|
import gradio as gr |
|
from gradio_client import Client, handle_file |
|
from PIL import Image |
|
import numpy as np |
|
import os |
|
import time |
|
import logging |
|
|
|
|
|
|
|
from utils.utils import softmax, augment_image |
|
from forensics.gradient import gradient_processing |
|
from forensics.minmax import minmax_process |
|
from forensics.ela import ELA |
|
from forensics.wavelet import wavelet_blocking_noise_estimation |
|
from forensics.bitplane import bit_plane_extractor |
|
from utils.hf_logger import log_inference_data |
|
from agents.ensemble_team import EnsembleMonitorAgent, WeightOptimizationAgent, SystemHealthAgent |
|
from agents.smart_agents import ContextualIntelligenceAgent, ForensicAnomalyDetectionAgent |
|
from utils.registry import register_model, MODEL_REGISTRY, ModelEntry |
|
from agents.ensemble_weights import ModelWeightManager |
|
from transformers import pipeline, AutoImageProcessor, SwinForImageClassification, Swinv2ForImageClassification, AutoFeatureExtractor, AutoModelForImageClassification |
|
from torchvision import transforms |
|
import torch |
|
import json |
|
from huggingface_hub import CommitScheduler |
|
from dotenv import load_dotenv |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
os.environ['HF_HUB_CACHE'] = './models' |
|
|
|
LOCAL_LOG_DIR = "./hf_inference_logs" |
|
HF_DATASET_NAME="aiwithoutborders-xyz/degentic_rd0" |
|
load_dotenv() |
|
|
|
|
|
class NumpyEncoder(json.JSONEncoder): |
|
def default(self, obj): |
|
if isinstance(obj, np.float32): |
|
return float(obj) |
|
return json.JSONEncoder.default(self, obj) |
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
|
|
MODEL_PATHS = { |
|
"model_1": "haywoodsloan/ai-image-detector-deploy", |
|
"model_2": "Heem2/AI-vs-Real-Image-Detection", |
|
"model_3": "Organika/sdxl-detector", |
|
"model_4": "cmckinle/sdxl-flux-detector_v1.1", |
|
"model_5": "prithivMLmods/Deep-Fake-Detector-v2-Model", |
|
"model_6": "ideepankarsharma2003/AI_ImageClassification_MidjourneyV6_SDXL", |
|
"model_7": "date3k2/vit-real-fake-classification-v4" |
|
} |
|
|
|
CLASS_NAMES = { |
|
"model_1": ['artificial', 'real'], |
|
"model_2": ['AI Image', 'Real Image'], |
|
"model_3": ['AI', 'Real'], |
|
"model_4": ['AI', 'Real'], |
|
"model_5": ['Realism', 'Deepfake'], |
|
"model_6": ['ai_gen', 'human'], |
|
"model_7": ['Fake', 'Real'], |
|
} |
|
|
|
def preprocess_resize_256(image): |
|
if image.mode != 'RGB': |
|
image = image.convert('RGB') |
|
return transforms.Resize((256, 256))(image) |
|
|
|
def preprocess_resize_224(image): |
|
if image.mode != 'RGB': |
|
image = image.convert('RGB') |
|
return transforms.Resize((224, 224))(image) |
|
|
|
def postprocess_pipeline(prediction, class_names): |
|
|
|
return {pred['label']: pred['score'] for pred in prediction} |
|
|
|
def postprocess_logits(outputs, class_names): |
|
|
|
logits = outputs.logits.cpu().numpy()[0] |
|
probabilities = softmax(logits) |
|
return {class_names[i]: probabilities[i] for i in range(len(class_names))} |
|
|
|
def register_model_with_metadata(model_id, model, preprocess, postprocess, class_names, display_name, contributor, model_path, architecture=None, dataset=None): |
|
entry = ModelEntry(model, preprocess, postprocess, class_names, display_name=display_name, contributor=contributor, model_path=model_path, architecture=architecture, dataset=dataset) |
|
MODEL_REGISTRY[model_id] = entry |
|
|
|
|
|
image_processor_1 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_1"], use_fast=True) |
|
model_1 = Swinv2ForImageClassification.from_pretrained(MODEL_PATHS["model_1"]).to(device) |
|
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device) |
|
register_model_with_metadata( |
|
"model_1", clf_1, preprocess_resize_256, postprocess_pipeline, CLASS_NAMES["model_1"], |
|
display_name="SWIN1", contributor="haywoodsloan", model_path=MODEL_PATHS["model_1"], |
