LPX55's picture
major(feat): implement streaming ensemble prediction to enhance real-time model inference and update interface for live results
c56a0f7
raw
history blame
24.6 kB
import gradio as gr
from gradio_client import Client, handle_file
from PIL import Image
import numpy as np
import os
import time
import logging
# Assuming these are available from your utils and agents directories
# You might need to adjust paths or copy these functions/classes if they are not directly importable.
from utils.utils import softmax, augment_image
from forensics.gradient import gradient_processing
from forensics.minmax import minmax_process
from forensics.ela import ELA
from forensics.wavelet import wavelet_blocking_noise_estimation
from forensics.bitplane import bit_plane_extractor
from utils.hf_logger import log_inference_data
from agents.ensemble_team import EnsembleMonitorAgent, WeightOptimizationAgent, SystemHealthAgent
from agents.smart_agents import ContextualIntelligenceAgent, ForensicAnomalyDetectionAgent
from utils.registry import register_model, MODEL_REGISTRY, ModelEntry
from agents.ensemble_weights import ModelWeightManager
from transformers import pipeline, AutoImageProcessor, SwinForImageClassification, Swinv2ForImageClassification, AutoFeatureExtractor, AutoModelForImageClassification
from torchvision import transforms
import torch
import json
from huggingface_hub import CommitScheduler
from dotenv import load_dotenv
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
os.environ['HF_HUB_CACHE'] = './models'
LOCAL_LOG_DIR = "./hf_inference_logs"
HF_DATASET_NAME="aiwithoutborders-xyz/degentic_rd0"
load_dotenv()
# Custom JSON Encoder to handle numpy types
class NumpyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.float32):
return float(obj)
return json.JSONEncoder.default(self, obj)
# Ensure using GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Model paths and class names (copied from app_mcp.py)
MODEL_PATHS = {
"model_1": "haywoodsloan/ai-image-detector-deploy",
"model_2": "Heem2/AI-vs-Real-Image-Detection",
"model_3": "Organika/sdxl-detector",
"model_4": "cmckinle/sdxl-flux-detector_v1.1",
"model_5": "prithivMLmods/Deep-Fake-Detector-v2-Model",
"model_6": "ideepankarsharma2003/AI_ImageClassification_MidjourneyV6_SDXL",
"model_7": "date3k2/vit-real-fake-classification-v4"
}
CLASS_NAMES = {
"model_1": ['artificial', 'real'],
"model_2": ['AI Image', 'Real Image'],
"model_3": ['AI', 'Real'],
"model_4": ['AI', 'Real'],
"model_5": ['Realism', 'Deepfake'],
"model_6": ['ai_gen', 'human'],
"model_7": ['Fake', 'Real'],
}
def preprocess_resize_256(image):
if image.mode != 'RGB':
image = image.convert('RGB')
return transforms.Resize((256, 256))(image)
def preprocess_resize_224(image):
if image.mode != 'RGB':
image = image.convert('RGB')
return transforms.Resize((224, 224))(image)
def postprocess_pipeline(prediction, class_names):
# Assumes HuggingFace pipeline output
return {pred['label']: pred['score'] for pred in prediction}
def postprocess_logits(outputs, class_names):
# Assumes model output with logits
logits = outputs.logits.cpu().numpy()[0]
probabilities = softmax(logits)
return {class_names[i]: probabilities[i] for i in range(len(class_names))}
def register_model_with_metadata(model_id, model, preprocess, postprocess, class_names, display_name, contributor, model_path, architecture=None, dataset=None):
entry = ModelEntry(model, preprocess, postprocess, class_names, display_name=display_name, contributor=contributor, model_path=model_path, architecture=architecture, dataset=dataset)
MODEL_REGISTRY[model_id] = entry
# Load and register models (copied from app_mcp.py)
image_processor_1 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_1"], use_fast=True)
model_1 = Swinv2ForImageClassification.from_pretrained(MODEL_PATHS["model_1"]).to(device)
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device)
register_model_with_metadata(
"model_1", clf_1, preprocess_resize_256, postprocess_pipeline, CLASS_NAMES["model_1"],
display_name="SWIN1", contributor="haywoodsloan", model_path=MODEL_PATHS["model_1"],
architecture="SwinV2", dataset="TBA"
)
clf_2 = pipeline("image-classification", model=MODEL_PATHS["model_2"], device=device)
register_model_with_metadata(
"model_2", clf_2, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_2"],
display_name="VIT2", contributor="Heem2", model_path=MODEL_PATHS["model_2"],
architecture="ViT", dataset="TBA"
