Spaces:
Running
Running
File size: 5,180 Bytes
8c8945a 572acf4 8c8945a db219a4 8c8945a db219a4 572acf4 db219a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
---
title: Expensynth
emoji: 🌖
colorFrom: pink
colorTo: green
sdk: gradio
sdk_version: 5.33.0
app_file: app.py
pinned: true
short_description: Application for tracking personal spending habits
tags:
- agent-demo-track
---
# GreenSmokeLabs-Expensynth
## Overview
GreenSmokeLabs-Expensynth is an AI-powered financial management platform designed to transform the way users track, analyze, and understand their expenses. By leveraging artificial intelligence and natural language processing, the system automatically categorizes transactions, provides financial insights, and offers an intelligent assistant for financial queries.
## Video Link
Watch our project demonstration:
[](https://youtu.be/D9ebiTkRXZQ)
## System Architecture
The application is built on a robust three-tier architecture:

### Database Schema

## Key Components
### Backend
The backend is built with FastAPI and provides the following key services:
1. **Transaction Parsing Service**: Uses CrewAI to analyze and categorize financial transactions.
2. **User RAG Service**: Provides question-answering capabilities through Retrieval Augmented Generation.
3. **Database Layer**: PostgreSQL for structured data and Vector DB for embeddings.
4. **API Endpoints**: RESTful endpoints for all system functionalities.
### Frontend
The frontend is a Gradio-based web application with the following features:
1. **Financial Dashboard**: Shows key financial metrics and summaries.
2. **Interactive Charts**: Visualizes financial data through various charts and graphs.
3. **AI Assistant**: Chat interface for natural language queries about financial data.
### Mobile App
A mobile application will provide:
1. Transaction Message Categorization
2. Transaction Message Syncing
3. Mobile dashboard access
## Installation & Setup
### Prerequisites
- Python 3.10-3.12
- PostgreSQL
- Node.js (for optional frontend development)
### Backend Setup
1. Clone the repository:
```bash
git clone https://github.com/yourusername/GreenSmokeLabs-Expensynth.git
cd GreenSmokeLabs-Expensynth
```
2. Set up a Python virtual environment:
```bash
python -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
```
3. Install backend dependencies:
```bash
cd backend
pip install -e .
```
4. Configure environment variables:
```bash
cp .env.example .env
# Edit .env with your configuration
```
5. Run database migrations:
```bash
alembic upgrade head
```
6. Start the backend server:
```bash
uvicorn green_smoke_labs_expensynth.main:app --reload
```
### Frontend Setup
1. Install frontend dependencies:
```bash
cd frontend
pip install -r requirements.txt
```
2. Start the frontend server:
```bash
python server.py
```
## Usage Guide
### Transaction Processing
1. Submit transaction messages through the API:
```bash
curl -X POST http://localhost:8000/transaction-parsing/parse-transaction \
-H "Content-Type: application/json" \
-d '{"transaction_message": "You spent $75.40 at Whole Foods Market on June 10th, 2025"}'
```
2. The system will automatically:
- Parse the transaction details
- Categorize the transaction
- Store it in the database
- Update the vector embeddings for search
### Financial Dashboard
Access the dashboard at [http://localhost:7860](http://localhost:7860) to:
- View financial summaries
- Explore interactive charts
- Analyze spending patterns
- Query your financial data using natural language
### AI Assistant
Use the chatbot interface to ask questions such as:
- "What were my biggest expenses last month?"
- "How has my spending on groceries changed over time?"
- "What is my current balance?"
## API Documentation
### Transaction Parsing API
- `POST /transaction-parsing/parse-transaction`: Parse and process a new transaction
- `GET /transaction-parsing/transactions`: Get all transactions
### User Query API
- `POST /bot/query`: Submit a natural language query about financial data
### Health Check API
- `GET /health`: Check system health status
## Technologies Used
- **Backend**:
- FastAPI
- SQLAlchemy
- CrewAI
- Modal (serverless deployment)
- Alembic (migrations)
- Pydantic
- PostgreSQL
- **Frontend**:
- Gradio
- Plotly
- Pandas
- **AI & Machine Learning**:
- Vector Embeddings
- LLM APIs
- CrewAI Agents
- Retrieval Augmented Generation
## Future Roadmap
1. Mobile Application Development
2. Banking API Integrations
3. Advanced Financial Planning Features
4. Multi-currency Support
5. Budget Management
6. Export to Accounting Software
## Contributors
- Shrijeeth S ([[email protected]](mailto:[email protected]))
- Sethuram SV ([[email protected]](mailto:[email protected]))
- Shankar Mahadevan ([[email protected]](mailto:[email protected]))
## License
This project is proprietary and confidential. All rights reserved.
---
© 2025 Green Smoke Labs. All rights reserved.
|