File size: 7,553 Bytes
1af0cb5
e1eac06
 
 
 
 
1af0cb5
 
 
 
e1eac06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1af0cb5
e1eac06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1af0cb5
e1eac06
 
 
 
 
 
 
 
 
1af0cb5
e1eac06
 
1af0cb5
 
 
 
e1eac06
 
 
 
 
 
1af0cb5
 
e1eac06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import logging
import torch
import numpy as np
from PIL import Image # For image processing context
# import smolagents # Removed unused import

logger = logging.getLogger(__name__)

class ContextualIntelligenceAgent:
    def __init__(self):
        logger.info("Initializing ContextualIntelligenceAgent.")
        # This would be a more sophisticated model in a real scenario
        self.context_rules = {
            "high_resolution": {"min_width": 1920, "min_height": 1080, "tag": "high_resolution_image"},
            "low_resolution": {"max_width": 640, "max_height": 480, "tag": "low_resolution_image"},
            "grayscale": {"mode": "L", "tag": "grayscale_image"},
            "potentially_natural_scene": {"keywords": ["Real"], "threshold": 0.7, "tag": "potentially_natural_scene"},
            "potentially_ai_generated": {"keywords": ["AI", "Fake", "Deepfake"], "threshold": 0.7, "tag": "potentially_ai_generated"},
            "outdoor": {"model_tags": ["sunny", "sky", "trees"], "tag": "outdoor"},
            "indoor": {"model_tags": ["room", "furniture"], "tag": "indoor"},
            "sunny": {"rgb_avg_min": [200, 200, 100], "tag": "sunny"},
            "dark": {"rgb_avg_max": [50, 50, 50], "tag": "dark"},
        }

    def infer_context_tags(self, image_metadata: dict, model_predictions: dict) -> list[str]:
        logger.info("Inferring context tags from image metadata and model predictions.")
        detected_tags = []

        # Analyze image metadata
        width = image_metadata.get("width", 0)
        height = image_metadata.get("height", 0)
        mode = image_metadata.get("mode", "RGB")

        if width >= self.context_rules["high_resolution"]["min_width"] and \
           height >= self.context_rules["high_resolution"]["min_height"]:
            detected_tags.append(self.context_rules["high_resolution"]["tag"])
            logger.debug(f"Detected tag: {self.context_rules['high_resolution']['tag']}")

        if width <= self.context_rules["low_resolution"]["max_width"] and \
           height <= self.context_rules["low_resolution"]["max_height"]:
            detected_tags.append(self.context_rules["low_resolution"]["tag"])
            logger.debug(f"Detected tag: {self.context_rules['low_resolution']['tag']}")

        if mode == self.context_rules["grayscale"]["mode"]:
            detected_tags.append(self.context_rules["grayscale"]["tag"])
            logger.debug(f"Detected tag: {self.context_rules['grayscale']['tag']}")

        # Analyze model predictions for general context
        for model_id, prediction in model_predictions.items():
            label = prediction.get("Label")
            ai_score = prediction.get("AI Score", 0.0)
            real_score = prediction.get("Real Score", 0.0)

            if label and "potentially_natural_scene" not in detected_tags:
                for keyword in self.context_rules["potentially_natural_scene"]["keywords"]:
                    if keyword in label and real_score >= self.context_rules["potentially_natural_scene"]["threshold"]:
                        detected_tags.append(self.context_rules["potentially_natural_scene"]["tag"])
                        logger.debug(f"Detected tag: {self.context_rules['potentially_natural_scene']['tag']}")
                        break # Only add once
            
            if label and "potentially_ai_generated" not in detected_tags:
                for keyword in self.context_rules["potentially_ai_generated"]["keywords"]:
                    if keyword in label and ai_score >= self.context_rules["potentially_ai_generated"]["threshold"]:
                        detected_tags.append(self.context_rules["potentially_ai_generated"]["tag"])
                        logger.debug(f"Detected tag: {self.context_rules['potentially_ai_generated']['tag']}")
                        break # Only add once
        
        # Simulate simple scene detection based on general consensus if available
        # This is a very basic simulation; a real system would use a separate scene classification model
        if "potentially_natural_scene" in detected_tags and "potentially_ai_generated" not in detected_tags:
            # Simulate outdoor/sunny detection based on presence of a real image tag
            # In a real scenario, this would involve analyzing image features
            if real_score > 0.8: # Placeholder for actual image feature analysis
                detected_tags.append(self.context_rules["outdoor"]["tag"])
                detected_tags.append(self.context_rules["sunny"]["tag"])
                logger.debug(f"Simulated tags: {self.context_rules['outdoor']['tag']},{self.context_rules['sunny']['tag']}")
        
        logger.info(f"Inferred context tags: {detected_tags}")
        return detected_tags


class ForensicAnomalyDetectionAgent:
    def __init__(self):
        logger.info("Initializing ForensicAnomalyDetectionAgent.")
        self.anomaly_thresholds = {
            "ELA": {"min_anomalies": 3, "max_error_std": 20}, # Example thresholds
            "gradient": {"min_sharp_edges": 500},
            "minmax": {"min_local_deviation": 0.1}
        }

    def analyze_forensic_outputs(self, forensic_output_descriptions: list[str]) -> dict:
        logger.info("Analyzing forensic outputs for anomalies.")
        anomalies_detected = []
        summary_message = "No significant anomalies detected."

        # Example: Check for ELA anomalies (simplified)
        ela_anomalies = [desc for desc in forensic_output_descriptions if "ELA analysis" in desc and "enhanced contrast" in desc]
        if len(ela_anomalies) > self.anomaly_thresholds["ELA"]["min_anomalies"]:
            anomalies_detected.append("Multiple ELA passes indicate potential inconsistencies.")
            logger.warning("Detected multiple ELA passes indicating potential inconsistencies.")

        # Example: Check for gradient anomalies (simplified)
        gradient_anomalies = [desc for desc in forensic_output_descriptions if "Gradient processing" in desc]
        if len(gradient_anomalies) > 1 and "Highlights edges and transitions" in gradient_anomalies[0]:
            # This is a placeholder for actual image analysis, e.g., checking standard deviation of gradients
            anomalies_detected.append("Gradient analysis shows unusual edge patterns.")
            logger.warning("Detected unusual edge patterns from gradient analysis.")

        # Example: Check for MinMax anomalies (simplified)
        minmax_anomalies = [desc for desc in forensic_output_descriptions if "MinMax processing" in desc]
        if len(minmax_anomalies) > 1 and "Deviations in local pixel values" in minmax_anomalies[0]:
            # Placeholder for actual analysis of minmax output, e.g., deviation variance
            anomalies_detected.append("MinMax processing reveals subtle pixel deviations.")
            logger.warning("Detected subtle pixel deviations from MinMax processing.")
            
        if "Bit Plane extractor" in str(forensic_output_descriptions):
            anomalies_detected.append("Bit Plane extraction performed.")
            logger.info("Bit Plane extraction performed.")

        if anomalies_detected:
            summary_message = "Potential anomalies detected: " + "; ".join(anomalies_detected)
            logger.warning(f"Forensic anomaly detection summary: {summary_message}")
        else:
            logger.info(f"Forensic anomaly detection summary: {summary_message}")

        return {"anomalies": anomalies_detected, "summary": summary_message}