|
import os |
|
import time |
|
from typing import Literal |
|
import spaces |
|
import gradio as gr |
|
from gradio_client import Client, handle_file |
|
|
|
from transformers import pipeline, AutoImageProcessor, SwinForImageClassification, Swinv2ForImageClassification, AutoFeatureExtractor, AutoModelForImageClassification |
|
from torchvision import transforms |
|
import torch |
|
from PIL import Image |
|
import numpy as np |
|
import io |
|
import logging |
|
from utils.utils import softmax, augment_image, convert_pil_to_bytes |
|
from forensics.gradient import gradient_processing |
|
from forensics.minmax import minmax_process |
|
from forensics.ela import ELA |
|
from forensics.wavelet import wavelet_blocking_noise_estimation |
|
from forensics.bitplane import bit_plane_extractor |
|
from utils.hf_logger import log_inference_data |
|
from utils.text_content import QUICK_INTRO, IMPLEMENTATION |
|
from agents.ensemble_team import EnsembleMonitorAgent, WeightOptimizationAgent, SystemHealthAgent |
|
from agents.smart_agents import ContextualIntelligenceAgent, ForensicAnomalyDetectionAgent |
|
|
|
from utils.registry import register_model, MODEL_REGISTRY, ModelEntry |
|
from agents.ensemble_weights import ModelWeightManager |
|
from dotenv import load_dotenv |
|
import json |
|
from huggingface_hub import CommitScheduler |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
os.environ['HF_HUB_CACHE'] = './models' |
|
|
|
LOCAL_LOG_DIR = "./hf_inference_logs" |
|
HF_DATASET_NAME="degentic_rd0" |
|
load_dotenv() |
|
|
|
|
|
|
|
class NumpyEncoder(json.JSONEncoder): |
|
def default(self, obj): |
|
if isinstance(obj, np.float32): |
|
return float(obj) |
|
return json.JSONEncoder.default(self, obj) |
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
header_style = { |
|
"textAlign": 'center', |
|
"color": '#fff', |
|
"height": 64, |
|
"paddingInline": 48, |
|
"lineHeight": '64px', |
|
"backgroundColor": '#4096ff', |
|
} |
|
|
|
content_style = { |
|
"textAlign": 'center', |
|
"minHeight": 120, |
|
"lineHeight": '120px', |
|
"color": '#fff', |
|
"backgroundColor": '#0958d9', |
|
} |
|
|
|
sider_style = { |
|
"textAlign": 'center', |
|
"lineHeight": '120px', |
|
"color": '#fff', |
|
"backgroundColor": '#1677ff', |
|
} |
|
|
|
footer_style = { |
|
"textAlign": 'center', |
|
"color": '#fff', |
|
"backgroundColor": '#4096ff', |
|
} |
|
|
|
layout_style = { |
|
"borderRadius": 8, |
|
"overflow": 'hidden', |
|
"width": 'calc(100% - 8px)', |
|
"maxWidth": 'calc(100% - 8px)', |
|
} |
|
|
|
MODEL_PATHS = { |
|
"model_1": "haywoodsloan/ai-image-detector-deploy", |
|
"model_2": "Heem2/AI-vs-Real-Image-Detection", |
|
"model_3": "Organika/sdxl-detector", |
|
"model_4": "cmckinle/sdxl-flux-detector_v1.1", |
|
"model_5": "prithivMLmods/Deep-Fake-Detector-v2-Model", |
|
"model_6": "ideepankarsharma2003/AI_ImageClassification_MidjourneyV6_SDXL", |
|
"model_7": "date3k2/vit-real-fake-classification-v4" |
|
} |
|
|
|
CLASS_NAMES = { |
|
"model_1": ['artificial', 'real'], |
|
"model_2": ['AI Image', 'Real Image'], |
|
"model_3": ['AI', 'Real'], |
|
"model_4": ['AI', 'Real'], |
|
"model_5": ['Realism', 'Deepfake'], |
|
"model_6": ['ai_gen', 'human'], |
|
"model_7": ['Fake', 'Real'], |
|
|
|
} |
|
|
|
def preprocess_resize_224(image): |
|
if image.mode != 'RGB': |
|
image = image.convert('RGB') |
|
return transforms.Resize((224, 224))(image) |
|
def preprocess_256(image): |
|
if image.mode != 'RGB': |
|
image = image.convert('RGB') |
|
return transforms.Resize((256, 256))(image) |
|
