LPX commited on
Commit
a1674bb
·
1 Parent(s): c14764a

major(refactor): overhaul for ONNX and other optimizations

Browse files
Files changed (3) hide show
  1. README.md +1 -1
  2. app_optimized.py +836 -0
  3. models/model_1_quantized.onnx +0 -3
README.md CHANGED
@@ -6,7 +6,7 @@ colorFrom: yellow
6
  colorTo: yellow
7
  sdk: gradio
8
  sdk_version: 5.33.0
9
- app_file: app.py
10
  pinned: true
11
  models:
12
  - aiwithoutborders-xyz/OpenSight-CommunityForensics-Deepfake-ViT
 
6
  colorTo: yellow
7
  sdk: gradio
8
  sdk_version: 5.33.0
9
+ app_file: app_optimized.py
10
  pinned: true
11
  models:
12
  - aiwithoutborders-xyz/OpenSight-CommunityForensics-Deepfake-ViT
app_optimized.py ADDED
@@ -0,0 +1,836 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from gradio_client import Client, handle_file
3
+ from PIL import Image, ImageFilter
4
+ import numpy as np
5
+ import os
6
+ import time
7
+ import logging
8
+ import io
9
+ import collections
10
+ import onnxruntime
11
+ import json
12
+ from huggingface_hub import CommitScheduler, hf_hub_download, snapshot_download
13
+ from dotenv import load_dotenv
14
+ import concurrent.futures
15
+
16
+ from utils.utils import softmax, augment_image
17
+ from forensics.gradient import gradient_processing
18
+ from forensics.minmax import minmax_process
19
+ from forensics.ela import ELA
20
+ from forensics.wavelet import noise_estimation
21
+ from forensics.bitplane import bit_plane_extractor
22
+ from utils.hf_logger import log_inference_data
23
+ from utils.load import load_image
24
+ from agents.ensemble_team import EnsembleMonitorAgent, WeightOptimizationAgent, SystemHealthAgent
25
+ from agents.smart_agents import ContextualIntelligenceAgent, ForensicAnomalyDetectionAgent
26
+ from utils.registry import register_model, MODEL_REGISTRY, ModelEntry
27
+ from agents.ensemble_weights import ModelWeightManager
28
+ from transformers import pipeline, AutoImageProcessor, SwinForImageClassification, Swinv2ForImageClassification, AutoFeatureExtractor, AutoModelForImageClassification
29
+ from torchvision import transforms
30
+ import torch
31
+
32
+ logging.basicConfig(level=logging.INFO)
33
+ logger = logging.getLogger(__name__)
34
+ os.environ['HF_HUB_CACHE'] = './models'
35
+
36
+ # --- Gradio Log Handler ---
37
+ class GradioLogHandler(logging.Handler):
38
+ def __init__(self, log_queue):
39
+ super().__init__()
40
+ self.log_queue = log_queue
41
+ self.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
42
+
43
+ def emit(self, record):
44
+ self.log_queue.append(self.format(record))
45
+
46
+ log_queue = collections.deque(maxlen=1000) # Store last 1000 log messages
47
+ gradio_handler = GradioLogHandler(log_queue)
48
+
49
+ # Set root logger level to DEBUG to capture all messages from agents
50
+ logging.getLogger().setLevel(logging.INFO)
51
+ logging.getLogger().addHandler(gradio_handler)
52
+ # --- End Gradio Log Handler ---
53
+
54
+ LOCAL_LOG_DIR = "./hf_inference_logs"
55
+ HF_DATASET_NAME="aiwithoutborders-xyz/degentic_rd0"
56
+ load_dotenv()
57
+
58
+ # Custom JSON Encoder to handle numpy types
59
+ class NumpyEncoder(json.JSONEncoder):
60
+ def default(self, obj):
61
+ if isinstance(obj, np.float32):
62
+ return float(obj)
63
+ return json.JSONEncoder.default(self, obj)
64
+
65
+ # Ensure using GPU if available
66
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
67
+
68
+ # Model paths and class names (copied from app_mcp.py)
69
+ MODEL_PATHS = {
70
+ "model_1": "LPX55/detection-model-1-ONNX",
71
+ "model_2": "LPX55/detection-model-2-ONNX",
72
+ "model_3": "LPX55/detection-model-3-ONNX",
73
+ "model_4": "cmckinle/sdxl-flux-detector_v1.1",
74
+ "model_5": "LPX55/detection-model-5-ONNX",
75
+ "model_6": "LPX55/detection-model-6-ONNX",
76
+ "model_7": "LPX55/detection-model-7-ONNX"
77
+ }
78
+
79
+ CLASS_NAMES = {
80
+ "model_1": ['artificial', 'real'],
81
+ "model_2": ['AI Image', 'Real Image'],
82
+ "model_3": ['AI', 'Real'],
83
+ "model_4": ['AI', 'Real'],
84
+ "model_5": ['Realism', 'Deepfake'],
85
+ "model_6": ['ai_gen', 'human'],
86
+ "model_7": ['Fake', 'Real'],
87
+ }
88
+
89
+ def preprocess_resize_256(image):
90
+ if image.mode != 'RGB':
91
+ image = image.convert('RGB')
92
+ return transforms.Resize((256, 256))(image)
93
+
94
+ def preprocess_resize_224(image):
95
+ if image.mode != 'RGB':
96
+ image = image.convert('RGB')
97
+ return transforms.Resize((224, 224))(image)
98
+
99
+ def postprocess_pipeline(prediction, class_names):
100
+ # Assumes HuggingFace pipeline output
101
+ return {pred['label']: pred['score'] for pred in prediction}
102
+
103
+ def postprocess_logits(outputs, class_names):
104
+ # Assumes model output with logits
105
+ logits = outputs.logits.cpu().numpy()[0]
106
+ probabilities = softmax(logits)
107
+ return {class_names[i]: probabilities[i] for i in range(len(class_names))}
108
+
109
+ def register_model_with_metadata(model_id, model, preprocess, postprocess, class_names, display_name, contributor, model_path, architecture=None, dataset=None):
110
+ entry = ModelEntry(model, preprocess, postprocess, class_names, display_name=display_name, contributor=contributor, model_path=model_path, architecture=architecture, dataset=dataset)
