File size: 27,555 Bytes
63aad13 acf0228 63aad13 1146644 63aad13 bc355a9 5342779 bc355a9 63aad13 5342779 63aad13 bc355a9 63aad13 bc355a9 63aad13 be96dd0 63aad13 be96dd0 63aad13 be96dd0 63aad13 088ff8c 63aad13 be96dd0 63aad13 be96dd0 63aad13 be96dd0 63aad13 be96dd0 63aad13 be96dd0 63aad13 acf0228 63aad13 bc355a9 63aad13 2be263d 63aad13 c3c2134 5342779 30f141e 63aad13 5342779 63aad13 1146644 63aad13 c3c2134 63aad13 c56a0f7 63aad13 c56a0f7 63aad13 c56a0f7 63aad13 c56a0f7 63aad13 c56a0f7 63aad13 5c2bf26 63aad13 c56a0f7 63aad13 5342779 63aad13 30f141e 63aad13 be96dd0 63aad13 8159928 5342779 c56a0f7 63aad13 acf0228 63aad13 5342779 63aad13 acf0228 63aad13 62180cb 63aad13 5342779 63aad13 acf0228 63aad13 62180cb 5342779 63aad13 acf0228 63aad13 a677ac6 63aad13 acf0228 a677ac6 48e0567 63aad13 fd745be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 |
import gradio as gr
from gradio_client import Client, handle_file
from PIL import Image, ImageFilter
import numpy as np
import os
import time
import logging
import io
# Assuming these are available from your utils and agents directories
# You might need to adjust paths or copy these functions/classes if they are not directly importable.
from utils.utils import softmax, augment_image
from forensics.gradient import gradient_processing
from forensics.minmax import minmax_process
from forensics.ela import ELA
from forensics.wavelet import noise_estimation
from forensics.bitplane import bit_plane_extractor
from utils.hf_logger import log_inference_data
from utils.load import load_image
from agents.ensemble_team import EnsembleMonitorAgent, WeightOptimizationAgent, SystemHealthAgent
from agents.smart_agents import ContextualIntelligenceAgent, ForensicAnomalyDetectionAgent
from utils.registry import register_model, MODEL_REGISTRY, ModelEntry
from agents.ensemble_weights import ModelWeightManager
from transformers import pipeline, AutoImageProcessor, SwinForImageClassification, Swinv2ForImageClassification, AutoFeatureExtractor, AutoModelForImageClassification
from torchvision import transforms
import torch
import json
from huggingface_hub import CommitScheduler
from dotenv import load_dotenv
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
os.environ['HF_HUB_CACHE'] = './models'
LOCAL_LOG_DIR = "./hf_inference_logs"
HF_DATASET_NAME="aiwithoutborders-xyz/degentic_rd0"
load_dotenv()
# Custom JSON Encoder to handle numpy types
class NumpyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.float32):
return float(obj)
return json.JSONEncoder.default(self, obj)
# Ensure using GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Model paths and class names (copied from app_mcp.py)
MODEL_PATHS = {
"model_1": "haywoodsloan/ai-image-detector-deploy",
"model_2": "Heem2/AI-vs-Real-Image-Detection",
"model_3": "Organika/sdxl-detector",
"model_4": "cmckinle/sdxl-flux-detector_v1.1",
"model_5": "prithivMLmods/Deep-Fake-Detector-v2-Model",
"model_6": "ideepankarsharma2003/AI_ImageClassification_MidjourneyV6_SDXL",
"model_7": "date3k2/vit-real-fake-classification-v4"
}
CLASS_NAMES = {
"model_1": ['artificial', 'real'],
"model_2": ['AI Image', 'Real Image'],
"model_3": ['AI', 'Real'],
"model_4": ['AI', 'Real'],
"model_5": ['Realism', 'Deepfake'],
"model_6": ['ai_gen', 'human'],
"model_7": ['Fake', 'Real'],
}
def preprocess_resize_256(image):
if image.mode != 'RGB':
image = image.convert('RGB')
return transforms.Resize((256, 256))(image)
def preprocess_resize_224(image):
if image.mode != 'RGB':
image = image.convert('RGB')
return transforms.Resize((224, 224))(image)
def postprocess_pipeline(prediction, class_names):
# Assumes HuggingFace pipeline output
return {pred['label']: pred['score'] for pred in prediction}
def postprocess_logits(outputs, class_names):
# Assumes model output with logits
logits = outputs.logits.cpu().numpy()[0]
probabilities = softmax(logits)
return {class_names[i]: probabilities[i] for i in range(len(class_names))}
def register_model_with_metadata(model_id, model, preprocess, postprocess, class_names, display_name, contributor, model_path, architecture=None, dataset=None):
entry = ModelEntry(model, preprocess, postprocess, class_names, display_name=display_name, contributor=contributor, model_path=model_path, architecture=architecture, dataset=dataset)
MODEL_REGISTRY[model_id] = entry
# Load and register models (copied from app_mcp.py)
image_processor_1 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_1"], use_fast=True)
model_1 = Swinv2ForImageClassification.from_pretrained(MODEL_PATHS["model_1"]).to(device)
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device)