def postprocess_pipeline(prediction, class_names): |
|
|
|
return {pred['label']: pred['score'] for pred in prediction} |
|
|
|
def postprocess_logits(outputs, class_names): |
|
|
|
logits = outputs.logits.cpu().numpy()[0] |
|
probabilities = softmax(logits) |
|
return {class_names[i]: probabilities[i] for i in range(len(class_names))} |
|
|
|
|
|
|
|
|
|
|
|
def register_model_with_metadata(model_id, model, preprocess, postprocess, class_names, display_name, contributor, model_path): |
|
entry = ModelEntry(model, preprocess, postprocess, class_names) |
|
entry.display_name = display_name |
|
entry.contributor = contributor |
|
entry.model_path = model_path |
|
MODEL_REGISTRY[model_id] = entry |
|
|
|
|
|
image_processor_1 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_1"], use_fast=True) |
|
model_1 = Swinv2ForImageClassification.from_pretrained(MODEL_PATHS["model_1"]).to(device) |
|
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device) |
|
register_model_with_metadata( |
|
"model_1", clf_1, preprocess_256, postprocess_pipeline, CLASS_NAMES["model_1"], |
|
display_name="SwinV2 Based", contributor="haywoodsloan", model_path=MODEL_PATHS["model_1"] |
|
) |
|
|
|
clf_2 = pipeline("image-classification", model=MODEL_PATHS["model_2"], device=device) |
|
register_model_with_metadata( |
|
"model_2", clf_2, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_2"], |
|
display_name="ViT Based", contributor="Heem2", model_path=MODEL_PATHS["model_2"] |
|
) |
|
|
|
|
|
feature_extractor_3 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_3"], device=device) |
|
model_3 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_3"]).to(device) |
|
|
|
def postprocess_logits_model3(outputs, class_names): |
|
logits = outputs.logits.cpu().numpy()[0] |
|
probabilities = softmax(logits) |
|
return {class_names[i]: probabilities[i] for i in range(len(class_names))} |
|
def model3_infer(image): |
|
inputs = feature_extractor_3(image, return_tensors="pt").to(device) |
|
with torch.no_grad(): |
|
outputs = model_3(**inputs) |
|
return outputs |
|
register_model_with_metadata( |
|
"model_3", model3_infer, preprocess_256, postprocess_logits_model3, CLASS_NAMES["model_3"], |
|
display_name="SDXL Dataset", contributor="Organika", model_path=MODEL_PATHS["model_3"] |
|
) |
|
|
|
feature_extractor_4 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_4"], device=device) |
|
model_4 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_4"]).to(device) |
|
def model4_infer(image): |
|
inputs = feature_extractor_4(image, return_tensors="pt").to(device) |
|
with torch.no_grad(): |
|
outputs = model_4(**inputs) |
|
return outputs |
|
def postprocess_logits_model4(outputs, class_names): |
|
logits = outputs.logits.cpu().numpy()[0] |
|
probabilities = softmax(logits) |
|
return {class_names[i]: probabilities[i] for i in range(len(class_names))} |
|
register_model_with_metadata( |
|
"model_4", model4_infer, preprocess_256, postprocess_logits_model4, CLASS_NAMES["model_4"], |
|
display_name="SDXL + FLUX", contributor="cmckinle", model_path=MODEL_PATHS["model_4"] |
|
) |
|
|
|
clf_5 = pipeline("image-classification", model=MODEL_PATHS["model_5"], device=device) |
|
register_model_with_metadata( |
|
"model_5", clf_5, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_5"], |
|
display_name="Vit Based", contributor="prithivMLmods", model_path=MODEL_PATHS["model_5"] |
|
) |
|
|
|
|
|
image_processor_6 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_6"], use_fast=True) |
|
