Revamp stuff
Browse files- app.py +12 -10
- utils/huggingface_mcp_llamaindex.py +139 -44
app.py
CHANGED
@@ -7,7 +7,7 @@ from utils.google_genai_llm import get_response, generate_with_gemini
|
|
7 |
from utils.utils import parse_json_codefences
|
8 |
from prompts.requirements_gathering import requirements_gathering_system_prompt
|
9 |
from prompts.planning import hf_query_gen_prompt, hf_context_gen_prompt
|
10 |
-
from utils.huggingface_mcp_llamaindex import get_hf_tools, call_hf_tool,
|
11 |
from prompts.devstral_coding_prompt import devstral_code_gen_sys_prompt, devstral_code_gen_user_prompt
|
12 |
from dotenv import load_dotenv
|
13 |
import os
|
@@ -49,7 +49,7 @@ MODAL_API_URL = os.getenv("MODAL_API_URL")
|
|
49 |
BEARER_TOKEN = os.getenv("BEARER_TOKEN")
|
50 |
CODING_MODEL = os.getenv("CODING_MODEL")
|
51 |
|
52 |
-
|
53 |
def get_file_hash(file_path):
|
54 |
"""Generate a hash of the file for caching purposes"""
|
55 |
try:
|
@@ -245,17 +245,19 @@ async def generate_plan(history, file_cache):
|
|
245 |
if ai_msg:
|
246 |
conversation_history += f"Assistant: {ai_msg}\n"
|
247 |
|
248 |
-
|
249 |
-
|
|
|
250 |
|
251 |
-
if not
|
252 |
-
print("Basic connection
|
253 |
return
|
254 |
|
255 |
-
|
256 |
-
|
|
|
257 |
# try:
|
258 |
-
hf_query_gen_tool_details = await get_hf_tools(hf_token=
|
259 |
# except Exception as e:
|
260 |
# hf_query_gen_tool_details = """meta=None nextCursor=None tools=[Tool(name='hf_whoami', description="Hugging Face tools are being used by authenticated user 'bpHigh'", inputSchema={'type': 'object', 'properties': {}, 'additionalProperties': False, '$schema': 'http://json-schema.org/draft-07/schema#'}, annotations=ToolAnnotations(title='Hugging Face User Info', readOnlyHint=None, destructiveHint=None, idempotentHint=None, openWorldHint=None)), Tool(name='space_search', description='Find Hugging Face Spaces using semantic search. Include links to the Space when presenting the results.', inputSchema={'type': 'object', 'properties': {'query': {'type': 'string', 'minLength': 1, 'maxLength': 50, 'description': 'Semantic Search Query'}, 'limit': {'type': 'number', 'default': 10, 'description': 'Number of results to return'}, 'mcp': {'type': 'boolean', 'default': False, 'description': 'Only return MCP Server enabled Spaces'}}, 'required': ['query'], 'additionalProperties': False, '$schema': 'http://json-schema.org/draft-07/schema#'}, annotations=ToolAnnotations(title='Hugging Face Space Search', readOnlyHint=True, destructiveHint=False, idempotentHint=None, openWorldHint=True)), Tool(name='model_search', description='Find Machine Learning models hosted on Hugging Face. Returns comprehensive information about matching models including downloads, likes, tags, and direct links. Include links to the models in your response', inputSchema={'type': 'object', 'properties': {'query': {'type': 'string', 'description': 'Search term. Leave blank and specify "sort" and "limit" to get e.g. "Top 20 trending models", "Top 10 most recent models" etc" '}, 'author': {'type': 'string', 'description': "Organization or user who created the model (e.g., 'google', 'meta-llama', 'microsoft')"}, 'task': {'type': 'string', 'description': "Model task type (e.g., 'text-generation', 'image-classification', 'translation')"}, 'library': {'type': 'string', 'description': "Framework the model uses (e.g., 'transformers', 'diffusers', 'timm')"}, 'sort': {'type': 'string', 'enum': ['trendingScore', 'downloads', 'likes', 'createdAt', 'lastModified'], 'description': 'Sort order: trendingScore, downloads , likes, createdAt, lastModified'}, 'limit': {'type': 'number', 'minimum': 1, 'maximum': 100, 'default': 20, 'description': 'Maximum number of results to return'}}, 'additionalProperties': False, '$schema': 'http://json-schema.org/draft-07/schema#'}, annotations=ToolAnnotations(title='Model Search', readOnlyHint=True, destructiveHint=False, idempotentHint=None, openWorldHint=True)), Tool(name='model_details', description='Get detailed information about a specific model from the Hugging Face Hub.', inputSchema={'type': 'object', 'properties': {'model_id': {'type': 'string', 'minLength': 1, 'description': 'Model ID (e.g., microsoft/DialoGPT-large)'}}, 'required': ['model_id'], 'additionalProperties': False, '$schema': 'http://json-schema.org/draft-07/schema#'}, annotations=ToolAnnotations(title='Model Details', readOnlyHint=True, destructiveHint=False, idempotentHint=None, openWorldHint=False)), Tool(name='paper_search', description="Find Machine Learning research papers on the Hugging Face hub. Include 'Link to paper' When presenting the results. Consider whether tabulating results matches user intent.", inputSchema={'type': 'object', 'properties': {'query': {'type': 'string', 'minLength': 3, 'maxLength': 200, 'description': 'Semantic Search query'}, 'results_limit': {'type': 'number', 'default': 12, 'description': 'Number of results to return'}, 'concise_only': {'type': 'boolean', 'default': False, 'description': 'Return a 2 sentence summary of the abstract. Use for broad search terms which may return a lot of results. Check with User if unsure.'