|
architecture="SwinV2", dataset="TBA" |
|
) |
|
|
|
clf_2 = pipeline("image-classification", model=MODEL_PATHS["model_2"], device=device) |
|
register_model_with_metadata( |
|
"model_2", clf_2, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_2"], |
|
display_name="VIT2", contributor="Heem2", model_path=MODEL_PATHS["model_2"], |
|
architecture="ViT", dataset="TBA" |
|
) |
|
|
|
feature_extractor_3 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_3"], device=device) |
|
model_3 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_3"]).to(device) |
|
def preprocess_256(image): |
|
if image.mode != 'RGB': |
|
image = image.convert('RGB') |
|
return transforms.Resize((256, 256))(image) |
|
def postprocess_logits_model3(outputs, class_names): |
|
logits = outputs.logits.cpu().numpy()[0] |
|
probabilities = softmax(logits) |
|
return {class_names[i]: probabilities[i] for i in range(len(class_names))} |
|
def model3_infer(image): |
|
inputs = feature_extractor_3(image, return_tensors="pt").to(device) |
|
with torch.no_grad(): |
|
outputs = model_3(**inputs) |
|
return outputs |
|
register_model_with_metadata( |
|
"model_3", model3_infer, preprocess_256, postprocess_logits_model3, CLASS_NAMES["model_3"], |
|
display_name="SDXL3", contributor="Organika", model_path=MODEL_PATHS["model_3"], |
|
architecture="VIT", dataset="SDXL" |
|
) |
|
|
|
feature_extractor_4 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_4"], device=device) |
|
model_4 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_4"]).to(device) |
|
def model4_infer(image): |
|
inputs = feature_extractor_4(image, return_tensors="pt").to(device) |
|
with torch.no_grad(): |
|
outputs = model_4(**inputs) |
|
return outputs |
|
def postprocess_logits_model4(outputs, class_names): |
|
logits = outputs.logits.cpu().numpy()[0] |
|
probabilities = softmax(logits) |
|
return {class_names[i]: probabilities[i] for i in range(len(class_names))} |
|
register_model_with_metadata( |
|
"model_4", model4_infer, preprocess_256, postprocess_logits_model4, CLASS_NAMES["model_4"], |
|
display_name="XLFLUX4", contributor="cmckinle", model_path=MODEL_PATHS["model_4"], |
|
architecture="VIT", dataset="SDXL, FLUX" |
|
) |
|
|
|
clf_5 = pipeline("image-classification", model=MODEL_PATHS["model_5"], device=device) |
|
register_model_with_metadata( |
|
"model_5", clf_5, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_5"], |
|
display_name="VIT5", contributor="prithivMLmods", model_path=MODEL_PATHS["model_5"], |
|
architecture="VIT", dataset="TBA" |
|
) |
|
|
|
image_processor_6 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_6"], use_fast=True) |
|
model_6 = SwinForImageClassification.from_pretrained(MODEL_PATHS["model_6"]).to(device) |
|
clf_6 = pipeline(model=model_6, task="image-classification", image_processor=image_processor_6, device=device) |
|
register_model_with_metadata( |
|
"model_6", clf_6, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_6"], |
|
display_name="SWIN6", contributor="ideepankarsharma2003", model_path=MODEL_PATHS["model_6"], |
|
architecture="SWINv1", dataset="SDXL, Midjourney" |
|
) |
|
|
|
image_processor_7 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_7"], use_fast=True) |
|
model_7 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_7"]).to(device) |
|
clf_7 = pipeline(model=model_7, task="image-classification", image_processor=image_processor_7, device=device) |
|
register_model_with_metadata( |
|
"model_7", clf_7, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_7"], |
|
display_name="VIT7", contributor="date3k2", model_path=MODEL_PATHS["model_7"], |
|
architecture="VIT", dataset="TBA" |
|
) |
|
|
|
def preprocess_simple_prediction(image): |
|
|
|
return image |
|
|
|
def postprocess_simple_prediction(result, class_names): |
|
scores = {name: 0.0 for name in class_names} |
|