model_6 = SwinForImageClassification.from_pretrained(MODEL_PATHS["model_6"]).to(device) |
|
clf_6 = pipeline(model=model_6, task="image-classification", image_processor=image_processor_6, device=device) |
|
register_model_with_metadata( |
|
"model_6", clf_6, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_6"], |
|
display_name="Swin, Midj + SDXL", contributor="ideepankarsharma2003", model_path=MODEL_PATHS["model_6"] |
|
) |
|
|
|
image_processor_7 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_7"], use_fast=True) |
|
model_7 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_7"]).to(device) |
|
clf_7 = pipeline(model=model_7, task="image-classification", image_processor=image_processor_7, device=device) |
|
register_model_with_metadata( |
|
"model_7", clf_7, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_7"], |
|
display_name="ViT", contributor="temp", model_path=MODEL_PATHS["model_7"] |
|
) |
|
|
|
|
|
|
|
def infer(image: Image.Image, model_id: str, confidence_threshold: float = 0.75) -> dict: |
|
entry = MODEL_REGISTRY[model_id] |
|
img = entry.preprocess(image) |
|
try: |
|
result = entry.model(img) |
|
scores = entry.postprocess(result, entry.class_names) |
|
|
|
ai_score = float(scores.get(entry.class_names[0], 0.0)) |
|
real_score = float(scores.get(entry.class_names[1], 0.0)) |
|
label = "AI" if ai_score >= confidence_threshold else ("REAL" if real_score >= confidence_threshold else "UNCERTAIN") |
|
return { |
|
"Model": entry.display_name, |
|
"Contributor": entry.contributor, |
|
"HF Model Path": entry.model_path, |
|
"AI Score": ai_score, |
|
"Real Score": real_score, |
|
"Label": label |
|
} |
|
except Exception as e: |
|
return { |
|
"Model": entry.display_name, |
|
"Contributor": entry.contributor, |
|
"HF Model Path": entry.model_path, |
|
"AI Score": 0.0, |
|
"Real Score": 0.0, |
|
"Label": f"Error: {str(e)}" |
|
} |
|
|
|
|
|
|
|
def predict_image(img, confidence_threshold): |
|
model_ids = [ |
|
"model_1", "model_2", "model_3", "model_4", "model_5", "model_6", "model_7" |
|
] |
|
results = [infer(img, model_id, confidence_threshold) for model_id in model_ids] |
|
return img, results |
|
|
|
def get_consensus_label(results): |
|
labels = [r[4] for r in results if len(r) > 4] |
|
if not labels: |
|
return "No results" |
|
consensus = max(set(labels), key=labels.count) |
|
color = {"AI": "red", "REAL": "green", "UNCERTAIN": "orange"}.get(consensus, "gray") |
|
return f"<b><span style='color:{color}'>{consensus}</span></b>" |
|
|
|
|
|
|
|
def predict_with_ensemble(img, confidence_threshold, augment_methods, rotate_degrees, noise_level, sharpen_strength): |
|
|
|
if not isinstance(img, Image.Image): |
|
try: |
|
|
|
img = Image.fromarray(img) |
|
except Exception as e: |
|
logger.error(f"Error converting input image to PIL: {e}") |
|
|
|
raise ValueError("Input image could not be converted to PIL Image.") |
|
|
|
|
|
monitor_agent = EnsembleMonitorAgent() |
|
weight_manager = ModelWeightManager() |
|
optimization_agent = WeightOptimizationAgent(weight_manager) |
|
health_agent = SystemHealthAgent() |
|
|
|
context_agent = ContextualIntelligenceAgent() |
|
anomaly_agent = ForensicAnomalyDetectionAgent() |
|
|
|
|
|
health_agent.monitor_system_health() |
|
|
|
if augment_methods: |
|
img_pil, _ = augment_image(img, augment_methods, rotate_degrees, noise_level, sharpen_strength) |
|
else: |
|
img_pil = img |
|
img_np_og = np.array(img) |
|
|
|
|
|
model_predictions_raw = {} |
|
confidence_scores = {} |
|
results = [] |
|
|
|
for model_id in MODEL_REGISTRY: |
|