}}, 'required': ['query'], 'additionalProperties': False, '$schema': 'http://json-schema.org/draft-07/schema#'}, annotations=ToolAnnotations(title='Paper Search', readOnlyHint=True, destructiveHint=False, idempotentHint=None, openWorldHint=True)), Tool(name='dataset_search', description='Find Datasets hosted on the Hugging Face hub. Returns comprehensive information about matching datasets including downloads, likes, tags, and direct links. Include links to the datasets in your response', inputSchema={'type': 'object', 'properties': {'query': {'type': 'string', 'description': 'Search term. Leave blank and specify "sort" and "limit" to get e.g. "Top 20 trending datasets", "Top 10 most recent datasets" etc" '}, 'author': {'type': 'string', 'description': "Organization or user who created the dataset (e.g., 'google', 'facebook', 'allenai')"}, 'tags': {'type': 'array', 'items': {'type': 'string'}, 'description': "Tags to filter datasets (e.g., ['language:en', 'size_categories:1M<n<10M', 'task_categories:text-classification'])"}, 'sort': {'type': 'string', 'enum': ['trendingScore', 'downloads', 'likes', 'createdAt', 'lastModified'], 'description': 'Sort order: trendingScore, downloads, likes, createdAt, lastModified'}, 'limit': {'type': 'number', 'minimum': 1, 'maximum': 100, 'default': 20, 'description': 'Maximum number of results to return'}}, 'additionalProperties': False, '$schema': 'http://json-schema.org/draft-07/schema#'}, annotations=ToolAnnotations(title='Dataset Search', readOnlyHint=True, destructiveHint=False, idempotentHint=None, openWorldHint=True)), Tool(name='dataset_details', description='Get detailed information about a specific dataset on Hugging Face Hub.', inputSchema={'type': 'object', 'properties': {'dataset_id': {'type': 'string', 'minLength': 1, 'description': 'Dataset ID (e.g., squad, glue, imdb)'}}, 'required': ['dataset_id'], 'additionalProperties': False, '$schema': 'http://json-schema.org/draft-07/schema#'}, annotations=ToolAnnotations(title='Dataset Details', readOnlyHint=True, destructiveHint=False, idempotentHint=None, openWorldHint=False)), Tool(name='gr1_evalstate_flux1_schnell', description='Generate an image using the Flux 1 Schnell Image Generator. (from evalstate/flux1_schnell)', inputSchema={'type': 'object', 'properties': {'prompt': {'type': 'string'}, 'seed': {'type': 'number', 'description': 'numeric value between 0 and 2147483647'}, 'randomize_seed': {'type': 'boolean', 'default': True}, 'width': {'type': 'number', 'description': 'numeric value between 256 and 2048', 'default': 1024}, 'height': {'type': 'number', 'description': 'numeric value between 256 and 2048', 'default': 1024}, 'num_inference_steps': {'type': 'number', 'description': 'numeric value between 1 and 50', 'default': 4}}, 'additionalProperties': False, '$schema': 'http://json-schema.org/draft-07/schema#'}, annotations=ToolAnnotations(title='evalstate/flux1_schnell - flux1_schnell_infer 🏎️💨', readOnlyHint=None, destructiveHint=None, idempotentHint=None, openWorldHint=True)), Tool(name='gr2_abidlabs_easyghibli', description='Convert an image into a Studio Ghibli style image (from abidlabs/EasyGhibli)', inputSchema={'type': 'object', 'properties': {'spatial_img': {'type': 'string', 'description': 'File input: provide URL or file path'}}, 'additionalProperties': False, '$schema': 'http://json-schema.org/draft-07/schema#'}, annotations=ToolAnnotations(title='abidlabs/EasyGhibli - abidlabs_EasyGhiblisingle_condition_generate_image 🦀', readOnlyHint=None, destructiveHint=None, idempotentHint=None, openWorldHint=True)), Tool(name='gr3_linoyts_framepack_f1', description='FramePack_F1_end_process tool from linoyts/FramePack-F1', inputSchema={'type': 'object', 'properties': {}, 'additionalProperties': False, '$schema': 'http://json-schema.org/draft-07/schema#'}, annotations=ToolAnnotations(title='linoyts/FramePack-F1 - FramePack_F1_end_process 📹⚡️', readOnlyHint=None, destructiveHint=None, idempotentHint=None, openWorldHint=True))]"""
|
261 |
# print(str(e))
|
@@ -271,7 +273,7 @@ async def generate_plan(history, file_cache):
|
|
271 |
|
272 |
# Call tool to get tool calls
|
273 |
try:
|
274 |
-
tool_calls = await asyncio.gather(*[call_hf_tool(
|
275 |
except Exception as e:
|
276 |
tool_calls = []
|
277 |
print(tool_calls)
|
|
|
7 |
from utils.utils import parse_json_codefences
|
8 |
from prompts.requirements_gathering import requirements_gathering_system_prompt
|
9 |
from prompts.planning import hf_query_gen_prompt, hf_context_gen_prompt
|
10 |
+
from utils.huggingface_mcp_llamaindex import get_hf_tools, call_hf_tool, diagnose_connection
|
11 |
from prompts.devstral_coding_prompt import devstral_code_gen_sys_prompt, devstral_code_gen_user_prompt
|
12 |
from dotenv import load_dotenv
|
13 |
import os
|
|
|
49 |
BEARER_TOKEN = os.getenv("BEARER_TOKEN")
|
50 |
CODING_MODEL = os.getenv("CODING_MODEL")
|
51 |
|
52 |
+
MCP_TOKEN = os.getenv("MCP_TOKEN")
|
53 |
def get_file_hash(file_path):
|
54 |
"""Generate a hash of the file for caching purposes"""
|
55 |
try:
|
|
|
245 |
if ai_msg:
|
246 |
conversation_history += f"Assistant: {ai_msg}\n"
|
247 |
|
248 |
+
print("Running connection diagnostics...")