fake_prob = result.get("Fake Probability") |
|
if fake_prob is not None: |
|
|
|
scores["AI"] = float(fake_prob) |
|
scores["REAL"] = 1.0 - float(fake_prob) |
|
return scores |
|
|
|
def simple_prediction(img): |
|
client = Client("aiwithoutborders-xyz/OpenSight-Community-Forensics-Preview") |
|
result = client.predict( |
|
input_image=handle_file(img), |
|
api_name="/simple_predict" |
|
) |
|
return result |
|
|
|
|
|
register_model_with_metadata( |
|
"simple_prediction", |
|
simple_prediction, |
|
preprocess_simple_prediction, |
|
postprocess_simple_prediction, |
|
["AI", "REAL"], |
|
display_name="Community Forensics", |
|
contributor="Jeongsoo Park", |
|
model_path="aiwithoutborders-xyz/CommunityForensics-DeepfakeDet-ViT", |
|
architecture="ViT", dataset="GOAT" |
|
) |
|
def infer(image: Image.Image, model_id: str, confidence_threshold: float = 0.75) -> dict: |
|
"""Predict using a specific model. |
|
|
|
Args: |
|
image (Image.Image): The input image to classify. |
|
model_id (str): The ID of the model to use for classification. |
|
confidence_threshold (float, optional): The confidence threshold for classification. Defaults to 0.75. |
|
|
|
Returns: |
|
dict: A dictionary containing the model details, classification scores, and label. |
|
""" |
|
entry = MODEL_REGISTRY[model_id] |
|
img = entry.preprocess(image) |
|
try: |
|
result = entry.model(img) |
|
scores = entry.postprocess(result, entry.class_names) |
|
ai_score = float(scores.get(entry.class_names[0], 0.0)) |
|
real_score = float(scores.get(entry.class_names[1], 0.0)) |
|
label = "AI" if ai_score >= confidence_threshold else ("REAL" if real_score >= confidence_threshold else "UNCERTAIN") |
|
return { |
|
"Model": entry.display_name, |
|
"Contributor": entry.contributor, |
|
"HF Model Path": entry.model_path, |
|
"AI Score": ai_score, |
|
"Real Score": real_score, |
|
"Label": label |
|
} |
|
except Exception as e: |
|
return { |
|
"Model": entry.display_name, |
|
"Contributor": entry.contributor, |
|
"HF Model Path": entry.model_path, |
|
"AI Score": 0.0, |
|
"Real Score": 0.0, |
|
"Label": f"Error: {str(e)}" |
|
} |
|
|
|
|
|
def ensemble_prediction_stream(img, confidence_threshold, augment_methods, rotate_degrees, noise_level, sharpen_strength): |
|
|
|
if not isinstance(img, Image.Image): |
|
try: |
|
img = Image.fromarray(img) |
|
except Exception as e: |
|
logger.error(f"Error converting input image to PIL: {e}") |
|
raise ValueError("Input image could not be converted to PIL Image.") |
|
|
|
monitor_agent = EnsembleMonitorAgent() |
|
weight_manager = ModelWeightManager() |
|
optimization_agent = WeightOptimizationAgent(weight_manager) |
|
health_agent = SystemHealthAgent() |
|
context_agent = ContextualIntelligenceAgent() |
|
anomaly_agent = ForensicAnomalyDetectionAgent() |
|
health_agent.monitor_system_health() |
|
|
|
if augment_methods: |
|
img_pil, _ = augment_image(img, augment_methods, rotate_degrees, noise_level, sharpen_strength) |
|
else: |
|
img_pil = img |
|
img_np_og = np.array(img) |
|
|
|
model_predictions_raw = {} |
|
confidence_scores = {} |
|
results = [] |
|
table_rows = [] |
|
|
|
|
|
for model_id in MODEL_REGISTRY: |
|
model_start = time.time() |
|
result = infer(img_pil, model_id, confidence_threshold) |
|
model_end = time.time() |
|
monitor_agent.monitor_prediction( |
|
model_id, |
|
result["Label"], |
|
max(result.get("AI Score", 0.0), result.get("Real Score", 0.0)), |
|
model_end - model_start |
|
) |
|
model_predictions_raw[model_id] = result |
|
confidence_scores[model_id] = max(result.get("AI Score", 0.0), result.get("Real Score", 0.0)) |
|
results.append(result) |
|
table_rows.append([ |
|
result.get("Model", ""), |
|
result.get("Contributor", ""), |
|
round(result.get("AI Score", 0.0), 3) if result.get("AI Score") is not None else 0.0, |
|
round(result.get("Real Score", 0.0), 3) if result.get("Real Score") is not None else 0.0, |