)
feature_extractor_3 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_3"], device=device)
model_3 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_3"]).to(device)
def preprocess_256(image):
if image.mode != 'RGB':
image = image.convert('RGB')
return transforms.Resize((256, 256))(image)
def postprocess_logits_model3(outputs, class_names):
logits = outputs.logits.cpu().numpy()[0]
probabilities = softmax(logits)
return {class_names[i]: probabilities[i] for i in range(len(class_names))}
def model3_infer(image):
inputs = feature_extractor_3(image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model_3(**inputs)
return outputs
register_model_with_metadata(
"model_3", model3_infer, preprocess_256, postprocess_logits_model3, CLASS_NAMES["model_3"],
display_name="SDXL3", contributor="Organika", model_path=MODEL_PATHS["model_3"],
architecture="VIT", dataset="SDXL"
)
feature_extractor_4 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_4"], device=device)
model_4 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_4"]).to(device)
def model4_infer(image):
inputs = feature_extractor_4(image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model_4(**inputs)
return outputs
def postprocess_logits_model4(outputs, class_names):
logits = outputs.logits.cpu().numpy()[0]
probabilities = softmax(logits)
return {class_names[i]: probabilities[i] for i in range(len(class_names))}
register_model_with_metadata(
"model_4", model4_infer, preprocess_256, postprocess_logits_model4, CLASS_NAMES["model_4"],
display_name="XLFLUX4", contributor="cmckinle", model_path=MODEL_PATHS["model_4"],
architecture="VIT", dataset="SDXL, FLUX"
)
clf_5 = pipeline("image-classification", model=MODEL_PATHS["model_5"], device=device)
register_model_with_metadata(
"model_5", clf_5, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_5"],
display_name="VIT5", contributor="prithivMLmods", model_path=MODEL_PATHS["model_5"],
architecture="VIT", dataset="TBA"
)
image_processor_6 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_6"], use_fast=True)
model_6 = SwinForImageClassification.from_pretrained(MODEL_PATHS["model_6"]).to(device)
clf_6 = pipeline(model=model_6, task="image-classification", image_processor=image_processor_6, device=device)
register_model_with_metadata(
"model_6", clf_6, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_6"],
display_name="SWIN6", contributor="ideepankarsharma2003", model_path=MODEL_PATHS["model_6"],
architecture="SWINv1", dataset="SDXL, Midjourney"
)
image_processor_7 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_7"], use_fast=True)
model_7 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_7"]).to(device)
clf_7 = pipeline(model=model_7, task="image-classification", image_processor=image_processor_7, device=device)
register_model_with_metadata(
"model_7", clf_7, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_7"],
display_name="VIT7", contributor="date3k2", model_path=MODEL_PATHS["model_7"],
architecture="VIT", dataset="TBA"
)
def preprocess_simple_prediction(image):
# The simple_prediction function expects a PIL image (filepath is handled internally)
return image
def postprocess_simple_prediction(result, class_names):
scores = {name: 0.0 for name in class_names}
fake_prob = result.get("Fake Probability")
if fake_prob is not None:
# Assume class_names = ["AI", "REAL"]
scores["AI"] = float(fake_prob)
scores["REAL"] = 1.0 - float(fake_prob)
return scores
def simple_prediction(img):
client = Client("aiwithoutborders-xyz/OpenSight-Community-Forensics-Preview")
result = client.predict(
input_image=handle_file(img),
api_name="/simple_predict"
)
return result
register_model_with_metadata(
"simple_prediction",
simple_prediction,
preprocess_simple_prediction,
postprocess_simple_prediction,
["AI", "REAL"],
display_name="Community Forensics",
contributor="Jeongsoo Park",
model_path="aiwithoutborders-xyz/CommunityForensics-DeepfakeDet-ViT",
architecture="ViT", dataset="GOAT"
)
def infer(image: Image.Image, model_id: str, confidence_threshold: float = 0.75) -> dict:
"""Predict using a specific model.
Args:
image (Image.Image): The input image to classify.
model_id (str): The ID of the model to use for classification.
confidence_threshold (float, optional): The confidence threshold for classification. Defaults to 0.75.
Returns:
dict: A dictionary containing the model details, classification scores, and label.
