mcp-deepfake-forensics / agents /smart_agents.py
LPX55's picture
feat: improve image loading and anomaly detection in smart agents, enhancing error handling and mock anomaly generation
30f141e
raw
history blame
2.99 kB
import logging
from PIL import Image
import smolagents
logger = logging.getLogger(__name__)
class ContextualIntelligenceAgent:
def __init__(self):
# In a real scenario, this would involve an LLM call or a sophisticated rule engine
pass
def infer_context_tags(self, image_data: dict, initial_predictions: dict) -> list[str]:
"""Simulates an LLM inferring context tags based on image data and predictions."""
context_tags = []
# Boilerplate logic: infer tags based on simple cues
if image_data.get("width", 0) > 1000 and image_data.get("height", 0) > 1000:
context_tags.append("high_resolution")
# Example based on initial broad prediction (e.g., if any model strongly predicts 'real')
if any(v.get("Real Score", 0) > 0.9 for v in initial_predictions.values()):
context_tags.append("potentially_natural_scene")
# Mock external detection (e.g., from a simpler scene classification model or EXIF data)
# For demonstration, we'll hardcode some possible tags here.
# In a real system, you'd feed actual image features or metadata to an LLM.
mock_tags = ["foo", "bar"] # These could be returned by an actual LLM based on input
for tag in mock_tags:
if tag not in context_tags:
context_tags.append(tag)
return context_tags
class ForensicAnomalyDetectionAgent:
def __init__(self):
# In a real scenario, this would involve an LLM call to analyze textual descriptions
pass
def analyze_forensic_outputs(self, forensic_output_descriptions: list[str]) -> dict:
"""Simulates an LLM analyzing descriptions of forensic images for anomalies."""
import random
# 4 mock anomalies for demo purposes
mock_anomalies = [
{
"summary": "ELA analysis reveals potential image manipulation",
"details": ["ELA: Unusually strong compression artifacts detected", "ELA: Inconsistent noise patterns suggest compositing"]
},
{
"summary": "Bit plane analysis shows irregular patterns",
"details": ["Bit Plane: Unexpected data patterns in LSB", "Bit Plane: Hidden information detected in lower planes"]
},
{
"summary": "Gradient analysis indicates artificial boundaries",
"details": ["Gradient: Sharp discontinuities in color transitions", "Gradient: Unnatural edge patterns detected"]
},
{
"summary": "Wavelet analysis reveals processing artifacts",
"details": ["Wavelet: Unusual frequency distribution", "Wavelet: Compression artifacts inconsistent with natural images"]
}
]
# Randomly select one of the mock anomalies
selected_anomaly = random.choice(mock_anomalies)
return selected_anomaly