111
+ MODEL_REGISTRY[model_id] = entry
112
+
113
+
114
+ def load_onnx_model_and_preprocessor(hf_model_id):
115
+ # model_dir = snapshot_download(repo_id=hf_model_id, local_dir_use_symlinks=False)
116
+
117
+ # Create a unique local directory for each ONNX model
118
+ model_specific_dir = os.path.join("./models", hf_model_id.replace('/', '_'))
119
+ os.makedirs(model_specific_dir, exist_ok=True)
120
+
121
+ # Use hf_hub_download to get specific files into the model-specific directory
122
+ onnx_model_path = hf_hub_download(repo_id=hf_model_id, filename="model_quantized.onnx", subfolder="onnx", local_dir=model_specific_dir, local_dir_use_symlinks=False)
123
+
124
+ # Load preprocessor config
125
+ preprocessor_config = {}
126
+ try:
127
+ preprocessor_config_path = hf_hub_download(repo_id=hf_model_id, filename="preprocessor_config.json", local_dir=model_specific_dir, local_dir_use_symlinks=False)
128
+ with open(preprocessor_config_path, 'r') as f:
129
+ preprocessor_config = json.load(f)
130
+ except Exception as e:
131
+ logger.warning(f"Could not download or load preprocessor_config.json for {hf_model_id}: {e}")
132
+
133
+ # Load model config for class names if available
134
+ model_config = {}
135
+ try:
136
+ model_config_path = hf_hub_download(repo_id=hf_model_id, filename="config.json", local_dir=model_specific_dir, local_dir_use_symlinks=False)
137
+ with open(model_config_path, 'r') as f:
138
+ model_config = json.load(f)
139
+ except Exception as e:
140
+ logger.warning(f"Could not download or load config.json for {hf_model_id}: {e}")
141
+
142
+ return onnxruntime.InferenceSession(onnx_model_path), preprocessor_config, model_config
143
+
144
+
145
+ # Cache for ONNX sessions and preprocessors
146
+ _onnx_model_cache = {}
147
+
148
+ def get_onnx_model_from_cache(hf_model_id):
149
+ if hf_model_id not in _onnx_model_cache:
150
+ logger.info(f"Loading ONNX model and preprocessor for {hf_model_id}...")
151
+ _onnx_model_cache[hf_model_id] = load_onnx_model_and_preprocessor(hf_model_id)
152
+ return _onnx_model_cache[hf_model_id]
153
+
154
+ def preprocess_onnx_input(image: Image.Image, preprocessor_config: dict):
155
+ # Preprocess image for ONNX model based on preprocessor_config
156
+ if image.mode != 'RGB':
157
+ image = image.convert('RGB')
158
+
159
+ # Get image size and normalization values from preprocessor_config or use defaults
160
+ image_size = preprocessor_config.get('size', {'height': 224, 'width': 224})
161
+ mean = preprocessor_config.get('image_mean', [0.485, 0.456, 0.406])
162
+ std = preprocessor_config.get('image_std', [0.229, 0.224, 0.225])
163
+
164
+ transform = transforms.Compose([
165
+ transforms.Resize((image_size['height'], image_size['width'])),
166
+ transforms.ToTensor(),
167
+ transforms.Normalize(mean=mean, std=std),
168
+ ])
169
+ input_tensor = transform(image)
170
+ # ONNX expects numpy array with batch dimension (1, C, H, W)
171
+ return input_tensor.unsqueeze(0).cpu().numpy()
172
+
173
+ def infer_onnx_model(hf_model_id, preprocessed_image_np):
174
+ try:
175
+ ort_session, _, _ = get_onnx_model_from_cache(hf_model_id)
176
+
177
+ ort_inputs = {ort_session.get_inputs()[0].name: preprocessed_image_np}
178
+ ort_outputs = ort_session.run(None, ort_inputs)
179
+
180
+ # Assuming the output is logits, apply softmax to get probabilities
181
+ logits = ort_outputs[0]
182
+ probabilities = softmax(logits[0]) # Remove batch dim, apply softmax
183
+ return {"logits": logits, "probabilities": probabilities}
184
+
185
+ except Exception as e:
186
+ logger.error(f"Error during ONNX inference for {hf_model_id}: {e}")
187
+ # Return a structure consistent with other model errors
188
+ return {"logits": np.array([]), "probabilities": np.array([])}
189
+
190
+ def postprocess_onnx_output(onnx_output, model_config):
191
+ # Get class names from model_config, or use a default if not found
192
+ class_names = model_config.get('id2label', {0: 'Fake', 1: 'Real'}) # Default to Fake/Real if not found
193
+ class_names = [class_names[i] for i in sorted(class_names.keys())]
194
+
195
+ probabilities = onnx_output.get("probabilities")
196
+ if probabilities is not None and len(probabilities) == len(class_names):
197
+ return {class_names[i]: probabilities[i] for i in range(len(class_names))}
198
+ else:
199
+ logger.warning("ONNX post-processing failed or class names mismatch.")
200
+ return {name: 0.0 for name in class_names}
201
+
202
+ # Register the ONNX quantized model
203
+ # Dummy entry for ONNX model to be loaded dynamically
204
+ # We will now register a 'wrapper' that handles dynamic loading
205
+
206
+ class ONNXModelWrapper:
207
+ def __init__(self, hf_model_id):
208
+ self.hf_model_id = hf_model_id
209
+ self._session = None
210
+ self._preprocessor_config = None
211
+ self._model_config = None
212
+
213
+ def load(self):
214
+ if self._session is None:
215
+ self._session, self._preprocessor_config, self._model_config = get_onnx_model_from_cache(self.hf_model_id)
216
+ logger.info(f"ONNX model {self.hf_model_id} loaded into wrapper.")