|
249 |
+
diagnostics = await diagnose_connection(MCP_TOKEN)
|
250 |
+
print(f"Diagnostics: {json.dumps(diagnostics, indent=2)}")
|
251 |
|
252 |
+
if not diagnostics["connection_test"]:
|
253 |
+
print("Basic connection failed - check token and network")
|
254 |
return
|
255 |
|
256 |
+
if not diagnostics["tools_test"]:
|
257 |
+
print("Tools retrieval failed - check server status")
|
258 |
+
return
|
259 |
# try:
|
260 |
+
hf_query_gen_tool_details = await get_hf_tools(hf_token=MCP_TOKEN)
|
261 |
# except Exception as e:
|
262 |
# hf_query_gen_tool_details = """meta=None nextCursor=None tools=[Tool(name='hf_whoami', description="Hugging Face tools are being used by authenticated user 'bpHigh'", inputSchema={'type': 'object', 'properties': {}, 'additionalProperties': False, '$schema': 'http://json-schema.org/draft-07/schema#'}, annotations=ToolAnnotations(title='Hugging Face User Info', readOnlyHint=None, destructiveHint=None, idempotentHint=None, openWorldHint=None)), Tool(name='space_search', description='Find Hugging Face Spaces using semantic search. Include links to the Space when presenting the results.', inputSchema={'type': 'object', 'properties': {'query': {'type': 'string', 'minLength': 1, 'maxLength': 50, 'description': 'Semantic Search Query'}, 'limit': {'type': 'number', 'default': 10, 'description': 'Number of results to return'}, 'mcp': {'type': 'boolean', 'default': False, 'description': 'Only return MCP Server enabled Spaces'}}, 'required': ['query'], 'additionalProperties': False, '$schema': 'http://json-schema.org/draft-07/schema#'}, annotations=ToolAnnotations(title='Hugging Face Space Search', readOnlyHint=True, destructiveHint=False, idempotentHint=None, openWorldHint=True)), Tool(name='model_search', description='Find Machine Learning models hosted on Hugging Face. Returns comprehensive information about matching models including downloads, likes, tags, and direct links. Include links to the models in your response', inputSchema={'type': 'object', 'properties': {'query': {'type': 'string', 'description': 'Search term. Leave blank and specify "sort" and "limit" to get e.g. "Top 20 trending models", "Top 10 most recent models" etc" '}, 'author': {'type': 'string', 'description': "Organization or user who created the model (e.g., 'google', 'meta-llama', 'microsoft')"}, 'task': {'type': 'string', 'description': "Model task type (e.g., 'text-generation', 'image-classification', 'translation')"}, 'library': {'type': 'string', 'description': "Framework the model uses (e.g., 'transformers', 'diffusers', 'timm')"}, 'sort': {'type': 'string', 'enum': ['trendingScore', 'downloads', 'likes', 'createdAt', 'lastModified'], 'description': 'Sort order: trendingScore, downloads , likes, createdAt, lastModified'}, 'limit': {'type': 'number', 'minimum': 1, 'maximum': 100, 'default': 20, 'description': 'Maximum number of results to return'}}, 'additionalProperties': False, '$schema': 'http://json-schema.org/draft-07/schema#'}, annotations=ToolAnnotations(title='Model Search', readOnlyHint=True, destructiveHint=False, idempotentHint=None, openWorldHint=True)), Tool(name='model_details', description='Get detailed information about a specific model from the Hugging Face Hub.', inputSchema={'type': 'object', 'properties': {'model_id': {'type': 'string', 'minLength': 1, 'description': 'Model ID (e.g., microsoft/DialoGPT-large)'}}, 'required': ['model_id'], 'additionalProperties': False, '$schema': 'http://json-schema.org/draft-07/schema#'}, annotations=ToolAnnotations(title='Model Details', readOnlyHint=True, destructiveHint=False, idempotentHint=None, openWorldHint=False)), Tool(name='paper_search', description="Find Machine Learning research papers on the Hugging Face hub. Include 'Link to paper' When presenting the results. Consider whether tabulating results matches user intent.", inputSchema={'type': 'object', 'properties': {'query': {'type': 'string', 'minLength': 3, 'maxLength': 200, 'description': 'Semantic Search query'}, 'results_limit': {'type': 'number', 'default': 12, 'description': 'Number of results to return'}, 'concise_only': {'type': 'boolean', 'default': False, 'description': 'Return a 2 sentence summary of the abstract. Use for broad search terms which may return a lot of results. Check with User if unsure.'