register_model_with_metadata(
"model_1", clf_1, preprocess_resize_256, postprocess_pipeline, CLASS_NAMES["model_1"],
display_name="SWIN1", contributor="haywoodsloan", model_path=MODEL_PATHS["model_1"],
architecture="SwinV2", dataset="TBA"
)
clf_2 = pipeline("image-classification", model=MODEL_PATHS["model_2"], device=device)
register_model_with_metadata(
"model_2", clf_2, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_2"],
display_name="VIT2", contributor="Heem2", model_path=MODEL_PATHS["model_2"],
architecture="ViT", dataset="TBA"
)
feature_extractor_3 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_3"], device=device)
model_3 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_3"]).to(device)
def preprocess_256(image):
if image.mode != 'RGB':
image = image.convert('RGB')
return transforms.Resize((256, 256))(image)
def postprocess_logits_model3(outputs, class_names):
logits = outputs.logits.cpu().numpy()[0]
probabilities = softmax(logits)
return {class_names[i]: probabilities[i] for i in range(len(class_names))}
def model3_infer(image):
inputs = feature_extractor_3(image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model_3(**inputs)
return outputs
register_model_with_metadata(
"model_3", model3_infer, preprocess_256, postprocess_logits_model3, CLASS_NAMES["model_3"],
display_name="SDXL3", contributor="Organika", model_path=MODEL_PATHS["model_3"],
architecture="VIT", dataset="SDXL"
)
feature_extractor_4 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_4"], device=device)
model_4 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_4"]).to(device)
def model4_infer(image):
inputs = feature_extractor_4(image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model_4(**inputs)
return outputs
def postprocess_logits_model4(outputs, class_names):
logits = outputs.logits.cpu().numpy()[0]
probabilities = softmax(logits)
return {class_names[i]: probabilities[i] for i in range(len(class_names))}
register_model_with_metadata(
"model_4", model4_infer, preprocess_256, postprocess_logits_model4, CLASS_NAMES["model_4"],
display_name="XLFLUX4", contributor="cmckinle", model_path=MODEL_PATHS["model_4"],
architecture="VIT", dataset="SDXL, FLUX"
)
clf_5 = pipeline("image-classification", model=MODEL_PATHS["model_5"], device=device)
register_model_with_metadata(
"model_5", clf_5, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_5"],
display_name="VIT5", contributor="prithivMLmods", model_path=MODEL_PATHS["model_5"],
architecture="VIT", dataset="TBA"
)
image_processor_6 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_6"], use_fast=True)
model_6 = SwinForImageClassification.from_pretrained(MODEL_PATHS["model_6"]).to(device)
clf_6 = pipeline(model=model_6, task="image-classification", image_processor=image_processor_6, device=device)
register_model_with_metadata(
"model_6", clf_6, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_6"],
display_name="SWIN6", contributor="ideepankarsharma2003", model_path=MODEL_PATHS["model_6"],
architecture="SWINv1", dataset="SDXL, Midjourney"
)
image_processor_7 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_7"], use_fast=True)
model_7 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_7"]).to(device)
clf_7 = pipeline(model=model_7, task="image-classification", image_processor=image_processor_7, device=device)
register_model_with_metadata(
"model_7", clf_7, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_7"],
display_name="VIT7", contributor="date3k2", model_path=MODEL_PATHS["model_7"],
architecture="VIT", dataset="TBA"
)
# def postprocess_simple_prediction(result, class_names):
# scores = {name: 0.0 for name in class_names}
# fake_prob = result.get("Fake Probability")
# if fake_prob is not None:
# # Assume class_names = ["AI", "REAL"]
# scores["AI"] = float(fake_prob)
# scores["REAL"] = 1.0 - float(fake_prob)
# return scores
# def simple_prediction(img):
# client = Client("aiwithoutborders-xyz/OpenSight-Community-Forensics-Preview")
# client.view_api()
# print(type(img))
# result = client.predict(
# handle_file(img),
# api_name="simple_predict"
# )
# return result
# register_model_with_metadata(
# model_id="simple_prediction",
# model=simple_prediction,
# preprocess=None,
# postprocess=postprocess_simple_prediction,
# class_names=["AI", "REAL"],
# display_name="Community Forensics",
# contributor="Jeongsoo Park",
# model_path="aiwithoutborders-xyz/CommunityForensics-DeepfakeDet-ViT",
# architecture="ViT", dataset="GOAT"
# )
def infer(image: Image.Image, model_id: str, confidence_threshold: float = 0.75) -> dict:
"""Predict using a specific model.