217
+
218
+ def __call__(self, image_np):
219
+ self.load() # Ensure model is loaded on first call
220
+ return infer_onnx_model(self.hf_model_id, image_np)
221
+
222
+ def preprocess(self, image: Image.Image):
223
+ self.load()
224
+ return preprocess_onnx_input(image, self._preprocessor_config)
225
+
226
+ def postprocess(self, onnx_output: dict, class_names_from_registry: list): # class_names_from_registry is ignored
227
+ self.load()
228
+ return postprocess_onnx_output(onnx_output, self._model_config)
229
+
230
+ # Consolidate all model loading and registration
231
+ for model_key, hf_model_path in MODEL_PATHS.items():
232
+ display_name = model_key.replace("model_", "").upper()
233
+ contributor = "Unknown"
234
+ architecture = "Unknown"
235
+ dataset = "TBA"
236
+
237
+ # Attempt to derive contributor, architecture, dataset based on model_key
238
+ if model_key == "model_1":
239
+ contributor = "haywoodsloan"
240
+ architecture = "SwinV2"
241
+ dataset = "DeepFakeDetection"
242
+ elif model_key == "model_2":
243
+ contributor = "Heem2"
244
+ architecture = "ViT"
245
+ dataset = "DeepFakeDetection"
246
+ elif model_key == "model_3":
247
+ contributor = "Organika"
248
+ architecture = "VIT"
249
+ dataset = "SDXL"
250
+ elif model_key == "model_4":
251
+ contributor = "cmckinle"
252
+ architecture = "VIT"
253
+ dataset = "SDXL, FLUX"
254
+ elif model_key == "model_5":
255
+ contributor = "prithivMLmods"
256
+ architecture = "VIT"
257
+ elif model_key == "model_6":
258
+ contributor = "ideepankarsharma2003"
259
+ architecture = "SWINv1"
260
+ dataset = "SDXL, Midjourney"
261
+ elif model_key == "model_7":
262
+ contributor = "date3k2"
263
+ architecture = "VIT"
264
+
265
+ current_class_names = CLASS_NAMES.get(model_key, [])
266
+
267
+ if "ONNX" in hf_model_path:
268
+ logger.info(f"Registering ONNX model: {model_key} from {hf_model_path}")
269
+ onnx_wrapper_instance = ONNXModelWrapper(hf_model_path)
270
+ register_model_with_metadata(
271
+ model_key,
272
+ onnx_wrapper_instance, # The callable wrapper for the ONNX model
273
+ onnx_wrapper_instance.preprocess,
274
+ onnx_wrapper_instance.postprocess,
275
+ current_class_names, # Initial class names; will be overridden by model_config if available
276
+ display_name=display_name + ("_ONNX" if "ONNX" not in display_name else ""),
277
+ contributor=contributor,
278
+ model_path=hf_model_path,
279
+ architecture=architecture,
280
+ dataset=dataset
281
+ )
282
+ else:
283
+ logger.info(f"Registering HuggingFace pipeline/AutoModel: {model_key} from {hf_model_path}")
284
+ model_instance = None
285
+ preprocess_func = None
286
+ postprocess_func = postprocess_pipeline # Default for pipelines
287
+ current_processor = None
288
+
289
+ if model_key == "model_5":
290
+ model_instance = pipeline("image-classification", model=hf_model_path, device=device)
291
+ preprocess_func = preprocess_resize_224
292
+ elif model_key in ["model_3", "model_4"]:
293
+ current_processor = AutoFeatureExtractor.from_pretrained(hf_model_path, device=device)
294
+ model_instance = AutoModelForImageClassification.from_pretrained(hf_model_path).to(device)
295
+
296
+ preprocess_func = preprocess_resize_256 # Using the shared preprocess_resize_256
297
+ postprocess_func = postprocess_logits # Using the shared postprocess_logits
298
+
299
+ def custom_infer(image, processor_local=current_processor, model_local=model_instance):
300
+ inputs = processor_local(image, return_tensors="pt").to(device)
301
+ with torch.no_grad():
302
+ outputs = model_local(**inputs)
303
+ return outputs
304
+ model_instance = custom_infer
305
+
306
+ elif model_key in ["model_6", "model_7"]:
307
+ current_processor = AutoImageProcessor.from_pretrained(hf_model_path, use_fast=True)
308
+ if model_key == "model_6":
309
+ model_instance = SwinForImageClassification.from_pretrained(hf_model_path).to(device)
310
+ else: # model_7
311
+ model_instance = AutoModelForImageClassification.from_pretrained(hf_model_path).to(device)
312
+
313
+ model_instance = pipeline(model=model_instance, task="image-classification", image_processor=current_processor, device=device)
314
+ preprocess_func = preprocess_resize_224
315
+
316
+ if model_instance and preprocess_func:
317
+ register_model_with_metadata(
318
+ model_id=model_key,
319
+ model=model_instance,
320
+ preprocess=preprocess_func,
321
+ postprocess=postprocess_func,
322
+ class_names=current_class_names,
323
+ display_name=display_name,
324
+ contributor=contributor,
325
+ model_path=hf_model_path,
326
+ architecture=architecture,
327
+ dataset=dataset
328
+ )
329
+ else:
330
+ logger.warning(f"Could not automatically load and register model: {model_key} from {hf_model_path}")
331
+
332
+
333
+ def infer(image: Image.Image, model_id: str, confidence_threshold: float = 0.75) -> dict:
334
+ """Predict using a specific model.
335
+
336
+ Args:
337
+ image (Image.Image): The input image to classify.
338
+ model_id (str): The ID of the model to use for classification.
339
+ confidence_threshold (float, optional): The confidence threshold for classification. Defaults to 0.75.
340
+
341
+ Returns:
342
+ dict: A dictionary containing the model details, classification scores, and label.