}}, 'required': ['query'], 'additionalProperties': False, '$schema': 'http://json-schema.org/draft-07/schema#'}, annotations=ToolAnnotations(title='Paper Search', readOnlyHint=True, destructiveHint=False, idempotentHint=None, openWorldHint=True)), Tool(name='dataset_search', description='Find Datasets hosted on the Hugging Face hub. Returns comprehensive information about matching datasets including downloads, likes, tags, and direct links. Include links to the datasets in your response', inputSchema={'type': 'object', 'properties': {'query': {'type': 'string', 'description': 'Search term. Leave blank and specify "sort" and "limit" to get e.g. "Top 20 trending datasets", "Top 10 most recent datasets" etc" '}, 'author': {'type': 'string', 'description': "Organization or user who created the dataset (e.g., 'google', 'facebook', 'allenai')"}, 'tags': {'type': 'array', 'items': {'type': 'string'}, 'description': "Tags to filter datasets (e.g., ['language:en', 'size_categories:1M<n<10M', 'task_categories:text-classification'])"}, 'sort': {'type': 'string', 'enum': ['trendingScore', 'downloads', 'likes', 'createdAt', 'lastModified'], 'description': 'Sort order: trendingScore, downloads, likes, createdAt, lastModified'}, 'limit': {'type': 'number', 'minimum': 1, 'maximum': 100, 'default': 20, 'description': 'Maximum number of results to return'}}, 'additionalProperties': False, '$schema': 'http://json-schema.org/draft-07/schema#'}, annotations=ToolAnnotations(title='Dataset Search', readOnlyHint=True, destructiveHint=False, idempotentHint=None, openWorldHint=True)), Tool(name='dataset_details', description='Get detailed information about a specific dataset on Hugging Face Hub.', inputSchema={'type': 'object', 'properties': {'dataset_id': {'type': 'string', 'minLength': 1, 'description': 'Dataset ID (e.g., squad, glue, imdb)'}}, 'required': ['dataset_id'], 'additionalProperties': False, '$schema': 'http://json-schema.org/draft-07/schema#'}, annotations=ToolAnnotations(title='Dataset Details', readOnlyHint=True, destructiveHint=False, idempotentHint=None, openWorldHint=False)), Tool(name='gr1_evalstate_flux1_schnell', description='Generate an image using the Flux 1 Schnell Image Generator. (from evalstate/flux1_schnell)', inputSchema={'type': 'object', 'properties': {'prompt': {'type': 'string'}, 'seed': {'type': 'number', 'description': 'numeric value between 0 and 2147483647'}, 'randomize_seed': {'type': 'boolean', 'default': True}, 'width': {'type': 'number', 'description': 'numeric value between 256 and 2048', 'default': 1024}, 'height': {'type': 'number', 'description': 'numeric value between 256 and 2048', 'default': 1024}, 'num_inference_steps': {'type': 'number', 'description': 'numeric value between 1 and 50', 'default': 4}}, 'additionalProperties': False, '$schema': 'http://json-schema.org/draft-07/schema#'}, annotations=ToolAnnotations(title='evalstate/flux1_schnell - flux1_schnell_infer 🏎️💨', readOnlyHint=None, destructiveHint=None, idempotentHint=None, openWorldHint=True)), Tool(name='gr2_abidlabs_easyghibli', description='Convert an image into a Studio Ghibli style image (from abidlabs/EasyGhibli)', inputSchema={'type': 'object', 'properties': {'spatial_img': {'type': 'string', 'description': 'File input: provide URL or file path'}}, 'additionalProperties': False, '$schema': 'http://json-schema.org/draft-07/schema#'}, annotations=ToolAnnotations(title='abidlabs/EasyGhibli - abidlabs_EasyGhiblisingle_condition_generate_image 🦀', readOnlyHint=None, destructiveHint=None, idempotentHint=None, openWorldHint=True)), Tool(name='gr3_linoyts_framepack_f1', description='FramePack_F1_end_process tool from linoyts/FramePack-F1', inputSchema={'type': 'object', 'properties': {}, 'additionalProperties': False, '$schema': 'http://json-schema.org/draft-07/schema#'}, annotations=ToolAnnotations(title='linoyts/FramePack-F1 - FramePack_F1_end_process 📹⚡️', readOnlyHint=None, destructiveHint=None, idempotentHint=None, openWorldHint=True))]"""
|
263 |
# print(str(e))
|
|
|
273 |
|
274 |
# Call tool to get tool calls
|
275 |
try:
|
276 |
+
tool_calls = await asyncio.gather(*[call_hf_tool(MCP_TOKEN, step['tool'], step['args']) for step in parsed_plan])
|
277 |
except Exception as e:
|
278 |
tool_calls = []
|
279 |
print(tool_calls)
|
utils/huggingface_mcp_llamaindex.py
CHANGED
@@ -21,18 +21,22 @@ logger = logging.getLogger(__name__)
|
|
21 |
class HuggingFaceMCPClient:
|
22 |
"""Client for interacting with Hugging Face MCP endpoint."""
