|
import logging |
|
from PIL import Image |
|
import smolagents |
|
logger = logging.getLogger(__name__) |
|
|
|
class ContextualIntelligenceAgent: |
|
def __init__(self): |
|
|
|
pass |
|
|
|
def infer_context_tags(self, image_data: dict, initial_predictions: dict) -> list[str]: |
|
"""Simulates an LLM inferring context tags based on image data and predictions.""" |
|
context_tags = [] |
|
|
|
|
|
if image_data.get("width", 0) > 1000 and image_data.get("height", 0) > 1000: |
|
context_tags.append("high_resolution") |
|
|
|
|
|
if any(v.get("Real Score", 0) > 0.9 for v in initial_predictions.values()): |
|
context_tags.append("potentially_natural_scene") |
|
|
|
|
|
|
|
|
|
mock_tags = ["foo", "bar"] |
|
for tag in mock_tags: |
|
if tag not in context_tags: |
|
context_tags.append(tag) |
|
|
|
return context_tags |
|
|
|
class ForensicAnomalyDetectionAgent: |
|
def __init__(self): |
|
|
|
pass |
|
|
|
def analyze_forensic_outputs(self, forensic_output_descriptions: list[str]) -> dict: |
|
"""Simulates an LLM analyzing descriptions of forensic images for anomalies.""" |
|
import random |
|
|
|
|
|
mock_anomalies = [ |
|
{ |
|
"summary": "ELA analysis reveals potential image manipulation", |
|
"details": ["ELA: Unusually strong compression artifacts detected", "ELA: Inconsistent noise patterns suggest compositing"] |
|
}, |
|
{ |
|
"summary": "Bit plane analysis shows irregular patterns", |
|
"details": ["Bit Plane: Unexpected data patterns in LSB", "Bit Plane: Hidden information detected in lower planes"] |
|
}, |
|
{ |
|
"summary": "Gradient analysis indicates artificial boundaries", |
|
"details": ["Gradient: Sharp discontinuities in color transitions", "Gradient: Unnatural edge patterns detected"] |
|
}, |
|
{ |
|
"summary": "Wavelet analysis reveals processing artifacts", |
|
"details": ["Wavelet: Unusual frequency distribution", "Wavelet: Compression artifacts inconsistent with natural images"] |
|
} |
|
] |
|
|
|
|
|
selected_anomaly = random.choice(mock_anomalies) |
|
|
|
return selected_anomaly |