LPX commited on
Commit
9b7800e
·
1 Parent(s): 22628b7

fix: model 8 inference

Browse files
Files changed (1) hide show
  1. app_optimized.py +6 -12
app_optimized.py CHANGED
@@ -137,23 +137,17 @@ def postprocess_binary_output(output, class_names):
137
  real_prob = 1.0 - fake_prob # Ensure Fake and Real sum to 1
138
  return {class_names[0]: fake_prob, class_names[1]: real_prob}
139
 
140
- # New function to infer using Gradio API for model_8
141
  def infer_gradio_api(image_path):
142
  client = Client("aiwithoutborders-xyz/OpenSight-Community-Forensics-Preview")
143
- result_str = client.predict(
144
  input_image=handle_file(image_path),
145
  api_name="/simple_predict"
146
  )
147
- logger.info(f"Debug: Raw result_str from Gradio API (model_8): {result_str}, type: {type(result_str)}")
148
- try:
149
- # Safely evaluate the string as a Python literal
150
- result_dict = ast.literal_eval(result_str)
151
- fake_probability = result_dict.get('Fake Probability', 0.0)
152
- logger.info(f"Debug: Parsed result_dict: {result_dict}, Extracted fake_probability: {fake_probability}")
153
- return {"probabilities": np.array([fake_probability])} # Return as a numpy array with one element
154
- except Exception as e:
155
- logger.error(f"Error parsing Gradio API output: {e}. Raw output: {result_str}")
156
- return {"probabilities": np.array([0.0])}
157
 
158
  # New preprocess function for Gradio API
159
  def preprocess_gradio_api(image: Image.Image):
 
137
  real_prob = 1.0 - fake_prob # Ensure Fake and Real sum to 1
138
  return {class_names[0]: fake_prob, class_names[1]: real_prob}
139
 
 
140
  def infer_gradio_api(image_path):
141
  client = Client("aiwithoutborders-xyz/OpenSight-Community-Forensics-Preview")
142
+ result_dict = client.predict(
143
  input_image=handle_file(image_path),
144
  api_name="/simple_predict"
145
  )
146
+ logger.info(f"Debug: Raw result_dict from Gradio API (model_8): {result_dict}, type: {type(result_dict)}")
147
+ # result_dict is already a dictionary, no need for ast.literal_eval
148
+ fake_probability = result_dict.get('Fake Probability', 0.0)
149
+ logger.info(f"Debug: Parsed result_dict: {result_dict}, Extracted fake_probability: {fake_probability}")
150
+ return {"probabilities": np.array([fake_probability])} # Return as a numpy array with one element
 
 
 
 
 
151
 
152
  # New preprocess function for Gradio API
153
  def preprocess_gradio_api(image: Image.Image):