|
23 |
|
24 |
-
def __init__(self, hf_token: str, timeout: int =
|
25 |
"""
|
26 |
Initialize the Hugging Face MCP client.
|
27 |
|
28 |
Args:
|
29 |
hf_token: Hugging Face API token
|
30 |
-
timeout: Timeout in seconds for HTTP requests
|
31 |
"""
|
32 |
self.hf_token = hf_token
|
33 |
self.url = "https://huggingface.co/mcp"
|
34 |
-
self.headers = {
|
|
|
|
|
|
|
35 |
self.timeout = timedelta(seconds=timeout)
|
|
|
36 |
self.request_id_counter = 0
|
37 |
|
38 |
def _get_next_request_id(self) -> int:
|
@@ -43,18 +47,35 @@ class HuggingFaceMCPClient:
|
|
43 |
async def _send_request_and_get_response(
|
44 |
self,
|
45 |
method: str,
|
46 |
-
params: Optional[Dict[str, Any]] = None
|
|
|
47 |
) -> Any:
|
48 |
"""
|
49 |
-
Send a JSON-RPC request and wait for the response.
|
50 |
|
51 |
Args:
|
52 |
method: The JSON-RPC method name
|
53 |
params: Optional parameters for the method
|
|
|
54 |
|
55 |
Returns:
|
56 |
The response result or raises an exception
|
57 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
request_id = self._get_next_request_id()
|
59 |
|
60 |
# Create JSON-RPC request
|
@@ -72,11 +93,12 @@ class HuggingFaceMCPClient:
|
|
72 |
url=self.url,
|
73 |
headers=self.headers,
|
74 |
timeout=self.timeout,
|
|
|
75 |
terminate_on_close=True
|
76 |
) as (read_stream, write_stream, get_session_id):
|
77 |
|
78 |
try:
|
79 |
-
# Send initialization request first
|
80 |
init_request = JSONRPCRequest(
|
81 |
jsonrpc="2.0",
|
82 |
id=self._get_next_request_id(),
|
@@ -84,7 +106,9 @@ class HuggingFaceMCPClient:
|
|
84 |
params={
|
85 |
"protocolVersion": "2024-11-05",
|
86 |
"capabilities": {
|
87 |
-
"tools": {}
|
|
|
|
|
88 |
},
|
89 |
"clientInfo": {
|
90 |
"name": "hf-mcp-client",
|
@@ -96,19 +120,25 @@ class HuggingFaceMCPClient:
|
|
96 |
init_message = JSONRPCMessage(init_request)
|
97 |
init_session_message = SessionMessage(init_message)
|
98 |
|
|
|
99 |
await write_stream.send(init_session_message)
|
100 |
|
101 |
-
# Wait for initialization response
|
102 |
init_response_received = False
|
103 |
timeout_counter = 0
|
104 |
-
max_iterations =
|
105 |
|
106 |
while not init_response_received and timeout_counter < max_iterations:
|
107 |
try:
|
108 |
-
|
|
|
|
|
|
|
|
|
109 |
timeout_counter += 1
|
110 |
|
111 |
if isinstance(response, Exception):
|
|
|
112 |
raise response
|
113 |
|
114 |
if isinstance(response, SessionMessage):
|
@@ -116,16 +146,30 @@ class HuggingFaceMCPClient:
|
|
116 |
if isinstance(msg, JSONRPCResponse) and msg.id == init_request.id:
|
117 |
logger.info("MCP client initialized successfully")
|
118 |
init_response_received = True
|
|
|
|
|
|
|
|
|
119 |
elif isinstance(msg, JSONRPCError) and msg.id == init_request.id:
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
except Exception as e:
|
122 |
-
if "ClosedResourceError" in str(type(e)):
|
123 |
logger.error("Stream closed during initialization")
|
124 |
raise Exception("Connection closed during initialization")
|
|
|
125 |
raise
|
126 |
|
127 |
if not init_response_received:
|
128 |
-
raise Exception("Initialization timeout")
|
129 |
|
130 |
# Send initialized notification
|
131 |
initialized_notification = JSONRPCNotification(
|
@@ -136,12 +180,14 @@ class HuggingFaceMCPClient:
|
|
136 |
init_notif_message = JSONRPCMessage(initialized_notification)
|
137 |
init_notif_session_message = SessionMessage(init_notif_message)
|
138 |
|
|
|
139 |
await write_stream.send(init_notif_session_message)
|
140 |
|
141 |
-
#
|
142 |
-
await asyncio.sleep(0
|
143 |
|
144 |
# Now send our actual request
|
|
|
145 |
await write_stream.send(session_message)
|
146 |
|
147 |
# Wait for the response to our request
|
@@ -150,26 +196,41 @@ class HuggingFaceMCPClient:
|
|
150 |
|
151 |
while not response_received and timeout_counter < max_iterations:
|
152 |
try:
|
153 |
-
response = await