343
+ """
344
+ entry = MODEL_REGISTRY[model_id]
345
+ img = entry.preprocess(image) if entry.preprocess else image
346
+ try:
347
+ result = entry.model(img)
348
+ scores = entry.postprocess(result, entry.class_names)
349
+ ai_score = float(scores.get(entry.class_names[0], 0.0))
350
+ real_score = float(scores.get(entry.class_names[1], 0.0))
351
+ label = "AI" if ai_score >= confidence_threshold else ("REAL" if real_score >= confidence_threshold else "UNCERTAIN")
352
+ return {
353
+ "Model": entry.display_name,
354
+ "Contributor": entry.contributor,
355
+ "HF Model Path": entry.model_path,
356
+ "AI Score": ai_score,
357
+ "Real Score": real_score,
358
+ "Label": label
359
+ }
360
+ except Exception as e:
361
+ return {
362
+ "Model": entry.display_name,
363
+ "Contributor": entry.contributor,
364
+ "HF Model Path": entry.model_path,
365
+ "AI Score": 0.0,
366
+ "Real Score": 0.0,
367
+ "Label": f"Error: {str(e)}"
368
+ }
369
+
370
+ def full_prediction(img, confidence_threshold, rotate_degrees, noise_level, sharpen_strength):
371
+ """Full prediction run, with a team of ensembles and agents.
372
+
373
+ Args:
374
+ img (url: str, Image.Image, np.ndarray): The input image to classify.
375
+ confidence_threshold (float, optional): The confidence threshold for classification. Defaults to 0.75.
376
+ rotate_degrees (int, optional): The degrees to rotate the image.
377
+ noise_level (int, optional): The noise level to use.
378
+ sharpen_strength (int, optional): The sharpen strength to use.
379
+
380
+ Returns:
381
+ dict: A dictionary containing the model details, classification scores, and label.
382
+ """
383
+ # Ensure img is a PIL Image object
384
+ if img is None:
385
+ raise gr.Error("No image provided. Please upload an image to analyze.")
386
+ # Handle filepath conversion if needed
387
+ if isinstance(img, str):
388
+ try:
389
+ img = load_image(img)
390
+ except Exception as e:
391
+ logger.error(f"Error loading image from path: {e}")
392
+ raise gr.Error(f"Could not load image from the provided path. Error: {str(e)}")
393
+
394
+ if not isinstance(img, Image.Image):
395
+ try:
396
+ img = Image.fromarray(img)
397
+ except Exception as e:
398
+ logger.error(f"Error converting input image to PIL: {e}")
399
+ raise gr.Error("Input image could not be converted to a valid image format. Please try another image.")
400
+
401
+ # Ensure image is in RGB format for consistent processing
402
+ if img.mode != 'RGB':
403
+ img = img.convert('RGB')
404
+
405
+ monitor_agent = EnsembleMonitorAgent()
406
+ weight_manager = ModelWeightManager(strongest_model_id="simple_prediction")
407
+ optimization_agent = WeightOptimizationAgent(weight_manager)
408
+ health_agent = SystemHealthAgent()
409
+ context_agent = ContextualIntelligenceAgent()
410
+ anomaly_agent = ForensicAnomalyDetectionAgent()
411
+ health_agent.monitor_system_health()
412
+ if rotate_degrees or noise_level or sharpen_strength:
413
+ img_pil, _ = augment_image(img, ["rotate", "add_noise", "sharpen"], rotate_degrees, noise_level, sharpen_strength)
414
+ else:
415
+ img_pil = img
416
+ img_np_og = np.array(img)
417
+
418
+ model_predictions_raw = {}
419
+ confidence_scores = {}
420
+ results = []
421
+ table_rows = []
422
+
423
+ # Initialize lists for forensic outputs, starting with the original augmented image
424
+ cleaned_forensics_images = []
425
+ forensic_output_descriptions = []
426
+
427
+ # Always add the original augmented image first for forensic display
428
+ if isinstance(img_pil, Image.Image):
429
+ cleaned_forensics_images.append(img_pil)
430
+ forensic_output_descriptions.append(f"Original augmented image (PIL): {img_pil.width}x{img_pil.height}")
431
+ elif isinstance(img_pil, np.ndarray):
432
+ try:
433
+ pil_img_from_np = Image.fromarray(img_pil)
434
+ cleaned_forensics_images.append(pil_img_from_np)
435
+ forensic_output_descriptions.append(f"Original augmented image (numpy converted to PIL): {pil_img_from_np.width}x{pil_img_from_np.height}")
436
+ except Exception as e:
437
+ logger.warning(f"Could not convert original numpy image to PIL for gallery: {e}")
438
+
439
+ # Yield initial state with augmented image and empty model predictions
440
+ yield img_pil, cleaned_forensics_images, table_rows, "[]", "<div style='font-size: 2.2em; font-weight: bold;padding: 10px;'>Consensus: <span style='color:orange'>UNCERTAIN</span></div>"
441
+
442
+
443
+ # Stream results as each model finishes
444
+ for model_id in MODEL_REGISTRY:
445
+ model_start = time.time()
446
+ result = infer(img_pil, model_id, confidence_threshold)
447
+ model_end = time.time()
448
+ monitor_agent.monitor_prediction(
449
+ model_id,
450
+ result["Label"],
451
+ max(result.get("AI Score", 0.0), result.get("Real Score", 0.0)),
452
+ model_end - model_start
453
+ )
454
+ model_predictions_raw[model_id] = result
455
+ confidence_scores[model_id] = max(result.get("AI Score", 0.0), result.get("Real Score", 0.0))
456
+ results.append(result)
457
+ table_rows.append([
458
+ result.get("Model", ""),
459
+ result.get("Contributor", ""),
460
+ round(result.get("AI Score", 0.0), 3) if result.get("AI Score") is not None else 0.0,
461
+ round(result.get("Real Score", 0.0), 3) if result.get("Real Score") is not None else 0.0,
462
+ result.get("Label", "Error")
463
+ ])
464
+ # Yield partial results: only update the table, others are None
465
+ yield None, cleaned_forensics_images, table_rows, None, None # Keep cleaned_forensics_images as is (only augmented image for now)
466
+
467
+ # Multi-threaded forensic processing
468
+ def _run_forensic_task(task_func, img_input, description, **kwargs):
469
+ try:
470
+ result_img = task_func(img_input, **kwargs)
471
+ return result_img, description
472
+ except Exception as e:
473
+ logger.error(f"Error processing forensic task {task_func.__name__}: {e}")
474
+ return None, f"Error processing {description}: {str(e)}"
475
+
476
+ with concurrent.futures.ThreadPoolExecutor() as executor:
477
+ future_ela1 = executor.submit(_run_forensic_task, ELA, img_np_og, "ELA analysis (Pass 1): Grayscale error map, quality 75.", quality=75, scale=50, contrast=20, linear=False, grayscale=True)
478
+ future_ela2 = executor.submit(_run_forensic_task, ELA, img_np_og, "ELA analysis (Pass 2): Grayscale error map, quality 75, enhanced contrast.", quality=75, scale=75, contrast=25, linear=False, grayscale=True)
479
+ future_ela3 = executor.submit(_run_forensic_task, ELA, img_np_og, "ELA analysis (Pass 3): Color error map, quality 75, enhanced contrast.", quality=75, scale=75, contrast=25, linear=False, grayscale=False)
480
+ future_gradient1 = executor.submit(_run_forensic_task, gradient_processing, img_np_og, "Gradient processing: Highlights edges and transitions.")