|
result.get("Label", "Error") |
|
]) |
|
|
|
yield None, None, table_rows, None, None |
|
|
|
|
|
image_data_for_context = { |
|
"width": img.width, |
|
"height": img.height, |
|
"mode": img.mode, |
|
} |
|
detected_context_tags = context_agent.infer_context_tags(image_data_for_context, model_predictions_raw) |
|
logger.info(f"Detected context tags: {detected_context_tags}") |
|
adjusted_weights = weight_manager.adjust_weights(model_predictions_raw, confidence_scores, context_tags=detected_context_tags) |
|
weighted_predictions = {"AI": 0.0, "REAL": 0.0, "UNCERTAIN": 0.0} |
|
for model_id, prediction in model_predictions_raw.items(): |
|
prediction_label = prediction.get("Label") |
|
if prediction_label in weighted_predictions: |
|
weighted_predictions[prediction_label] += adjusted_weights[model_id] |
|
else: |
|
logger.warning(f"Unexpected prediction label '{prediction_label}' from model '{model_id}'. Skipping its weight in consensus.") |
|
final_prediction_label = "UNCERTAIN" |
|
if weighted_predictions["AI"] > weighted_predictions["REAL"] and weighted_predictions["AI"] > weighted_predictions["UNCERTAIN"]: |
|
final_prediction_label = "AI" |
|
elif weighted_predictions["REAL"] > weighted_predictions["AI"] and weighted_predictions["REAL"] > weighted_predictions["UNCERTAIN"]: |
|
final_prediction_label = "REAL" |
|
optimization_agent.analyze_performance(final_prediction_label, None) |
|
gradient_image = gradient_processing(img_np_og) |
|
gradient_image2 = gradient_processing(img_np_og, intensity=45, equalize=True) |
|
minmax_image = minmax_process(img_np_og) |
|
minmax_image2 = minmax_process(img_np_og, radius=6) |
|
bitplane_image = bit_plane_extractor(img_pil) |
|
ela1 = ELA(img_np_og, quality=75, scale=50, contrast=20, linear=False, grayscale=True) |
|
ela2 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=True) |
|
ela3 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=False) |
|
forensics_images = [img_pil, ela1, ela2, ela3, gradient_image, gradient_image2, minmax_image, minmax_image2, bitplane_image] |
|
forensic_output_descriptions = [ |
|
f"Original augmented image (PIL): {img_pil.width}x{img_pil.height}", |
|
"ELA analysis (Pass 1): Grayscale error map, quality 75.", |
|
"ELA analysis (Pass 2): Grayscale error map, quality 75, enhanced contrast.", |
|
"ELA analysis (Pass 3): Color error map, quality 75, enhanced contrast.", |
|
"Gradient processing: Highlights edges and transitions.", |
|
"Gradient processing: Int=45, Equalize=True", |
|
"MinMax processing: Deviations in local pixel values.", |
|
"MinMax processing (Radius=6): Deviations in local pixel values.", |
|
"Bit Plane extractor: Visualization of individual bit planes from different color channels." |
|
] |
|
anomaly_detection_results = anomaly_agent.analyze_forensic_outputs(forensic_output_descriptions) |
|
logger.info(f"Forensic anomaly detection: {anomaly_detection_results['summary']}") |
|
consensus_html = f"<b><span style='color:{'red' if final_prediction_label == 'AI' else ('green' if final_prediction_label == 'REAL' else 'orange')}'>{final_prediction_label}</span></b>" |
|
inference_params = { |
|
"confidence_threshold": confidence_threshold, |
|
"augment_methods": augment_methods, |
|
"rotate_degrees": rotate_degrees, |
|
"noise_level": noise_level, |
|
"sharpen_strength": sharpen_strength, |
|
"detected_context_tags": detected_context_tags |
|
} |
|
ensemble_output_data = { |
|
"final_prediction_label": final_prediction_label, |
|
"weighted_predictions": weighted_predictions, |
|
"adjusted_weights": adjusted_weights |
|
} |
|
agent_monitoring_data_log = { |
|
"ensemble_monitor": { |
|
"alerts": monitor_agent.alerts, |
|
"performance_metrics": monitor_agent.performance_metrics |
|
}, |
|
"weight_optimization": { |
|
"prediction_history_length": len(optimization_agent.prediction_history), |