model_start = time.time() |
|
result = infer(img_pil, model_id, confidence_threshold) |
|
model_end = time.time() |
|
|
|
|
|
monitor_agent.monitor_prediction( |
|
model_id, |
|
result["Label"], |
|
max(result.get("AI Score", 0.0), result.get("Real Score", 0.0)), |
|
model_end - model_start |
|
) |
|
|
|
model_predictions_raw[model_id] = result |
|
confidence_scores[model_id] = max(result.get("AI Score", 0.0), result.get("Real Score", 0.0)) |
|
results.append(result) |
|
|
|
|
|
image_data_for_context = { |
|
"width": img.width, |
|
"height": img.height, |
|
"mode": img.mode, |
|
|
|
} |
|
detected_context_tags = context_agent.infer_context_tags(image_data_for_context, model_predictions_raw) |
|
logger.info(f"Detected context tags: {detected_context_tags}") |
|
|
|
|
|
adjusted_weights = weight_manager.adjust_weights(model_predictions_raw, confidence_scores, context_tags=detected_context_tags) |
|
|
|
|
|
|
|
|
|
|
|
weighted_predictions = { |
|
"AI": 0.0, |
|
"REAL": 0.0, |
|
"UNCERTAIN": 0.0 |
|
} |
|
|
|
for model_id, prediction in model_predictions_raw.items(): |
|
|
|
prediction_label = prediction.get("Label") |
|
if prediction_label in weighted_predictions: |
|
weighted_predictions[prediction_label] += adjusted_weights[model_id] |
|
else: |
|
|
|
logger.warning(f"Unexpected prediction label '{prediction_label}' from model '{model_id}'. Skipping its weight in consensus.") |
|
|
|
final_prediction_label = "UNCERTAIN" |
|
if weighted_predictions["AI"] > weighted_predictions["REAL"] and weighted_predictions["AI"] > weighted_predictions["UNCERTAIN"]: |
|
final_prediction_label = "AI" |
|
elif weighted_predictions["REAL"] > weighted_predictions["AI"] and weighted_predictions["REAL"] > weighted_predictions["UNCERTAIN"]: |
|
final_prediction_label = "REAL" |
|
|
|
|
|
optimization_agent.analyze_performance(final_prediction_label, None) |
|
|
|
|
|
gradient_image = gradient_processing(img_np_og) |
|
gradient_image2 = gradient_processing(img_np_og, intensity=45, equalize=True) |
|
|
|
minmax_image = minmax_process(img_np_og) |
|
minmax_image2 = minmax_process(img_np_og, radius=6) |
|
|
|
|
|
|
|
|
|
ela1 = ELA(img_np_og, quality=75, scale=50, contrast=20, linear=False, grayscale=True) |
|
|
|
|
|
ela2 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=True) |
|
ela3 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=False) |
|
|
|
forensics_images = [img_pil, ela1, ela2, ela3, gradient_image, gradient_image2, minmax_image, minmax_image2] |
|
|
|
|
|
forensic_output_descriptions = [ |
|
f"Original augmented image (PIL): {img_pil.width}x{img_pil.height}", |
|
"ELA analysis (Pass 1): Grayscale error map, quality 75.", |
|
"ELA analysis (Pass 2): Grayscale error map, quality 75, enhanced contrast.", |
|
"ELA analysis (Pass 3): Color error map, quality 75, enhanced contrast.", |
|
"Gradient processing: Highlights edges and transitions.", |
|
"Gradient processing: Int=45, Equalize=True", |
|
"MinMax processing: Deviations in local pixel values.", |
|
"MinMax processing (Radius=6): Deviations in local pixel values.", |
|
] |
|
|
|
|
|
|
|
|
|
anomaly_detection_results = anomaly_agent.analyze_forensic_outputs(forensic_output_descriptions) |
|
logger.info(f"Forensic anomaly detection: {anomaly_detection_results['summary']}") |
|
|
|
|
|
|
|
table_rows = [[ |
|
r.get("Model", ""), |
|
r.get("Contributor", ""), |
|
r.get("AI Score", 0.0) if r.get("AI Score") is not None else 0.0, |
|
r.get("Real Score", 0.0) if r.get("Real Score") is not None else 0.0, |
|
r.get("Label", "Error") |
