
|
380 |
result_str = json.dumps(result, indent=4)
|
|
|
382 |
result_str = '\n'.join(str(x) for x in result)
|
383 |
else:
|
384 |
result_str = str(result)
|
385 |
+
|
386 |
+
progress(1, desc="Code Execution Complete")
|
387 |
+
|
388 |
return result_str
|
389 |
except Exception as e:
|
390 |
+
progress(1, desc="Error")
|
391 |
+
|
392 |
return f"β **Error:** {str(e)}"
|
393 |
|
394 |
# Custom CSS for a sleek design
|