|
}, |
|
"system_health": { |
|
"memory_usage": health_agent.health_metrics["memory_usage"], |
|
"gpu_utilization": health_agent.health_metrics["gpu_utilization"] |
|
}, |
|
"context_intelligence": { |
|
"detected_context_tags": detected_context_tags |
|
}, |
|
"forensic_anomaly_detection": anomaly_detection_results |
|
} |
|
log_inference_data( |
|
original_image=img, |
|
inference_params=inference_params, |
|
model_predictions=results, |
|
ensemble_output=ensemble_output_data, |
|
forensic_images=forensics_images, |
|
agent_monitoring_data=agent_monitoring_data_log, |
|
human_feedback=None |
|
) |
|
cleaned_forensics_images = [] |
|
for f_img in forensics_images: |
|
if isinstance(f_img, Image.Image): |
|
cleaned_forensics_images.append(f_img) |
|
elif isinstance(f_img, np.ndarray): |
|
try: |
|
cleaned_forensics_images.append(Image.fromarray(f_img)) |
|
except Exception as e: |
|
logger.warning(f"Could not convert numpy array to PIL Image for gallery: {e}") |
|
else: |
|
logger.warning(f"Unexpected type in forensic_images: {type(f_img)}. Skipping.") |
|
logger.info(f"Cleaned forensic images types: {[type(img) for img in cleaned_forensics_images]}") |
|
for i, res_dict in enumerate(results): |
|
for key in ["AI Score", "Real Score"]: |
|
value = res_dict.get(key) |
|
if isinstance(value, np.float32): |
|
res_dict[key] = float(value) |
|
logger.info(f"Converted {key} for result {i} from numpy.float32 to float.") |
|
json_results = json.dumps(results, cls=NumpyEncoder) |
|
yield img_pil, cleaned_forensics_images, table_rows, json_results, consensus_html |
|
|
|
detection_model_eval_playground = gr.Interface( |
|
fn=ensemble_prediction_stream, |
|
inputs=[ |
|
gr.Image(label="Upload Image to Analyze", sources=['upload', 'webcam'], type='pil'), |
|
gr.Slider(0.0, 1.0, value=0.7, step=0.05, label="Confidence Threshold"), |
|
gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], label="Augmentation Methods"), |
|
gr.Slider(0, 45, value=0, step=1, label="Rotate Degrees", visible=False), |
|
gr.Slider(0, 50, value=0, step=1, label="Noise Level", visible=False), |
|
gr.Slider(0, 50, value=0, step=1, label="Sharpen Strength", visible=False) |
|
], |
|
outputs=[ |
|
gr.Image(label="Processed Image", visible=False), |
|
gr.Gallery(label="Post Processed Images", visible=True, columns=[4], rows=[2], container=False, height="auto", object_fit="contain", elem_id="post-gallery"), |
|
gr.Dataframe( |
|
label="Model Predictions", |
|
headers=["Arch / Dataset", "By", "AI", "Real", "Label"], |
|
datatype=["str", "str", "number", "number", "str"] |
|
), |
|
gr.JSON(label="Raw Model Results", visible=False), |
|
gr.Markdown(label="Consensus", value="") |
|
], |
|
title="Open Source Detection Models Found on the Hub", |
|
description="Space will be upgraded shortly; inference on all 6 models should take about 1.2~ seconds once we're back on CUDA. The Community Forensics mother of all detection models is now available for inference, head to the middle tab above this. Lots of exciting things coming up, stay tuned!", |
|
api_name="predict", |
|
live=True |
|
) |
|
|
|
community_forensics_preview = gr.Interface( |
|
fn=lambda: gr.load("aiwithoutborders-xyz/OpenSight-Community-Forensics-Preview", src="spaces"), |
|
inputs=None, |
|
outputs=gr.HTML(), |
|
title="Community Forensics Preview", |
|
description="Community Forensics Preview coming soon!", |
|
api_name="community_forensics" |
|
) |
|
|
|
leaderboard = gr.Interface( |
|
fn=lambda: "# AI Generated / Deepfake Detection Models Leaderboard: Soon™", |
|
inputs=None, |
|
outputs=gr.Markdown(), |
|
title="Leaderboard", |
|
api_name="leaderboard" |
|
) |
|
|
|
simple_predict_interface = gr.Interface( |
|
fn=simple_prediction, |
|
inputs=gr.Image(type="filepath"), |
|
outputs=gr.Text(), |
|
title="Simple and Fast Prediction", |
|
description="", |