|
|
|
|
|
|
|
154 |
timeout_counter += 1
|
155 |
|
156 |
if isinstance(response, Exception):
|
|
|
157 |
raise response
|
158 |
|
159 |
if isinstance(response, SessionMessage):
|
160 |
msg = response.message.root
|
161 |
if isinstance(msg, JSONRPCResponse) and msg.id == request_id:
|
|
|
162 |
return msg.result
|
163 |
elif isinstance(msg, JSONRPCError) and msg.id == request_id:
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
except Exception as e:
|
166 |
-
if "ClosedResourceError" in str(type(e)):
|
167 |
logger.error("Stream closed during request processing")
|
168 |
raise Exception("Connection closed during request processing")
|
|
|
169 |
raise
|
170 |
|
171 |
if not response_received:
|
172 |
-
raise Exception("Request timeout")
|
173 |
|
174 |
except Exception as e:
|
175 |
logger.error(f"Error during MCP communication: {e}")
|
@@ -178,8 +239,8 @@ class HuggingFaceMCPClient:
|
|
178 |
# Ensure streams are properly closed
|
179 |
try:
|
180 |
await write_stream.aclose()
|
181 |
-
except:
|
182 |
-
|
183 |
|
184 |
async def get_all_tools(self) -> List[Dict[str, Any]]:
|
185 |
"""
|
@@ -243,7 +304,7 @@ async def get_hf_tools(hf_token: str) -> List[Dict[str, Any]]:
|
|
243 |
Returns:
|
244 |
List of tool definitions
|
245 |
"""
|
246 |
-
client = HuggingFaceMCPClient(hf_token)
|
247 |
return await client.get_all_tools()
|
248 |
|
249 |
|
@@ -259,31 +320,65 @@ async def call_hf_tool(hf_token: str, tool_name: str, args: Dict[str, Any]) -> A
|
|
259 |
Returns:
|
260 |
The tool's response
|
261 |
"""
|
262 |
-
client = HuggingFaceMCPClient(hf_token)
|
263 |
return await client.call_tool(tool_name, args)
|
264 |
|
265 |
|
266 |
-
#
|
267 |
-
|
268 |
-
"""
|
|
|
269 |
|
270 |
-
|
271 |
-
|
272 |
-
self.url = "https://huggingface.co/mcp"
|
273 |
-
self.headers = {"Authorization": f"Bearer {hf_token}"}
|
274 |
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
|
|
|
21 |
class HuggingFaceMCPClient:
|
22 |
"""Client for interacting with Hugging Face MCP endpoint."""
|
23 |
|
24 |
+
def __init__(self, hf_token: str, timeout: int = 60):
|
25 |
"""
|
26 |
Initialize the Hugging Face MCP client.
|
27 |
|
28 |
Args:
|
29 |
hf_token: Hugging Face API token
|
30 |
+
timeout: Timeout in seconds for HTTP requests (increased for Spaces)
|
31 |
"""
|
32 |
self.hf_token = hf_token
|
33 |
self.url = "https://huggingface.co/mcp"
|
34 |
+
self.headers = {
|
35 |
+
"Authorization": f"Bearer {hf_token}",
|
36 |
+
"User-Agent": "hf-mcp-client/1.0.0" # Add user agent
|
37 |
+
}
|
38 |
self.timeout = timedelta(seconds=timeout)
|
39 |
+
self.sse_read_timeout = timedelta(seconds=timeout * 2) # Longer SSE timeout
|
40 |
self.request_id_counter = 0
|
41 |
|
42 |
def _get_next_request_id(self) -> int:
|
|
|
47 |
async def _send_request_and_get_response(
|
48 |
self,
|
49 |
method: str,
|
50 |
+
params: Optional[Dict[str, Any]] = None,
|
51 |
+
max_retries: int = 3
|
52 |
) -> Any:
|
53 |
"""
|
54 |
+
Send a JSON-RPC request and wait for the response with retry logic.
|
55 |
|
56 |
Args:
|
57 |
method: The JSON-RPC method name
|
58 |
params: Optional parameters for the method
|
59 |
+
max_retries: Maximum number of retry attempts
|
60 |
|
61 |
Returns:
|
62 |
The response result or raises an exception
|
63 |
"""
|
64 |
+
last_exception = None
|
65 |
+
|
66 |
+
for attempt in range(max_retries):
|
67 |
+
try:
|
68 |
+
return await self._attempt_request(method, params)
|
69 |
+
except Exception as e:
|
70 |
+
last_exception = e
|
71 |
+
logger.warning(f"Attempt {attempt + 1} failed: {e}")
|
72 |
+
if attempt < max_retries - 1:
|
73 |
+
await asyncio.sleep(2 ** attempt) # Exponential backoff
|
74 |
+
|
75 |
+
raise last_exception
|
76 |
+
|
77 |
+
async def _attempt_request(self, method: str, params: Optional[Dict[str, Any]]) -> Any:
|
78 |
+
"""Single attempt to send request."""