481
+ future_gradient2 = executor.submit(_run_forensic_task, gradient_processing, img_np_og, "Gradient processing: Int=45, Equalize=True", intensity=45, equalize=True)
482
+ future_minmax1 = executor.submit(_run_forensic_task, minmax_process, img_np_og, "MinMax processing: Deviations in local pixel values.")
483
+ future_minmax2 = executor.submit(_run_forensic_task, minmax_process, img_np_og, "MinMax processing (Radius=6): Deviations in local pixel values.", radius=6)
484
+
485
+ forensic_futures = [future_ela1, future_ela2, future_ela3, future_gradient1, future_gradient2, future_minmax1, future_minmax2]
486
+
487
+ for future in concurrent.futures.as_completed(forensic_futures):
488
+ processed_img, description = future.result()
489
+ if processed_img is not None:
490
+ if isinstance(processed_img, Image.Image):
491
+ cleaned_forensics_images.append(processed_img)
492
+ elif isinstance(processed_img, np.ndarray):
493
+ try:
494
+ cleaned_forensics_images.append(Image.fromarray(processed_img))
495
+ except Exception as e:
496
+ logger.warning(f"Could not convert numpy array to PIL Image for gallery: {e}")
497
+ else:
498
+ logger.warning(f"Unexpected type in processed_img from {description}: {type(processed_img)}. Skipping.")
499
+
500
+ forensic_output_descriptions.append(description) # Keep track of descriptions for anomaly agent
501
+
502
+ # Yield partial results: update gallery
503
+ yield None, cleaned_forensics_images, table_rows, None, None
504
+
505
+ # After all models, compute the rest as before
506
+ image_data_for_context = {
507
+ "width": img.width,
508
+ "height": img.height,
509
+ "mode": img.mode,
510
+ }
511
+ forensic_output_descriptions = [
512
+ f"Original augmented image (PIL): {img_pil.width}x{img_pil.height}",
513
+ "ELA analysis (Pass 1): Grayscale error map, quality 75.",
514
+ "ELA analysis (Pass 2): Grayscale error map, quality 75, enhanced contrast.",
515
+ "ELA analysis (Pass 3): Color error map, quality 75, enhanced contrast.",
516
+ "Gradient processing: Highlights edges and transitions.",
517
+ "Gradient processing: Int=45, Equalize=True",
518
+ "MinMax processing: Deviations in local pixel values.",
519
+ "MinMax processing (Radius=6): Deviations in local pixel values.",
520
+ # "Bit Plane extractor: Visualization of individual bit planes from different color channels."
521
+ ]
522
+ detected_context_tags = context_agent.infer_context_tags(image_data_for_context, model_predictions_raw)
523
+ logger.info(f"Detected context tags: {detected_context_tags}")
524
+ adjusted_weights = weight_manager.adjust_weights(model_predictions_raw, confidence_scores, context_tags=detected_context_tags)
525
+ weighted_predictions = {"AI": 0.0, "REAL": 0.0, "UNCERTAIN": 0.0}
526
+ for model_id, prediction in model_predictions_raw.items():
527
+ prediction_label = prediction.get("Label")
528
+ if prediction_label in weighted_predictions:
529
+ weighted_predictions[prediction_label] += adjusted_weights[model_id]
530
+ else:
531
+ logger.warning(f"Unexpected prediction label '{prediction_label}' from model '{model_id}'. Skipping its weight in consensus.")