Args:
image (Image.Image): The input image to classify.
model_id (str): The ID of the model to use for classification.
confidence_threshold (float, optional): The confidence threshold for classification. Defaults to 0.75.
Returns:
dict: A dictionary containing the model details, classification scores, and label.
"""
entry = MODEL_REGISTRY[model_id]
img = entry.preprocess(image) if entry.preprocess else image
try:
result = entry.model(img)
scores = entry.postprocess(result, entry.class_names)
ai_score = float(scores.get(entry.class_names[0], 0.0))
real_score = float(scores.get(entry.class_names[1], 0.0))
label = "AI" if ai_score >= confidence_threshold else ("REAL" if real_score >= confidence_threshold else "UNCERTAIN")
return {
"Model": entry.display_name,
"Contributor": entry.contributor,
"HF Model Path": entry.model_path,
"AI Score": ai_score,
"Real Score": real_score,
"Label": label
}
except Exception as e:
return {
"Model": entry.display_name,
"Contributor": entry.contributor,
"HF Model Path": entry.model_path,
"AI Score": 0.0,
"Real Score": 0.0,
"Label": f"Error: {str(e)}"
}
def full_prediction(img, confidence_threshold, rotate_degrees, noise_level, sharpen_strength):
"""Full prediction run, with a team of ensembles and agents.
Args:
img (url: str, Image.Image, np.ndarray): The input image to classify.
confidence_threshold (float, optional): The confidence threshold for classification. Defaults to 0.75.
rotate_degrees (int, optional): The degrees to rotate the image.
noise_level (int, optional): The noise level to use.
sharpen_strength (int, optional): The sharpen strength to use.
Returns:
dict: A dictionary containing the model details, classification scores, and label.
"""
# Ensure img is a PIL Image object
if img is None:
raise gr.Error("No image provided. Please upload an image to analyze.")
# Handle filepath conversion if needed
if isinstance(img, str):
try:
img = load_image(img)
except Exception as e:
logger.error(f"Error loading image from path: {e}")
raise gr.Error(f"Could not load image from the provided path. Error: {str(e)}")
if not isinstance(img, Image.Image):
try:
img = Image.fromarray(img)
except Exception as e:
logger.error(f"Error converting input image to PIL: {e}")
raise gr.Error("Input image could not be converted to a valid image format. Please try another image.")
# Ensure image is in RGB format for consistent processing
if img.mode != 'RGB':
img = img.convert('RGB')
monitor_agent = EnsembleMonitorAgent()
weight_manager = ModelWeightManager(strongest_model_id="simple_prediction")
optimization_agent = WeightOptimizationAgent(weight_manager)
health_agent = SystemHealthAgent()
context_agent = ContextualIntelligenceAgent()
anomaly_agent = ForensicAnomalyDetectionAgent()
health_agent.monitor_system_health()
if rotate_degrees or noise_level or sharpen_strength:
img_pil, _ = augment_image(img, ["rotate", "add_noise", "sharpen"], rotate_degrees, noise_level, sharpen_strength)
else:
img_pil = img
img_np_og = np.array(img)
model_predictions_raw = {}
confidence_scores = {}
results = []
table_rows = []
# Stream results as each model finishes
for model_id in MODEL_REGISTRY:
model_start = time.time()
result = infer(img_pil, model_id, confidence_threshold)
model_end = time.time()
monitor_agent.monitor_prediction(
model_id,
result["Label"],
max(result.get("AI Score", 0.0), result.get("Real Score", 0.0)),
model_end - model_start
)
model_predictions_raw[model_id] = result
confidence_scores[model_id] = max(result.get("AI Score", 0.0), result.get("Real Score", 0.0))
results.append(result)
table_rows.append([
result.get("Model", ""),
result.get("Contributor", ""),
round(result.get("AI Score", 0.0), 3) if result.get("AI Score") is not None else 0.0,
round(result.get("Real Score", 0.0), 3) if result.get("Real Score") is not None else 0.0,
result.get("Label", "Error")
])
# Yield partial results: only update the table, others are None
yield None, None, table_rows, None, None
# After all models, compute the rest as before
image_data_for_context = {
"width": img.width,
"height": img.height,
"mode": img.mode,
}
detected_context_tags = context_agent.infer_context_tags(image_data_for_context, model_predictions_raw)
logger.info(f"Detected context tags: {detected_context_tags}")
adjusted_weights = weight_manager.adjust_weights(model_predictions_raw, confidence_scores, context_tags=detected_context_tags)
weighted_predictions = {"AI": 0.0, "REAL": 0.0, "UNCERTAIN": 0.0}
for model_id, prediction in model_predictions_raw.items():
prediction_label = prediction.get("Label")
if prediction_label in weighted_predictions:
weighted_predictions[prediction_label] += adjusted_weights[model_id]
else:
logger.warning(f"Unexpected prediction label '{prediction_label}' from model '{model_id}'. Skipping its weight in consensus.")