"""
entry = MODEL_REGISTRY[model_id]
img = entry.preprocess(image)
try:
result = entry.model(img)
scores = entry.postprocess(result, entry.class_names)
ai_score = float(scores.get(entry.class_names[0], 0.0))
real_score = float(scores.get(entry.class_names[1], 0.0))
label = "AI" if ai_score >= confidence_threshold else ("REAL" if real_score >= confidence_threshold else "UNCERTAIN")
return {
"Model": entry.display_name,
"Contributor": entry.contributor,
"HF Model Path": entry.model_path,
"AI Score": ai_score,
"Real Score": real_score,
"Label": label
}
except Exception as e:
return {
"Model": entry.display_name,
"Contributor": entry.contributor,
"HF Model Path": entry.model_path,
"AI Score": 0.0,
"Real Score": 0.0,
"Label": f"Error: {str(e)}"
}
# --- Streaming Ensemble Prediction ---
def ensemble_prediction_stream(img, confidence_threshold, augment_methods, rotate_degrees, noise_level, sharpen_strength):
# Setup (same as before)
if not isinstance(img, Image.Image):
try:
img = Image.fromarray(img)
except Exception as e:
logger.error(f"Error converting input image to PIL: {e}")
raise ValueError("Input image could not be converted to PIL Image.")
monitor_agent = EnsembleMonitorAgent()
weight_manager = ModelWeightManager()
optimization_agent = WeightOptimizationAgent(weight_manager)
health_agent = SystemHealthAgent()
context_agent = ContextualIntelligenceAgent()
anomaly_agent = ForensicAnomalyDetectionAgent()
health_agent.monitor_system_health()
if augment_methods:
img_pil, _ = augment_image(img, augment_methods, rotate_degrees, noise_level, sharpen_strength)
else:
img_pil = img
img_np_og = np.array(img)
model_predictions_raw = {}
confidence_scores = {}
results = []
table_rows = []
# Stream results as each model finishes
for model_id in MODEL_REGISTRY:
model_start = time.time()
result = infer(img_pil, model_id, confidence_threshold)
model_end = time.time()
monitor_agent.monitor_prediction(
model_id,
result["Label"],
max(result.get("AI Score", 0.0), result.get("Real Score", 0.0)),
model_end - model_start
)
model_predictions_raw[model_id] = result
confidence_scores[model_id] = max(result.get("AI Score", 0.0), result.get("Real Score", 0.0))
results.append(result)
table_rows.append([
result.get("Model", ""),
result.get("Contributor", ""),
round(result.get("AI Score", 0.0), 3) if result.get("AI Score") is not None else 0.0,
round(result.get("Real Score", 0.0), 3) if result.get("Real Score") is not None else 0.0,
result.get("Label", "Error")
])
# Yield partial results: only update the table, others are None
yield None, None, table_rows, None, None
# After all models, compute the rest as before
image_data_for_context = {
"width": img.width,
"height": img.height,
"mode": img.mode,
}
detected_context_tags = context_agent.infer_context_tags(image_data_for_context, model_predictions_raw)
logger.info(f"Detected context tags: {detected_context_tags}")
adjusted_weights = weight_manager.adjust_weights(model_predictions_raw, confidence_scores, context_tags=detected_context_tags)
weighted_predictions = {"AI": 0.0, "REAL": 0.0, "UNCERTAIN": 0.0}
for model_id, prediction in model_predictions_raw.items():
prediction_label = prediction.get("Label")
if prediction_label in weighted_predictions:
weighted_predictions[prediction_label] += adjusted_weights[model_id]
else:
logger.warning(f"Unexpected prediction label '{prediction_label}' from model '{model_id}'. Skipping its weight in consensus.")
final_prediction_label = "UNCERTAIN"
if weighted_predictions["AI"] > weighted_predictions["REAL"] and weighted_predictions["AI"] > weighted_predictions["UNCERTAIN"]:
final_prediction_label = "AI"
elif weighted_predictions["REAL"] > weighted_predictions["AI"] and weighted_predictions["REAL"] > weighted_predictions["UNCERTAIN"]:
final_prediction_label = "REAL"
optimization_agent.analyze_performance(final_prediction_label, None)
gradient_image = gradient_processing(img_np_og)
gradient_image2 = gradient_processing(img_np_og, intensity=45, equalize=True)
minmax_image = minmax_process(img_np_og)
minmax_image2 = minmax_process(img_np_og, radius=6)
bitplane_image = bit_plane_extractor(img_pil)
ela1 = ELA(img_np_og, quality=75, scale=50, contrast=20, linear=False, grayscale=True)
ela2 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=True)
ela3 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=False)
forensics_images = [img_pil, ela1, ela2, ela3, gradient_image, gradient_image2, minmax_image, minmax_image2, bitplane_image]
forensic_output_descriptions = [
f"Original augmented image (PIL): {img_pil.width}x{img_pil.height}",
"ELA analysis (Pass 1): Grayscale error map, quality 75.",
"ELA analysis (Pass 2): Grayscale error map, quality 75, enhanced contrast.",
"ELA analysis (Pass 3): Color error map, quality 75, enhanced contrast.",
"Gradient processing: Highlights edges and transitions.",
"Gradient processing: Int=45, Equalize=True",
"MinMax processing: Deviations in local pixel values.",
"MinMax processing (Radius=6): Deviations in local pixel values.",
"Bit Plane extractor: Visualization of individual bit planes from different color channels."