532
+ final_prediction_label = "UNCERTAIN"
533
+ if weighted_predictions["AI"] > weighted_predictions["REAL"] and weighted_predictions["AI"] > weighted_predictions["UNCERTAIN"]:
534
+ final_prediction_label = "AI"
535
+ elif weighted_predictions["REAL"] > weighted_predictions["AI"] and weighted_predictions["REAL"] > weighted_predictions["UNCERTAIN"]:
536
+ final_prediction_label = "REAL"
537
+ optimization_agent.analyze_performance(final_prediction_label, None)
538
+ # gradient_image = gradient_processing(img_np_og)
539
+ # gradient_image2 = gradient_processing(img_np_og, intensity=45, equalize=True)
540
+ # minmax_image = minmax_process(img_np_og)
541
+ # minmax_image2 = minmax_process(img_np_og, radius=6)
542
+ # # bitplane_image = bit_plane_extractor(img_pil)
543
+ # ela1 = ELA(img_np_og, quality=75, scale=50, contrast=20, linear=False, grayscale=True)
544
+ # ela2 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=True)
545
+ # ela3 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=False)
546
+ # forensics_images = [img_pil, ela1, ela2, ela3, gradient_image, gradient_image2, minmax_image, minmax_image2]
547
+ # forensic_output_descriptions = [
548
+ # f"Original augmented image (PIL): {img_pil.width}x{img_pil.height}",
549
+ # "ELA analysis (Pass 1): Grayscale error map, quality 75.",
550
+ # "ELA analysis (Pass 2): Grayscale error map, quality 75, enhanced contrast.",
551
+ # "ELA analysis (Pass 3): Color error map, quality 75, enhanced contrast.",
552
+ # "Gradient processing: Highlights edges and transitions.",
553
+ # "Gradient processing: Int=45, Equalize=True",
554
+ # "MinMax processing: Deviations in local pixel values.",
555
+ # "MinMax processing (Radius=6): Deviations in local pixel values.",
556
+ # # "Bit Plane extractor: Visualization of individual bit planes from different color channels."
557
+ # ]
558
+ anomaly_detection_results = anomaly_agent.analyze_forensic_outputs(forensic_output_descriptions)
559
+ logger.info(f"Forensic anomaly detection: {anomaly_detection_results['summary']}")
560
+ consensus_html = f"<div style='font-size: 2.2em; font-weight: bold;padding: 10px;'>Consensus: <span style='color:{'red' if final_prediction_label == 'AI' else ('green' if final_prediction_label == 'REAL' else 'orange')}'>{final_prediction_label}</span></div>"
561
+ inference_params = {
562
+ "confidence_threshold": confidence_threshold,
563
+ "rotate_degrees": rotate_degrees,
564
+ "noise_level": noise_level,
565
+ "sharpen_strength": sharpen_strength,
566
+ "detected_context_tags": detected_context_tags
567
+ }
568
+ ensemble_output_data = {
569
+ "final_prediction_label": final_prediction_label,
570
+ "weighted_predictions": weighted_predictions,
571
+ "adjusted_weights": adjusted_weights
572
+ }
573
+ agent_monitoring_data_log = {
574
+ "ensemble_monitor": {
575
+ "alerts": monitor_agent.alerts,
576
+ "performance_metrics": monitor_agent.performance_metrics
577
+ },
578
+ "weight_optimization": {
579
+ "prediction_history_length": len(optimization_agent.prediction_history),
580
+ },
581
+ "system_health": {
582
+ "memory_usage": health_agent.health_metrics["memory_usage"],
583
+ "gpu_utilization": health_agent.health_metrics["gpu_utilization"]
584
+ },
585
+ "context_intelligence": {
586
+ "detected_context_tags": detected_context_tags
587
+ },
588
+ "forensic_anomaly_detection": anomaly_detection_results
589
+ }
590
+ log_inference_data(
591
+ original_image=img,
592
+ inference_params=inference_params,
593
+ model_predictions=results,
594
+ ensemble_output=ensemble_output_data,
595
+ forensic_images=cleaned_forensics_images, # Use the incrementally built list
596
+ agent_monitoring_data=agent_monitoring_data_log,
597
+ human_feedback=None
598
+ )
599
+
600
+ logger.info(f"Cleaned forensic images types: {[type(img) for img in cleaned_forensics_images]}")
601
+ for i, res_dict in enumerate(results):
602
+ for key in ["AI Score", "Real Score"]:
603
+ value = res_dict.get(key)
604
+ if isinstance(value, np.float32):
605
+ res_dict[key] = float(value)
606
+ logger.info(f"Converted {key} for result {i} from numpy.float32 to float.")
607
+ json_results = json.dumps(results, cls=NumpyEncoder)
608
+ yield img_pil, cleaned_forensics_images, table_rows, json_results, consensus_html
609
+
610
+ detection_model_eval_playground = gr.Interface(
611
+ fn=full_prediction,
612
+ inputs=[
613
+ gr.Image(label="Upload Image to Analyze", sources=['upload', 'webcam'], type='filepath'),
614
+ gr.Slider(0.0, 1.0, value=0.7, step=0.05, label="Confidence Threshold"),
615
+ gr.Slider(0, 45, value=0, step=1, label="Rotate Degrees", visible=False),
616
+ gr.Slider(0, 50, value=0, step=1, label="Noise Level", visible=False),
617
+ gr.Slider(0, 50, value=0, step=1, label="Sharpen Strength", visible=False)
618
+ ],
619
+ outputs=[
620
+ gr.Image(label="Processed Image", visible=False),
621
+ gr.Gallery(label="Post Processed Images", visible=True, columns=[4], rows=[2], container=False, height="auto", object_fit="contain", elem_id="post-gallery"),
622
+ gr.Dataframe(
623
+ label="Model Predictions",
624
+ headers=["Arch / Dataset", "By", "AI", "Real", "Label"],
625
+ datatype=["str", "str", "number", "number", "str"]
626
+ ),
627
+ gr.JSON(label="Raw Model Results", visible=False),
628
+ gr.Markdown(label="Consensus", value="")
629
+ ],
630
+ title="Multi-Model Ensemble + Agentic Coordinated Deepfake Detection (Paper in Progress)",
631
+ description="The detection of AI-generated images has entered a critical inflection point. While existing solutions struggle with outdated datasets and inflated claims, our approach prioritizes agility, community collaboration, and an offensive approach to deepfake detection.",
632
+ api_name="predict",
633
+ live=True # Enable streaming
634
+ )
635
+ # def echo_headers(x, request: gr.Request):
636
+ # print(dict(request.headers))
637
+ # return str(dict(request.headers))
638
+
639
+
640
+ def predict(img):
641
+ """
642
+ Predicts whether an image is AI-generated or real using the SOTA Community Forensics model.
643
+
644
+ Args:
645
+ img (str): Path to the input image file to analyze.