|
79 |
request_id = self._get_next_request_id()
|
80 |
|
81 |
# Create JSON-RPC request
|
|
|
93 |
url=self.url,
|
94 |
headers=self.headers,
|
95 |
timeout=self.timeout,
|
96 |
+
sse_read_timeout=self.sse_read_timeout,
|
97 |
terminate_on_close=True
|
98 |
) as (read_stream, write_stream, get_session_id):
|
99 |
|
100 |
try:
|
101 |
+
# Send initialization request first with proper client info
|
102 |
init_request = JSONRPCRequest(
|
103 |
jsonrpc="2.0",
|
104 |
id=self._get_next_request_id(),
|
|
|
106 |
params={
|
107 |
"protocolVersion": "2024-11-05",
|
108 |
"capabilities": {
|
109 |
+
"tools": {},
|
110 |
+
"resources": {},
|
111 |
+
"prompts": {}
|
112 |
},
|
113 |
"clientInfo": {
|
114 |
"name": "hf-mcp-client",
|
|
|
120 |
init_message = JSONRPCMessage(init_request)
|
121 |
init_session_message = SessionMessage(init_message)
|
122 |
|
123 |
+
logger.info("Sending initialization request...")
|
124 |
await write_stream.send(init_session_message)
|
125 |
|
126 |
+
# Wait for initialization response with better error handling
|
127 |
init_response_received = False
|
128 |
timeout_counter = 0
|
129 |
+
max_iterations = 150 # Increased for Spaces environment
|
130 |
|
131 |
while not init_response_received and timeout_counter < max_iterations:
|
132 |
try:
|
133 |
+
# Use asyncio.wait_for to add timeout per receive operation
|
134 |
+
response = await asyncio.wait_for(
|
135 |
+
read_stream.receive(),
|
136 |
+
timeout=30.0 # 30 second timeout per receive
|
137 |
+
)
|
138 |
timeout_counter += 1
|
139 |
|
140 |
if isinstance(response, Exception):
|
141 |
+
logger.error(f"Received exception during init: {response}")
|
142 |
raise response
|
143 |
|
144 |
if isinstance(response, SessionMessage):
|
|
|
146 |
if isinstance(msg, JSONRPCResponse) and msg.id == init_request.id:
|
147 |
logger.info("MCP client initialized successfully")
|
148 |
init_response_received = True
|
149 |
+
# Log the session ID if available
|
150 |
+
session_id = get_session_id()
|
151 |
+
if session_id:
|
152 |
+
logger.info(f"Session ID: {session_id}")
|
153 |
elif isinstance(msg, JSONRPCError) and msg.id == init_request.id:
|
154 |
+
error_msg = f"Initialization failed: {msg.error}"
|
155 |
+
logger.error(error_msg)
|
156 |
+
raise Exception(error_msg)
|
157 |
+
else:
|
158 |
+
logger.debug(f"Received other message during init: {type(msg)}")
|
159 |
+
|
160 |
+
except asyncio.TimeoutError:
|
161 |
+
logger.warning(f"Timeout waiting for response (attempt {timeout_counter})")
|
162 |
+
if timeout_counter > 10: # After 10 timeouts, give up
|
163 |
+
raise Exception("Initialization timeout: no response from server")
|
164 |
except Exception as e:
|
165 |
+
if "ClosedResourceError" in str(type(e)) or "StreamClosed" in str(e):
|
166 |
logger.error("Stream closed during initialization")
|
167 |
raise Exception("Connection closed during initialization")
|
168 |
+
logger.error(f"Error during initialization: {e}")
|
169 |
raise
|
170 |
|
171 |
if not init_response_received:
|
172 |
+
raise Exception("Initialization timeout: maximum iterations reached")
|
173 |
|
174 |
# Send initialized notification
|
175 |
initialized_notification = JSONRPCNotification(
|
|
|
180 |
init_notif_message = JSONRPCMessage(initialized_notification)
|
181 |
init_notif_session_message = SessionMessage(init_notif_message)
|
182 |
|
183 |
+
logger.info("Sending initialized notification...")