]
anomaly_detection_results = anomaly_agent.analyze_forensic_outputs(forensic_output_descriptions)
logger.info(f"Forensic anomaly detection: {anomaly_detection_results['summary']}")
consensus_html = f"<b><span style='color:{'red' if final_prediction_label == 'AI' else ('green' if final_prediction_label == 'REAL' else 'orange')}'>{final_prediction_label}</span></b>"
inference_params = {
"confidence_threshold": confidence_threshold,
"augment_methods": augment_methods,
"rotate_degrees": rotate_degrees,
"noise_level": noise_level,
"sharpen_strength": sharpen_strength,
"detected_context_tags": detected_context_tags
}
ensemble_output_data = {
"final_prediction_label": final_prediction_label,
"weighted_predictions": weighted_predictions,
"adjusted_weights": adjusted_weights
}
agent_monitoring_data_log = {
"ensemble_monitor": {
"alerts": monitor_agent.alerts,
"performance_metrics": monitor_agent.performance_metrics
},
"weight_optimization": {
"prediction_history_length": len(optimization_agent.prediction_history),
},
"system_health": {
"memory_usage": health_agent.health_metrics["memory_usage"],
"gpu_utilization": health_agent.health_metrics["gpu_utilization"]
},
"context_intelligence": {
"detected_context_tags": detected_context_tags
},
"forensic_anomaly_detection": anomaly_detection_results
}
log_inference_data(
original_image=img,
inference_params=inference_params,
model_predictions=results,
ensemble_output=ensemble_output_data,
forensic_images=forensics_images,
agent_monitoring_data=agent_monitoring_data_log,
human_feedback=None
)
cleaned_forensics_images = []
for f_img in forensics_images:
if isinstance(f_img, Image.Image):
cleaned_forensics_images.append(f_img)
elif isinstance(f_img, np.ndarray):
try:
cleaned_forensics_images.append(Image.fromarray(f_img))
except Exception as e:
logger.warning(f"Could not convert numpy array to PIL Image for gallery: {e}")
else:
logger.warning(f"Unexpected type in forensic_images: {type(f_img)}. Skipping.")
logger.info(f"Cleaned forensic images types: {[type(img) for img in cleaned_forensics_images]}")
for i, res_dict in enumerate(results):
for key in ["AI Score", "Real Score"]:
value = res_dict.get(key)
if isinstance(value, np.float32):
res_dict[key] = float(value)
logger.info(f"Converted {key} for result {i} from numpy.float32 to float.")
json_results = json.dumps(results, cls=NumpyEncoder)
yield img_pil, cleaned_forensics_images, table_rows, json_results, consensus_html
detection_model_eval_playground = gr.Interface(
fn=ensemble_prediction_stream,
inputs=[
gr.Image(label="Upload Image to Analyze", sources=['upload', 'webcam'], type='pil'),
gr.Slider(0.0, 1.0, value=0.7, step=0.05, label="Confidence Threshold"),
gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], label="Augmentation Methods"),
gr.Slider(0, 45, value=0, step=1, label="Rotate Degrees", visible=False),
gr.Slider(0, 50, value=0, step=1, label="Noise Level", visible=False),
gr.Slider(0, 50, value=0, step=1, label="Sharpen Strength", visible=False)
],
outputs=[
gr.Image(label="Processed Image", visible=False),
gr.Gallery(label="Post Processed Images", visible=True, columns=[4], rows=[2], container=False, height="auto", object_fit="contain", elem_id="post-gallery"),
gr.Dataframe(
label="Model Predictions",
headers=["Arch / Dataset", "By", "AI", "Real", "Label"],
datatype=["str", "str", "number", "number", "str"]
),
gr.JSON(label="Raw Model Results", visible=False),
gr.Markdown(label="Consensus", value="")
],
title="Open Source Detection Models Found on the Hub",
description="Space will be upgraded shortly; inference on all 6 models should take about 1.2~ seconds once we're back on CUDA. The Community Forensics mother of all detection models is now available for inference, head to the middle tab above this. Lots of exciting things coming up, stay tuned!",
api_name="predict",
live=True # Enable streaming
)
community_forensics_preview = gr.Interface(
fn=lambda: gr.load("aiwithoutborders-xyz/OpenSight-Community-Forensics-Preview", src="spaces"),
inputs=None,