646
+
647
+ Returns:
648
+ dict: A dictionary containing:
649
+ - 'Fake Probability' (float): Probability score between 0 and 1 indicating likelihood of being AI-generated
650
+ - 'Result Description' (str): Human-readable description of the prediction result
651
+
652
+ Example:
653
+ >>> result = predict("path/to/image.jpg")
654
+ >>> print(result)
655
+ {'Fake Probability': 0.002, 'Result Description': 'The image is likely real.'}
656
+ """
657
+ client = Client("aiwithoutborders-xyz/OpenSight-Community-Forensics-Preview")
658
+ client.view_api()
659
+ result = client.predict(
660
+ handle_file(img),
661
+ api_name="/simple_predict"
662
+ )
663
+ return str(result)
664
+ community_forensics_preview = gr.Interface(
665
+ fn=predict,
666
+ inputs=gr.Image(type="filepath"),
667
+ outputs=gr.HTML(), # or gr.Markdown() if it's just text
668
+ title="Quick and simple prediction by our strongest model.",
669
+ description="No ensemble, no context, no agents, just a quick and simple prediction by our strongest model.",
670
+ api_name="predict"
671
+ )
672
+
673
+ # leaderboard = gr.Interface(
674
+ # fn=lambda: "# AI Generated / Deepfake Detection Models Leaderboard: Soon™",
675
+ # inputs=None,
676
+ # outputs=gr.Markdown(),
677
+ # title="Leaderboard",
678
+ # api_name="leaderboard"
679
+ # )
680
+ def simple_prediction(img):
681
+ """
682
+ Quick and simple deepfake or real image prediction by the strongest open-source model on the hub.
683
+
684
+ Args:
685
+ img (str): The input image to analyze, provided as a file path.
686
+
687
+ Returns:
688
+ str: The prediction result stringified from dict. Example: `{'Fake Probability': 0.002, 'Result Description': 'The image is likely real.'}`
689
+ """
690
+ client = Client("aiwithoutborders-xyz/OpenSight-Community-Forensics-Preview")
691
+ client.view_api()
692
+ client.predict(
693
+ handle_file(img),
694
+ api_name="simple_predict"
695
+ )
696
+ simple_predict_interface = gr.Interface(
697
+ fn=simple_prediction,
698
+ inputs=gr.Image(type="filepath"),
699
+ outputs=gr.Text(),
700
+ title="Quick and simple prediction by our strongest model.",
701
+ description="No ensemble, no context, no agents, just a quick and simple prediction by our strongest model.",
702
+ api_name="simple_predict"
703
+ )
704
+
705
+ noise_estimation_interface = gr.Interface(
706
+ fn=noise_estimation,
707
+ inputs=[gr.Image(type="pil"), gr.Slider(1, 32, value=8, step=1, label="Block Size")],
708
+ outputs=gr.Image(type="pil"),
709
+ title="Wavelet-Based Noise Analysis",
710
+ description="Analyzes image noise patterns using wavelet decomposition. This tool helps detect compression artifacts and artificial noise patterns that may indicate image manipulation. Higher noise levels in specific regions can reveal areas of potential tampering.",
711
+ api_name="tool_waveletnoise"
712
+ )
713
+
714
+ bit_plane_interface = gr.Interface(
715
+ fn=bit_plane_extractor,
716
+ inputs=[
717
+ gr.Image(type="pil"),
718
+ gr.Dropdown(["Luminance", "Red", "Green", "Blue", "RGB Norm"], label="Channel", value="Luminance"),
719
+ gr.Slider(0, 7, value=0, step=1, label="Bit Plane"),
720
+ gr.Dropdown(["Disabled", "Median", "Gaussian"], label="Filter", value="Disabled")
721
+ ],
722
+ outputs=gr.Image(type="pil"),
723
+ title="Bit Plane Analysis",
724
+ description="Extracts and visualizes individual bit planes from different color channels. This forensic tool helps identify hidden patterns and artifacts in image data that may indicate manipulation. Different bit planes can reveal inconsistencies in image processing or editing.",
725
+ api_name="tool_bitplane"
726
+ )
727
+
728
+ ela_interface = gr.Interface(
729
+ fn=ELA,
730
+ inputs=[
731
+ gr.Image(type="pil", label="Input Image"),
732
+ gr.Slider(1, 100, value=75, step=1, label="JPEG Quality"),
733
+ gr.Slider(1, 100, value=50, step=1, label="Output Scale (Multiplicative Gain)"),
734
+ gr.Slider(0, 100, value=20, step=1, label="Output Contrast (Tonality Compression)"),
735
+ gr.Checkbox(value=False, label="Use Linear Difference"),
736
+ gr.Checkbox(value=False, label="Grayscale Output")
737
+ ],
738
+ outputs=gr.Image(type="pil"),
739
+ title="Error Level Analysis (ELA)",
740
+ description="Performs Error Level Analysis to detect re-saved JPEG images, which can indicate tampering. ELA highlights areas of an image that have different compression levels.",
741
+ api_name="tool_ela"
742
+ )
743
+
744
+ gradient_processing_interface = gr.Interface(
745
+ fn=gradient_processing,
746
+ inputs=[
747
+ gr.Image(type="pil", label="Input Image"),
748
+ gr.Slider(0, 100, value=90, step=1, label="Intensity"),
749
+ gr.Dropdown(["Abs", "None", "Flat", "Norm"], label="Blue Mode", value="Abs"),
750