|
] for r in results] |
|
|
|
logger.info(f"Type of table_rows: {type(table_rows)}") |
|
for i, row in enumerate(table_rows): |
|
logger.info(f"Row {i} types: {[type(item) for item in row]}") |
|
|
|
|
|
consensus_html = f"<div style='display: flex; justify-content: space-between;'><div style='flex: 1;'><b>THIS IMAGE IS LIKELY <span style='color:{'red' if final_prediction_label == 'AI' else ('green' if final_prediction_label == 'REAL' else 'orange')}'>{final_prediction_label}</span></b></div><div style='flex: 1;'><b>CONSENSUS REACHED BY {len(results)} MODELS</b></div></div>" |
|
|
|
|
|
inference_params = { |
|
"confidence_threshold": confidence_threshold, |
|
"augment_methods": augment_methods, |
|
"rotate_degrees": rotate_degrees, |
|
"noise_level": noise_level, |
|
"sharpen_strength": sharpen_strength, |
|
"detected_context_tags": detected_context_tags |
|
} |
|
|
|
ensemble_output_data = { |
|
"final_prediction_label": final_prediction_label, |
|
"weighted_predictions": weighted_predictions, |
|
"adjusted_weights": adjusted_weights |
|
} |
|
|
|
|
|
agent_monitoring_data_log = { |
|
"ensemble_monitor": { |
|
"alerts": monitor_agent.alerts, |
|
"performance_metrics": monitor_agent.performance_metrics |
|
}, |
|
"weight_optimization": { |
|
"prediction_history_length": len(optimization_agent.prediction_history), |
|
|
|
}, |
|
"system_health": { |
|
"memory_usage": health_agent.health_metrics["memory_usage"], |
|
"gpu_utilization": health_agent.health_metrics["gpu_utilization"] |
|
}, |
|
"context_intelligence": { |
|
"detected_context_tags": detected_context_tags |
|
}, |
|
"forensic_anomaly_detection": anomaly_detection_results |
|
} |
|
|
|
|
|
log_inference_data( |
|
original_image=img, |
|
inference_params=inference_params, |
|
model_predictions=results, |
|
ensemble_output=ensemble_output_data, |
|
forensic_images=forensics_images, |
|
agent_monitoring_data=agent_monitoring_data_log, |
|
human_feedback=None |
|
) |
|
|
|
|
|
cleaned_forensics_images = [] |
|
for f_img in forensics_images: |
|
if isinstance(f_img, Image.Image): |
|
cleaned_forensics_images.append(f_img) |
|
elif isinstance(f_img, np.ndarray): |
|
try: |
|
cleaned_forensics_images.append(Image.fromarray(f_img)) |
|
except Exception as e: |
|
logger.warning(f"Could not convert numpy array to PIL Image for gallery: {e}") |
|
|
|
else: |
|
logger.warning(f"Unexpected type in forensic_images: {type(f_img)}. Skipping.") |
|
|
|
logger.info(f"Cleaned forensic images types: {[type(img) for img in cleaned_forensics_images]}") |
|
|
|
|
|
for i, res_dict in enumerate(results): |
|
for key in ["AI Score", "Real Score"]: |
|
value = res_dict.get(key) |
|
if isinstance(value, np.float32): |
|
res_dict[key] = float(value) |
|
logger.info(f"Converted {key} for result {i} from numpy.float32 to float.") |
|
|
|
|
|
json_results = json.dumps(results, cls=NumpyEncoder) |
|
|
|
return img_pil, cleaned_forensics_images, table_rows, json_results, consensus_html |
|
|
|
def simple_prediction(img): |
|
client = Client("aiwithoutborders-xyz/OpenSight-Community-Forensics-Preview") |
|
result = client.predict( |
|
input_image=handle_file(img), |
|
api_name="/simple_predict" |
|
) |
|
return result |
|
|
|
with gr.Blocks(css="#post-gallery { overflow: hidden !important;} .grid-wrap{ overflow-y: hidden !important;} .ms-gr-ant-welcome-icon{ height:unset !important;} .tabs{margin-top:10px;}") as demo: |
|
|
|
with gr.Tab("👀 Detection Models Eval / Playground"): |
|