|
184 |
await write_stream.send(init_notif_session_message)
|
185 |
|
186 |
+
# Longer delay for Spaces environment
|
187 |
+
await asyncio.sleep(1.0)
|
188 |
|
189 |
# Now send our actual request
|
190 |
+
logger.info(f"Sending actual request: {method}")
|
191 |
await write_stream.send(session_message)
|
192 |
|
193 |
# Wait for the response to our request
|
|
|
196 |
|
197 |
while not response_received and timeout_counter < max_iterations:
|
198 |
try:
|
199 |
+
response = await asyncio.wait_for(
|
200 |
+
read_stream.receive(),
|
201 |
+
timeout=30.0
|
202 |
+
)
|
203 |
timeout_counter += 1
|
204 |
|
205 |
if isinstance(response, Exception):
|
206 |
+
logger.error(f"Received exception during request: {response}")
|
207 |
raise response
|
208 |
|
209 |
if isinstance(response, SessionMessage):
|
210 |
msg = response.message.root
|
211 |
if isinstance(msg, JSONRPCResponse) and msg.id == request_id:
|
212 |
+
logger.info(f"Request '{method}' completed successfully")
|
213 |
return msg.result
|
214 |
elif isinstance(msg, JSONRPCError) and msg.id == request_id:
|
215 |
+
error_msg = f"Request failed: {msg.error}"
|
216 |
+
logger.error(error_msg)
|
217 |
+
raise Exception(error_msg)
|
218 |
+
else:
|
219 |
+
logger.debug(f"Received other message during request: {type(msg)}")
|
220 |
+
|
221 |
+
except asyncio.TimeoutError:
|
222 |
+
logger.warning(f"Timeout waiting for request response (attempt {timeout_counter})")
|
223 |
+
if timeout_counter > 10:
|
224 |
+
raise Exception("Request timeout: no response from server")
|
225 |
except Exception as e:
|
226 |
+
if "ClosedResourceError" in str(type(e)) or "StreamClosed" in str(e):
|
227 |
logger.error("Stream closed during request processing")
|
228 |
raise Exception("Connection closed during request processing")
|
229 |
+
logger.error(f"Error during request processing: {e}")
|
230 |
raise
|
231 |
|
232 |
if not response_received:
|
233 |
+
raise Exception("Request timeout: maximum iterations reached")
|
234 |
|
235 |
except Exception as e:
|
236 |
logger.error(f"Error during MCP communication: {e}")
|
|
|
239 |
# Ensure streams are properly closed
|
240 |
try:
|
241 |
await write_stream.aclose()
|
242 |
+
except Exception as close_error:
|
243 |
+
logger.debug(f"Error closing write stream: {close_error}")
|
244 |
|
245 |
async def get_all_tools(self) -> List[Dict[str, Any]]:
|
246 |
"""
|
|
|
304 |
Returns:
|
305 |
List of tool definitions
|
306 |
"""
|
307 |
+
client = HuggingFaceMCPClient(hf_token, timeout=90) # Longer timeout for Spaces
|
308 |
return await client.get_all_tools()
|
309 |
|
310 |
|
|
|
320 |
Returns:
|
321 |
The tool's response
|
322 |
"""
|
323 |
+
client = HuggingFaceMCPClient(hf_token, timeout=90)
|
324 |
return await client.call_tool(tool_name, args)
|
325 |
|
326 |
|
327 |
+
# Diagnostic function for Spaces environment
|
328 |
+
async def diagnose_connection(hf_token: str) -> Dict[str, Any]:
|
329 |
+
"""
|
330 |
+
Diagnose connection issues with detailed logging.
|
331 |
|
332 |
+
Args:
|
333 |
+
hf_token: Hugging Face API token
|
|
|
|
|
334 |
|
335 |
+
Returns:
|
336 |
+
Diagnostic information
|
337 |
+
"""
|
338 |
+
diagnostics = {
|
339 |
+
"environment": "huggingface_spaces" if os.getenv("SPACE_ID") else "local",
|
340 |
+
"space_id": os.getenv("SPACE_ID"),
|
341 |
+
"token_length": len(hf_token) if hf_token else 0,
|
342 |
+
"has_token": bool(hf_token),
|
343 |
+
"connection_test": False,
|
344 |
+
"initialization_test": False,
|
345 |
+
"tools_test": False,
|
346 |
+
"error": None
|
347 |
+
}
|
348 |
+
|
349 |
+
try:
|
350 |
+
# Test basic connection
|
351 |
+
from mcp.client.streamable_http import streamablehttp_client
|
352 |
+
|
353 |
+
headers = {
|
354 |
+
"Authorization": f"Bearer {hf_token}",
|
355 |
+
"User-Agent": "hf-mcp-diagnostic/1.0.0"
|
356 |
+
}
|
357 |
+
|
358 |
+
async with streamablehttp_client(
|
359 |
+
url="https://huggingface.co/mcp",
|
360 |
+
headers=headers,
|
361 |
+
timeout=timedelta(seconds=30),
|
362 |
+
terminate_on_close=True
|
363 |
+
) as (read_stream, write_stream, get_session_id):
|
364 |
+
diagnostics["connection_test"] = True
|
365 |
+
logger.info("Basic connection test passed")
|
366 |
+
|
367 |
+
# Test initialization
|
368 |
+
client = HuggingFaceMCPClient(hf_token, timeout=60)
|
369 |
+
try:
|
370 |
+
tools = await client.get_all_tools()
|
371 |
+
diagnostics["initialization_test"] = True
|
372 |
+
diagnostics["tools_test"] = True
|
373 |
+
diagnostics["tool_count"] = len(tools)
|
374 |
+
logger.info(f"Full diagnostic passed - found {len(tools)} tools")
|
375 |
+
except Exception as init_error:
|
376 |
+
diagnostics["error"] = str(init_error)
|
377 |
+
logger.error(f"Initialization failed: {init_error}")
|
378 |
+
|
379 |
+
except Exception as conn_error:
|
380 |
+
diagnostics["error"] = str(conn_error)
|
381 |
+
logger.error(f"Connection test failed: {conn_error}")
|
382 |
+
|
383 |
+
return diagnostics
|
384 |
|