File size: 9,218 Bytes
3bfe3dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
"""
GitHub PR Search Agent
An agent that finds a suitable reference PR when a reference PR URL is not provided.
"""
import os
import re
import logging
from typing import List, Dict, Any, Optional
# Load environment variables
from dotenv import load_dotenv
load_dotenv()
# Setup logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
# Langchain imports
try:
from langchain_anthropic import ChatAnthropic
from langchain.tools import StructuredTool
from langchain.agents import AgentExecutor, create_tool_calling_agent
from langchain_core.prompts import ChatPromptTemplate
from github import Github
REQUIRED_LIBS_AVAILABLE = True
except ImportError as e:
print(f"Required libraries are not installed: {e}")
REQUIRED_LIBS_AVAILABLE = False
# Constants
ANTHROPIC_MODEL_ID = "claude-sonnet-4-20250514"
DEFAULT_TEMPERATURE = 0.0
# Fallback PR URL to ensure a PR is always returned
DEFAULT_FALLBACK_PR_URL = "https://github.com/huggingface/transformers/pull/24968"
class GitHubPRSearcher:
"""GitHub PR Searcher - now using a LangChain agent."""
def _search_github_prs(self, query: str) -> List[Dict[str, Any]]:
"""
Searches GitHub for pull requests matching the query and returns the top 5 results.
The query should be a valid GitHub search query.
"""
logger.info(f"Executing GitHub search with query: {query}")
try:
issues = self.github_client.search_issues(query=query)
# Take top 5 to keep context small for the agent
top_issues = issues.get_page(0)[:5]
if not top_issues:
return []
return [
{"title": issue.title, "url": issue.html_url, "number": issue.number}
for issue in top_issues
]
except Exception as e:
logger.error(f"Error during GitHub search: {e}", exc_info=True)
# Return an error message that the agent can understand
return [{"error": f"An error occurred during search: {e}"}]
def __init__(self):
if not REQUIRED_LIBS_AVAILABLE:
raise ImportError("Required libraries for agent could not be found.")
self._github_client = None
self.llm = ChatAnthropic(
model=ANTHROPIC_MODEL_ID,
temperature=DEFAULT_TEMPERATURE,
)
search_tool = StructuredTool.from_function(
func=self._search_github_prs,
name="search_github_prs",
description="Searches GitHub for pull requests matching the query and returns the top 5 results. The query should be a valid GitHub search query.",
)
tools = [search_tool]
prompt_string = """You are a GitHub expert. Your mission is to find the best reference pull request (PR) for a given task.
You need to find a merged PR in the repository: {owner}/{repo_name}.
The PR should be for a documentation translation into **{target_language}**.
The context for the translation is: **{context}**.
Use the tools at your disposal to search for relevant PRs.
Analyze the search results and select the one that best matches the request. A good PR is usually one that has "translation", "docs", "i18n", and the target language in its title.
Here is an example of a good search query you could use:
`repo:{owner}/{repo_name} is:pr is:merged "{target_language}" "{context}" i18n translation docs`
After your analysis, you MUST output **only the final URL** of the best PR you have chosen. Do not include any other text in your final response."""
prompt = ChatPromptTemplate.from_messages(
[
("system", prompt_string),
(
"human",
"Find the best reference PR for translating docs to {target_language} about {context} in the {owner}/{repo_name} repository.",
),
("placeholder", "{agent_scratchpad}"),
]
)
agent = create_tool_calling_agent(self.llm, tools, prompt)
self.agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=False)
@property
def github_client(self) -> Optional[Github]:
"""Lazy initialization of the GitHub API client."""
if not REQUIRED_LIBS_AVAILABLE:
raise ImportError("Required libraries could not be found.")
if self._github_client is None:
token = os.environ.get("GITHUB_TOKEN")
if not token:
print("Warning: GITHUB_TOKEN environment variable is not set.")
self._github_client = Github() # Limited access
else:
self._github_client = Github(token)
return self._github_client
def find_best_reference_pr(
self, owner: str, repo_name: str, target_language: str, context: str
):
"""
Finds the best reference PR using a LangChain agent.
Yields progress and returns the final PR URL.
"""
message = "π€ Agent is searching for the best reference PR..."
logger.info(message)
yield message
try:
agent_input = {
"owner": owner,
"repo_name": repo_name,
"target_language": target_language,
"context": context,
}
agent_output = None
for event in self.agent_executor.stream(agent_input):
if "actions" in event and event["actions"]:
action = event["actions"][0]
tool_query = action.tool_input.get("query", str(action.tool_input))
message = f"π Agent is using tool `{action.tool}` with query:\n`{tool_query}`"
logger.info(message)
yield message
elif "steps" in event and event["steps"]:
message = "π Agent is analyzing the results from the tool..."
logger.info(message)
yield message
elif "output" in event and event["output"]:
agent_output = event["output"]
if not agent_output:
message = "β οΈ Agent failed to find a suitable PR. Using default PR."
logger.warning(message)
yield message
return DEFAULT_FALLBACK_PR_URL
# The agent's final output can be a string, a list of tool results,
# or a list of content blocks from the LLM. We'll find the URL
# by searching for it in the string representation of the output.
output_text = str(agent_output)
urls = re.findall(r"https?://github.com/[^/]+/[^/]+/pull/\d+", output_text)
final_url = ""
if urls:
final_url = urls[-1] # Take the last URL found
if not final_url:
message = f"β οΈ Agent returned unparsable output: {agent_output}. Using default PR."
logger.warning(message)
yield message
return DEFAULT_FALLBACK_PR_URL
message = f"β
Selected the best PR:\n`{final_url}`"
logger.info(f"Selected the best PR: {final_url}")
yield message
return final_url
except Exception as e:
message = f"β Error during agent execution: {e}\nUsing default PR."
logger.error(message, exc_info=True)
yield message
return DEFAULT_FALLBACK_PR_URL
def find_reference_pr_simple_stream(target_language: str = "", context: str = ""):
"""
A simple function to find a reference PR, streaming progress.
This function always searches in the 'huggingface/transformers' repository.
"""
searcher = GitHubPRSearcher()
stream_generator = searcher.find_best_reference_pr(
"huggingface", "transformers", target_language, context
)
# The handler will receive the final URL from the generator's return statement
final_url = yield from stream_generator
# Format the final result as expected by the handler
return {
"status": "success",
"result": f"Recommended PR URL: {final_url}",
"repository": "huggingface/transformers",
"target_language": target_language,
}
# Example usage
if __name__ == "__main__":
# Example execution for streaming
# In a real application, a generator consumer (like the one in handler.py)
# would process the yielded values. This script simulates that.
print("--- Running Streaming Search Simulation ---")
def run_simulation():
"""Simulates the consumption of the streaming generator."""
test_gen = find_reference_pr_simple_stream(
target_language="korean", context="docs"
)
try:
while True:
# This will print progress messages
print(next(test_gen))
except StopIteration as e:
# When the generator is exhausted, the final result is in e.value
print("\n--- FINAL RESULT ---")
print(e.value)
run_simulation()
|