gr.Markdown("# Open Source Detection Models Found on the Hub\n\n - **Space will be upgraded shortly;** inference on all 6 models should take about 1.2~ seconds once we're back on CUDA.\n - The **Community Forensics** mother of all detection models is now available for inference, head to the middle tab above this.\n - Lots of exciting things coming up, stay tuned!") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
image_input = gr.Image(label="Upload Image to Analyze", sources=['upload', 'webcam'], type='pil') |
|
with gr.Accordion("Settings (Optional)", open=False, elem_id="settings_accordion"): |
|
augment_checkboxgroup = gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], label="Augmentation Methods") |
|
rotate_slider = gr.Slider(0, 45, value=0, step=1, label="Rotate Degrees", visible=False) |
|
noise_slider = gr.Slider(0, 50, value=0, step=1, label="Noise Level", visible=False) |
|
sharpen_slider = gr.Slider(0, 50, value=0, step=1, label="Sharpen Strength", visible=False) |
|
confidence_slider = gr.Slider(0.0, 1.0, value=0.7, step=0.05, label="Confidence Threshold") |
|
inputs = [image_input, confidence_slider, augment_checkboxgroup, rotate_slider, noise_slider, sharpen_slider] |
|
predict_button = gr.Button("Predict") |
|
augment_button = gr.Button("Augment & Predict") |
|
image_output = gr.Image(label="Processed Image", visible=False) |
|
|
|
|
|
with gr.Column(scale=2): |
|
|
|
results_table = gr.Dataframe( |
|
label="Model Predictions", |
|
headers=["Model", "Contributor", "AI Score", "Real Score", "Label"], |
|
datatype=["str", "str", "number", "number", "str"] |
|
) |
|
forensics_gallery = gr.Gallery(label="Post Processed Images", visible=True, columns=[4], rows=[2], container=False, height="auto", object_fit="contain", elem_id="post-gallery") |
|
with gr.Accordion("Debug Output (Raw JSON)", open=False): |
|
debug_json = gr.JSON(label="Raw Model Results") |
|
consensus_md = gr.Markdown(label="Consensus", value="") |
|
|
|
outputs = [image_output, forensics_gallery, results_table, debug_json, consensus_md] |
|
|
|
predict_button.click( |
|
fn=predict_with_ensemble, |
|
inputs=inputs, |
|
outputs=outputs, |
|
api_name="predict" |
|
) |
|
augment_button.click( |
|
fn=predict_with_ensemble, |
|
inputs=[ |
|
image_input, |
|
confidence_slider, |
|
gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], value=["rotate", "add_noise", "sharpen"], visible=False), |
|
rotate_slider, |
|
noise_slider, |
|
sharpen_slider |
|
], |
|
outputs=outputs, |
|
api_name="augment_then_predict" |
|
) |
|
with gr.Tab("🙈 Project Introduction"): |
|
gr.Markdown(QUICK_INTRO) |
|
|
|
with gr.Tab("👑 Community Forensics Preview"): |
|
gr.load("aiwithoutborders-xyz/OpenSight-Community-Forensics-Preview", src="spaces") |
|
with gr.Tab("🥇 Leaderboard"): |
|
gr.Markdown("# AI Generated / Deepfake Detection Models Leaderboard: Soon™") |
|
with gr.Tab("Simple Predict", visible=False): |
|
gr.Interface( |
|
fn=simple_prediction, |
|
inputs=gr.Image(type="filepath"), |
|
outputs=gr.Text(), |
|
title="Simple and Fast Prediction", |
|
description="" |
|
) |
|
with gr.Tab("Wavelet Blocking Noise Estimation", visible=False): |
|
gr.Interface( |
|
fn=wavelet_blocking_noise_estimation, |
|
inputs=[gr.Image(type="pil"), gr.Slider(1, 32, value=8, step=1, label="Block Size")], |
|
outputs=gr.Image(type="pil"), |
|
title="Wavelet-Based Noise Analysis", |
|
description="Analyzes image noise patterns using wavelet decomposition. This tool helps detect compression artifacts and artificial noise patterns that may indicate image manipulation. Higher noise levels in specific regions can reveal areas of potential tampering.", |