outputs=gr.HTML(), # or gr.Markdown() if it's just text
title="Community Forensics Preview",
description="Community Forensics Preview coming soon!",
api_name="community_forensics"
)
leaderboard = gr.Interface(
fn=lambda: "# AI Generated / Deepfake Detection Models Leaderboard: Soon™",
inputs=None,
outputs=gr.Markdown(),
title="Leaderboard",
api_name="leaderboard"
)
simple_predict_interface = gr.Interface(
fn=simple_prediction,
inputs=gr.Image(type="filepath"),
outputs=gr.Text(),
title="Simple and Fast Prediction",
description="",
api_name="simple_predict"
)
wavelet_noise_estimation = gr.Interface(
fn=wavelet_blocking_noise_estimation,
inputs=[gr.Image(type="pil"), gr.Slider(1, 32, value=8, step=1, label="Block Size")],
outputs=gr.Image(type="pil"),
title="Wavelet-Based Noise Analysis",
description="Analyzes image noise patterns using wavelet decomposition. This tool helps detect compression artifacts and artificial noise patterns that may indicate image manipulation. Higher noise levels in specific regions can reveal areas of potential tampering.",
api_name="tool_waveletnoise"
)
bit_plane_interface = gr.Interface(
fn=bit_plane_extractor,
inputs=[
gr.Image(type="pil"),
gr.Dropdown(["Luminance", "Red", "Green", "Blue", "RGB Norm"], label="Channel", value="Luminance"),
gr.Slider(0, 7, value=0, step=1, label="Bit Plane"),
gr.Dropdown(["Disabled", "Median", "Gaussian"], label="Filter", value="Disabled")
],
outputs=gr.Image(type="pil"),
title="Bit Plane Analysis",
description="Extracts and visualizes individual bit planes from different color channels. This forensic tool helps identify hidden patterns and artifacts in image data that may indicate manipulation. Different bit planes can reveal inconsistencies in image processing or editing.",
api_name="tool_bitplane"
)
ela_interface = gr.Interface(
fn=ELA,
inputs=[
gr.Image(type="pil", label="Input Image"),
gr.Slider(1, 100, value=75, step=1, label="JPEG Quality"),
gr.Slider(1, 100, value=50, step=1, label="Output Scale (Multiplicative Gain)"),
gr.Slider(0, 100, value=20, step=1, label="Output Contrast (Tonality Compression)"),
gr.Checkbox(value=False, label="Use Linear Difference"),
gr.Checkbox(value=False, label="Grayscale Output")
],
outputs=gr.Image(type="pil"),
title="Error Level Analysis (ELA)",
description="Performs Error Level Analysis to detect re-saved JPEG images, which can indicate tampering. ELA highlights areas of an image that have different compression levels.",
api_name="tool_ela"
)
gradient_processing_interface = gr.Interface(
fn=gradient_processing,
inputs=[
gr.Image(type="pil", label="Input Image"),
gr.Slider(0, 100, value=90, step=1, label="Intensity"),
gr.Dropdown(["Abs", "None", "Flat", "Norm"], label="Blue Mode", value="Abs"),
gr.Checkbox(value=False, label="Invert Gradients"),
gr.Checkbox(value=False, label="Equalize Histogram")
],
outputs=gr.Image(type="pil"),
title="Gradient Processing",
description="Applies gradient filters to an image to enhance edges and transitions, which can reveal inconsistencies due to manipulation.",
api_name="tool_gradient_processing"
)
minmax_processing_interface = gr.Interface(
fn=minmax_process,
inputs=[
gr.Image(type="pil", label="Input Image"),
gr.Radio([0, 1, 2, 3, 4], label="Channel (0:Grayscale, 1:Blue, 2:Green, 3:Red, 4:RGB Norm)", value=4),
gr.Slider(0, 10, value=2, step=1, label="Radius")
],
outputs=gr.Image(type="pil"),
title="MinMax Processing",
description="Analyzes local pixel value deviations to detect subtle changes in image data, often indicative of digital forgeries.",
api_name="tool_minmax_processing"
)
demo = gr.TabbedInterface(
[
detection_model_eval_playground,
simple_predict_interface,
wavelet_noise_estimation,
bit_plane_interface,
ela_interface,
gradient_processing_interface,
minmax_processing_interface
],
[
"Run Ensemble Prediction",
"Simple Predict",
"Wavelet Blocking Noise Estimation",
"Bit Plane Values",
"Error Level Analysis (ELA)",
"Gradient Processing",
"MinMax Processing"
]
)
if __name__ == "__main__":
demo.launch(mcp_server=True)