final_prediction_label = "UNCERTAIN"
if weighted_predictions["AI"] > weighted_predictions["REAL"] and weighted_predictions["AI"] > weighted_predictions["UNCERTAIN"]:
final_prediction_label = "AI"
elif weighted_predictions["REAL"] > weighted_predictions["AI"] and weighted_predictions["REAL"] > weighted_predictions["UNCERTAIN"]:
final_prediction_label = "REAL"
optimization_agent.analyze_performance(final_prediction_label, None)
gradient_image = gradient_processing(img_np_og)
gradient_image2 = gradient_processing(img_np_og, intensity=45, equalize=True)
minmax_image = minmax_process(img_np_og)
minmax_image2 = minmax_process(img_np_og, radius=6)
bitplane_image = bit_plane_extractor(img_pil)
ela1 = ELA(img_np_og, quality=75, scale=50, contrast=20, linear=False, grayscale=True)
ela2 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=True)
ela3 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=False)
forensics_images = [img_pil, ela1, ela2, ela3, gradient_image, gradient_image2, minmax_image, minmax_image2, bitplane_image]
forensic_output_descriptions = [
f"Original augmented image (PIL): {img_pil.width}x{img_pil.height}",
"ELA analysis (Pass 1): Grayscale error map, quality 75.",
"ELA analysis (Pass 2): Grayscale error map, quality 75, enhanced contrast.",
"ELA analysis (Pass 3): Color error map, quality 75, enhanced contrast.",
"Gradient processing: Highlights edges and transitions.",
"Gradient processing: Int=45, Equalize=True",
"MinMax processing: Deviations in local pixel values.",
"MinMax processing (Radius=6): Deviations in local pixel values.",
"Bit Plane extractor: Visualization of individual bit planes from different color channels."
]
anomaly_detection_results = anomaly_agent.analyze_forensic_outputs(forensic_output_descriptions)
logger.info(f"Forensic anomaly detection: {anomaly_detection_results['summary']}")
consensus_html = f"<div style='font-size: 2.2em; font-weight: bold;padding: 10px;'>Consensus: <span style='color:{'red' if final_prediction_label == 'AI' else ('green' if final_prediction_label == 'REAL' else 'orange')}'>{final_prediction_label}</span></div>"
inference_params = {
"confidence_threshold": confidence_threshold,
"rotate_degrees": rotate_degrees,
"noise_level": noise_level,
"sharpen_strength": sharpen_strength,
"detected_context_tags": detected_context_tags
}
ensemble_output_data = {
"final_prediction_label": final_prediction_label,
"weighted_predictions": weighted_predictions,
"adjusted_weights": adjusted_weights
}
agent_monitoring_data_log = {
"ensemble_monitor": {
"alerts": monitor_agent.alerts,
"performance_metrics": monitor_agent.performance_metrics
},
"weight_optimization": {
"prediction_history_length": len(optimization_agent.prediction_history),
},
"system_health": {
"memory_usage": health_agent.health_metrics["memory_usage"],
"gpu_utilization": health_agent.health_metrics["gpu_utilization"]
},
"context_intelligence": {
"detected_context_tags": detected_context_tags
},
"forensic_anomaly_detection": anomaly_detection_results
}
log_inference_data(
original_image=img,
inference_params=inference_params,
model_predictions=results,
ensemble_output=ensemble_output_data,
forensic_images=forensics_images,
agent_monitoring_data=agent_monitoring_data_log,
human_feedback=None
)
cleaned_forensics_images = []
for f_img in forensics_images:
if isinstance(f_img, Image.Image):
cleaned_forensics_images.append(f_img)
elif isinstance(f_img, np.ndarray):
try:
cleaned_forensics_images.append(Image.fromarray(f_img))
except Exception as e:
logger.warning(f"Could not convert numpy array to PIL Image for gallery: {e}")
else:
logger.warning(f"Unexpected type in forensic_images: {type(f_img)}. Skipping.")