+ gr.Checkbox(value=False, label="Invert Gradients"),
751
+ gr.Checkbox(value=False, label="Equalize Histogram")
752
+ ],
753
+ outputs=gr.Image(type="pil"),
754
+ title="Gradient Processing",
755
+ description="Applies gradient filters to an image to enhance edges and transitions, which can reveal inconsistencies due to manipulation.",
756
+ api_name="tool_gradient_processing"
757
+ )
758
+
759
+ minmax_processing_interface = gr.Interface(
760
+ fn=minmax_process,
761
+ inputs=[
762
+ gr.Image(type="pil", label="Input Image"),
763
+ gr.Radio([0, 1, 2, 3, 4], label="Channel (0:Grayscale, 1:Blue, 2:Green, 3:Red, 4:RGB Norm)", value=4),
764
+ gr.Slider(0, 10, value=2, step=1, label="Radius")
765
+ ],
766
+ outputs=gr.Image(type="pil"),
767
+ title="MinMax Processing",
768
+ description="Analyzes local pixel value deviations to detect subtle changes in image data, often indicative of digital forgeries.",
769
+ api_name="tool_minmax_processing"
770
+ )
771
+
772
+ # augmentation_tool_interface = gr.Interface(
773
+ # fn=augment_image,
774
+ # inputs=[
775
+ # gr.Image(label="Upload Image to Augment", sources=['upload', 'webcam'], type='pil'),
776
+ # gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], label="Augmentation Methods"),
777
+ # gr.Slider(0, 360, value=0, step=1, label="Rotate Degrees", visible=True),
778
+ # gr.Slider(0, 100, value=0, step=1, label="Noise Level", visible=True),
779
+ # gr.Slider(0, 200, value=1, step=1, label="Sharpen Strength", visible=True)
780
+ # ],
781
+ # outputs=gr.Image(label="Augmented Image", type='pil'),
782
+ # title="Image Augmentation Tool",
783
+ # description="Apply various augmentation techniques to your image.",
784
+ # api_name="augment_image"
785
+ # )
786
+
787
+ # def get_captured_logs():
788
+ # # Retrieve all logs from the queue and clear it
789
+ # logs = list(log_queue)
790
+ # log_queue.clear() # Clear the queue after retrieving
791
+ # return "\n".join(logs)
792
+
793
+
794
+ demo = gr.TabbedInterface(
795
+ [
796
+ detection_model_eval_playground,
797
+ community_forensics_preview,
798
+ noise_estimation_interface,
799
+ bit_plane_interface,
800
+ ela_interface,
801
+ gradient_processing_interface,
802
+ minmax_processing_interface,
803
+ # gr.Textbox(label="Agent Logs", interactive=False, lines=5, max_lines=20, autoscroll=True) # New textbox for logs
804
+ ],
805
+ [
806
+ "Run Ensemble Prediction",
807
+ "Open-Source SOTA Model",
808
+ "Wavelet Blocking Noise Estimation",
809
+ "Bit Plane Values",
810
+ "Error Level Analysis (ELA)",
811
+ "Gradient Processing",
812
+ "MinMax Processing",
813
+ # "Agent Logs" # New tab title
814
+ ],
815
+ title="Deepfake Detection & Forensics Tools",
816
+ theme=None,
817
+
818
+ )
819
+ footerMD = """
820
+ ### ⚠️ ENSEMBLE TEAM IN TRAINING ⚠️ \n\n
821
+
822
+ 1. **DISCLAIMER: METADATA AS WELL AS MEDIA SUBMITTED TO THIS SPACE MAY BE VIEWED AND SELECTED FOR FUTURE DATASETS, PLEASE DO NOT SUBMIT PERSONAL CONTENT. FOR UNTRACKED, PRIVATE USE OF THE MODELS YOU MAY STILL USE [THE ORIGINAL SPACE HERE](https://huggingface.co/spaces/aiwithoutborders-xyz/OpenSight-Deepfake-Detection-Models-Playground), SOTA MODEL INCLUDED.**
823
+ 2. **UPDATE 6-13-25**: APOLOGIES FOR THE CONFUSION, WE ARE WORKING TO REVERT THE ORIGINAL REPO BACK TO ITS NON-DATA COLLECTION STATE -- ONLY THE "SIMPLE PREDICTION" ENDPOINT IS CURRENTLY 100% PRIVATE. PLEASE STAY TUNED AS WE FIGURE OUT A SOLUTION FOR THE ENSEMBLE + AGENT TEAM ENDPOINT. IT CAN GET RESOURCE INTENSIVE TO RUN A FULL PREDICTION. ALTERNATIVELY, WE **ENCOURAGE** ANYONE TO FORK AND CONTRIBUTE TO THE PROJECT.
824
+ 3. **UPDATE 6-13-25 (cont.)**: WHILE WE HAVE NOT TAKEN A STANCE ON NSFW AND EXPLICIT CONTENT, PLEASE REFRAIN FROM ... YOUR HUMAN DESIRES UNTIL WE GET THIS PRIVACY SITUATION SORTED OUT. DO NOT BE RECKLESS PLEASE. OUR PAPER WILL BE OUT SOON ON ARXIV WHICH WILL EXPLAIN EVERYTHING WITH DATA-BACKED RESEARCH ON WHY THIS PROJECT IS NEEDED, BUT WE CANNOT DO IT WITHOUT THE HELP OF THE COMMUNITY.
825
+
826
+ TO SUMMARIZE: DATASET COLLECTION WILL CONTINUE FOR OUR NOVEL ENSEMBLE-TEAM PREDICTION PIPELINE UNTIL WE CAN GET THINGS SORTED OUT. FOR THOSE THAT WISH TO OPT-OUT, WE OFFER THE SIMPLE, BUT [MOST POWERFUL DETECTION MODEL HERE.](https://huggingface.co/spaces/aiwithoutborders-xyz/OpenSight-Community-Forensics-Preview)
827
+
828
+ """
829
+ footer = gr.Markdown("", elem_classes="footer")
830
+
831
+ with gr.Blocks() as app:
832
+ demo.render()
833
+ footer.render()
834
+
835
+
836
+ app.queue(max_size=10, default_concurrency_limit=2).launch(mcp_server=True)
models/model_1_quantized.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:ecf6b2bb01362d913ea6d8ebcb3d8a8544b41014e663b53b9b89f868401c6f7b
3
- size 321926825