|
api_name="tool_waveletnoise" |
|
) |
|
|
|
"""Forensics Tool: Bit Plane Extractor |
|
|
|
Args: |
|
image: PIL Image to analyze |
|
channel: Color channel to extract bit plane from ("Luminance", "Red", "Green", "Blue", "RGB Norm") |
|
bit_plane: Bit plane index to extract (0-7) |
|
filter_type: Filter to apply ("Disabled", "Median", "Gaussian") |
|
""" |
|
with gr.Tab("Bit Plane Values", visible=False): |
|
gr.Interface( |
|
|
|
fn=bit_plane_extractor, |
|
inputs=[ |
|
gr.Image(type="pil"), |
|
gr.Dropdown(["Luminance", "Red", "Green", "Blue", "RGB Norm"], label="Channel", value="Luminance"), |
|
gr.Slider(0, 7, value=0, step=1, label="Bit Plane"), |
|
gr.Dropdown(["Disabled", "Median", "Gaussian"], label="Filter", value="Disabled") |
|
], |
|
outputs=gr.Image(type="pil"), |
|
title="Bit Plane Analysis", |
|
description="Extracts and visualizes individual bit planes from different color channels. This forensic tool helps identify hidden patterns and artifacts in image data that may indicate manipulation. Different bit planes can reveal inconsistencies in image processing or editing.", |
|
api_name="tool_bitplane" |
|
) |
|
with gr.Tab("Error Level Analysis (ELA)", visible=False): |
|
gr.Interface( |
|
fn=ELA, |
|
inputs=[ |
|
gr.Image(type="pil", label="Input Image"), |
|
gr.Slider(1, 100, value=75, step=1, label="JPEG Quality"), |
|
gr.Slider(1, 100, value=50, step=1, label="Output Scale (Multiplicative Gain)"), |
|
gr.Slider(0, 100, value=20, step=1, label="Output Contrast (Tonality Compression)"), |
|
gr.Checkbox(value=False, label="Use Linear Difference"), |
|
gr.Checkbox(value=False, label="Grayscale Output") |
|
], |
|
outputs=gr.Image(type="pil"), |
|
title="Error Level Analysis (ELA)", |
|
description="Performs Error Level Analysis to detect re-saved JPEG images, which can indicate tampering. ELA highlights areas of an image that have different compression levels.", |
|
api_name="tool_ela" |
|
) |
|
with gr.Tab("Gradient Processing", visible=False): |
|
gr.Interface( |
|
fn=gradient_processing, |
|
inputs=[ |
|
gr.Image(type="pil", label="Input Image"), |
|
gr.Slider(0, 100, value=90, step=1, label="Intensity"), |
|
gr.Dropdown(["Abs", "None", "Flat", "Norm"], label="Blue Mode", value="Abs"), |
|
gr.Checkbox(value=False, label="Invert Gradients"), |
|
gr.Checkbox(value=False, label="Equalize Histogram") |
|
], |
|
outputs=gr.Image(type="pil"), |
|
title="Gradient Processing", |
|
description="Applies gradient filters to an image to enhance edges and transitions, which can reveal inconsistencies due to manipulation.", |
|
api_name="tool_gradient_processing" |
|
) |
|
with gr.Tab("MinMax Processing", visible=False): |
|
gr.Interface( |
|
fn=minmax_process, |
|
inputs=[ |
|
gr.Image(type="pil", label="Input Image"), |
|
gr.Radio([0, 1, 2, 3, 4], label="Channel (0:Grayscale, 1:Blue, 2:Green, 3:Red, 4:RGB Norm)", value=4), |
|
gr.Slider(0, 10, value=2, step=1, label="Radius") |
|
], |
|
outputs=gr.Image(type="pil"), |
|
title="MinMax Processing", |
|
description="Analyzes local pixel value deviations to detect subtle changes in image data, often indicative of digital forgeries.", |
|
api_name="tool_minmax_processing" |
|
) |
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
with CommitScheduler( |
|
repo_id=HF_DATASET_NAME, |
|
repo_type="dataset", |
|
folder_path=LOCAL_LOG_DIR, |
|
every=5, |
|
private=False, |
|
token=os.getenv("HF_TOKEN") |
|
) as scheduler: |
|
demo.launch(mcp_server=True) |