logger.info(f"Cleaned forensic images types: {[type(img) for img in cleaned_forensics_images]}")
for i, res_dict in enumerate(results):
for key in ["AI Score", "Real Score"]:
value = res_dict.get(key)
if isinstance(value, np.float32):
res_dict[key] = float(value)
logger.info(f"Converted {key} for result {i} from numpy.float32 to float.")
json_results = json.dumps(results, cls=NumpyEncoder)
yield img_pil, cleaned_forensics_images, table_rows, json_results, consensus_html
detection_model_eval_playground = gr.Interface(
fn=full_prediction,
inputs=[
gr.Image(label="Upload Image to Analyze", sources=['upload', 'webcam'], type='filepath'),
gr.Slider(0.0, 1.0, value=0.7, step=0.05, label="Confidence Threshold"),
gr.Slider(0, 45, value=0, step=1, label="Rotate Degrees", visible=False),
gr.Slider(0, 50, value=0, step=1, label="Noise Level", visible=False),
gr.Slider(0, 50, value=0, step=1, label="Sharpen Strength", visible=False)
],
outputs=[
gr.Image(label="Processed Image", visible=False),
gr.Gallery(label="Post Processed Images", visible=True, columns=[4], rows=[2], container=False, height="auto", object_fit="contain", elem_id="post-gallery"),
gr.Dataframe(
label="Model Predictions",
headers=["Arch / Dataset", "By", "AI", "Real", "Label"],
datatype=["str", "str", "number", "number", "str"]
),
gr.JSON(label="Raw Model Results", visible=False),
gr.Markdown(label="Consensus", value="")
],
title="Multi-Model Ensemble + Agentic Coordinated Deepfake Detection (Paper in Progress)",
description="The detection of AI-generated images has entered a critical inflection point. While existing solutions struggle with outdated datasets and inflated claims, our approach prioritizes agility, community collaboration, and an offensive approach to deepfake detection.",
api_name="predict",
live=True # Enable streaming
)
community_forensics_preview = gr.Interface(
fn=lambda: gr.load("aiwithoutborders-xyz/OpenSight-Community-Forensics-Preview", src="spaces"),
inputs=gr.Image(type="filepath"),
outputs=gr.HTML(), # or gr.Markdown() if it's just text
title="Quick and simple prediction by our strongest model.",
description="No ensemble, no context, no agents, just a quick and simple prediction by our strongest model.",
api_name="quick_predict"
)
# leaderboard = gr.Interface(
# fn=lambda: "# AI Generated / Deepfake Detection Models Leaderboard: Soon™",
# inputs=None,
# outputs=gr.Markdown(),
# title="Leaderboard",
# api_name="leaderboard"
# )
# simple_predict_interface = gr.Interface(
# fn=simple_prediction,
# inputs=gr.Image(type="filepath"),
# outputs=gr.Text(),
# title="Quick and simple prediction by our strongest model.",
# description="No ensemble, no context, no agents, just a quick and simple prediction by our strongest model.",
# api_name="simple_predict"
# )
noise_estimation_interface = gr.Interface(
fn=noise_estimation,
inputs=[gr.Image(type="pil"), gr.Slider(1, 32, value=8, step=1, label="Block Size")],
outputs=gr.Image(type="pil"),
title="Wavelet-Based Noise Analysis",
description="Analyzes image noise patterns using wavelet decomposition. This tool helps detect compression artifacts and artificial noise patterns that may indicate image manipulation. Higher noise levels in specific regions can reveal areas of potential tampering.",
api_name="tool_waveletnoise"
)
bit_plane_interface = gr.Interface(
fn=bit_plane_extractor,
inputs=[
gr.Image(type="pil"),
gr.Dropdown(["Luminance", "Red", "Green", "Blue", "RGB Norm"], label="Channel", value="Luminance"),
gr.Slider(0, 7, value=0, step=1, label="Bit Plane"),
gr.Dropdown(["Disabled", "Median", "Gaussian"], label="Filter", value="Disabled")
],
outputs=gr.Image(type="pil"),
title="Bit Plane Analysis",