|
api_name="simple_predict" |
|
) |
|
|
|
wavelet_noise_estimation = gr.Interface( |
|
fn=wavelet_blocking_noise_estimation, |
|
inputs=[gr.Image(type="pil"), gr.Slider(1, 32, value=8, step=1, label="Block Size")], |
|
outputs=gr.Image(type="pil"), |
|
title="Wavelet-Based Noise Analysis", |
|
description="Analyzes image noise patterns using wavelet decomposition. This tool helps detect compression artifacts and artificial noise patterns that may indicate image manipulation. Higher noise levels in specific regions can reveal areas of potential tampering.", |
|
api_name="tool_waveletnoise" |
|
) |
|
|
|
bit_plane_interface = gr.Interface( |
|
fn=bit_plane_extractor, |
|
inputs=[ |
|
gr.Image(type="pil"), |
|
gr.Dropdown(["Luminance", "Red", "Green", "Blue", "RGB Norm"], label="Channel", value="Luminance"), |
|
gr.Slider(0, 7, value=0, step=1, label="Bit Plane"), |
|
gr.Dropdown(["Disabled", "Median", "Gaussian"], label="Filter", value="Disabled") |
|
], |
|
outputs=gr.Image(type="pil"), |
|
title="Bit Plane Analysis", |
|
description="Extracts and visualizes individual bit planes from different color channels. This forensic tool helps identify hidden patterns and artifacts in image data that may indicate manipulation. Different bit planes can reveal inconsistencies in image processing or editing.", |
|
api_name="tool_bitplane" |
|
) |
|
|
|
ela_interface = gr.Interface( |
|
fn=ELA, |
|
inputs=[ |
|
gr.Image(type="pil", label="Input Image"), |
|
gr.Slider(1, 100, value=75, step=1, label="JPEG Quality"), |
|
gr.Slider(1, 100, value=50, step=1, label="Output Scale (Multiplicative Gain)"), |
|
gr.Slider(0, 100, value=20, step=1, label="Output Contrast (Tonality Compression)"), |
|
gr.Checkbox(value=False, label="Use Linear Difference"), |
|
gr.Checkbox(value=False, label="Grayscale Output") |
|
], |
|
outputs=gr.Image(type="pil"), |
|
title="Error Level Analysis (ELA)", |
|
description="Performs Error Level Analysis to detect re-saved JPEG images, which can indicate tampering. ELA highlights areas of an image that have different compression levels.", |
|
api_name="tool_ela" |
|
) |
|
|
|
gradient_processing_interface = gr.Interface( |
|
fn=gradient_processing, |
|
inputs=[ |
|
gr.Image(type="pil", label="Input Image"), |
|
gr.Slider(0, 100, value=90, step=1, label="Intensity"), |
|
gr.Dropdown(["Abs", "None", "Flat", "Norm"], label="Blue Mode", value="Abs"), |
|
gr.Checkbox(value=False, label="Invert Gradients"), |
|
gr.Checkbox(value=False, label="Equalize Histogram") |
|
], |
|
outputs=gr.Image(type="pil"), |
|
title="Gradient Processing", |
|
description="Applies gradient filters to an image to enhance edges and transitions, which can reveal inconsistencies due to manipulation.", |
|
api_name="tool_gradient_processing" |
|
) |
|
|
|
minmax_processing_interface = gr.Interface( |
|
fn=minmax_process, |
|
inputs=[ |
|
gr.Image(type="pil", label="Input Image"), |
|
gr.Radio([0, 1, 2, 3, 4], label="Channel (0:Grayscale, 1:Blue, 2:Green, 3:Red, 4:RGB Norm)", value=4), |
|
gr.Slider(0, 10, value=2, step=1, label="Radius") |
|
], |
|
outputs=gr.Image(type="pil"), |
|
title="MinMax Processing", |
|
description="Analyzes local pixel value deviations to detect subtle changes in image data, often indicative of digital forgeries.", |
|
api_name="tool_minmax_processing" |
|
) |
|
|
|
demo = gr.TabbedInterface( |
|
[ |
|
detection_model_eval_playground, |
|
simple_predict_interface, |
|
wavelet_noise_estimation, |
|
bit_plane_interface, |
|
ela_interface, |
|
gradient_processing_interface, |
|
minmax_processing_interface |
|
], |
|
[ |
|
"Run Ensemble Prediction", |
|
"Simple Predict", |
|
"Wavelet Blocking Noise Estimation", |
|
"Bit Plane Values", |
|
"Error Level Analysis (ELA)", |
|
"Gradient Processing", |
|
"MinMax Processing" |
|
] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(mcp_server=True) |