description="Extracts and visualizes individual bit planes from different color channels. This forensic tool helps identify hidden patterns and artifacts in image data that may indicate manipulation. Different bit planes can reveal inconsistencies in image processing or editing.",
api_name="tool_bitplane"
)
ela_interface = gr.Interface(
fn=ELA,
inputs=[
gr.Image(type="pil", label="Input Image"),
gr.Slider(1, 100, value=75, step=1, label="JPEG Quality"),
gr.Slider(1, 100, value=50, step=1, label="Output Scale (Multiplicative Gain)"),
gr.Slider(0, 100, value=20, step=1, label="Output Contrast (Tonality Compression)"),
gr.Checkbox(value=False, label="Use Linear Difference"),
gr.Checkbox(value=False, label="Grayscale Output")
],
outputs=gr.Image(type="pil"),
title="Error Level Analysis (ELA)",
description="Performs Error Level Analysis to detect re-saved JPEG images, which can indicate tampering. ELA highlights areas of an image that have different compression levels.",
api_name="tool_ela"
)
gradient_processing_interface = gr.Interface(
fn=gradient_processing,
inputs=[
gr.Image(type="pil", label="Input Image"),
gr.Slider(0, 100, value=90, step=1, label="Intensity"),
gr.Dropdown(["Abs", "None", "Flat", "Norm"], label="Blue Mode", value="Abs"),
gr.Checkbox(value=False, label="Invert Gradients"),
gr.Checkbox(value=False, label="Equalize Histogram")
],
outputs=gr.Image(type="pil"),
title="Gradient Processing",
description="Applies gradient filters to an image to enhance edges and transitions, which can reveal inconsistencies due to manipulation.",
api_name="tool_gradient_processing"
)
minmax_processing_interface = gr.Interface(
fn=minmax_process,
inputs=[
gr.Image(type="pil", label="Input Image"),
gr.Radio([0, 1, 2, 3, 4], label="Channel (0:Grayscale, 1:Blue, 2:Green, 3:Red, 4:RGB Norm)", value=4),
gr.Slider(0, 10, value=2, step=1, label="Radius")
],
outputs=gr.Image(type="pil"),
title="MinMax Processing",
description="Analyzes local pixel value deviations to detect subtle changes in image data, often indicative of digital forgeries.",
api_name="tool_minmax_processing"
)
def augment_image_interface(img, augment_methods, rotate_degrees, noise_level, sharpen_strength):
if img is None:
raise gr.Error("No image provided for augmentation. Please upload an image.")
# Ensure image is PIL Image and in RGB format
if not isinstance(img, Image.Image):
try:
img = Image.fromarray(img)
except Exception as e:
raise gr.Error(f"Could not convert input to PIL Image: {e}")
if img.mode != 'RGB':
img = img.convert('RGB')
augmented_img, _ = augment_image(img, augment_methods, rotate_degrees, noise_level, sharpen_strength)
return augmented_img
augmentation_tool_interface = gr.Interface(
fn=augment_image_interface,
inputs=[
gr.Image(label="Upload Image to Augment", sources=['upload', 'webcam'], type='pil'),
gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], label="Augmentation Methods"),
gr.Slider(0, 360, value=0, step=1, label="Rotate Degrees", visible=True),
gr.Slider(0, 100, value=0, step=1, label="Noise Level", visible=True),
gr.Slider(0, 200, value=1, step=1, label="Sharpen Strength", visible=True)
],
outputs=gr.Image(label="Augmented Image", type='pil'),
title="Image Augmentation Tool",
description="Apply various augmentation techniques to your image.",
api_name="augment_image"
)
demo = gr.TabbedInterface(
[
detection_model_eval_playground,
community_forensics_preview,
noise_estimation_interface,
bit_plane_interface,
ela_interface,
gradient_processing_interface,
minmax_processing_interface,
augmentation_tool_interface
],
[
"Run Ensemble Prediction",
"Community Model",
"Wavelet Blocking Noise Estimation",
"Bit Plane Values",
"Error Level Analysis (ELA)",
"Gradient Processing",
"MinMax Processing",
"Image Augmentation"
],
title="Deepfake Detection & Forensics Tools",
theme=None,
)
if __name__ == "__main__":
demo.launch(mcp_server=True) |