LPX55 commited on
Commit
ed7026a
·
verified ·
1 Parent(s): db6eb6a
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -122,7 +122,7 @@ register_model_with_metadata(
122
  )
123
 
124
  # --- ONNX Quantized Model Example ---
125
- ONNX_QUANTIZED_MODEL_PATH = "./models/model_1_quantized.onnx" # Placeholder for your ONNX model
126
 
127
  def preprocess_onnx_input(image: Image.Image):
128
  # Preprocess image for ONNX model (e.g., for SwinV2, usually 256x256, normalized)
@@ -423,11 +423,11 @@ def full_prediction(img, confidence_threshold, rotate_degrees, noise_level, shar
423
  gradient_image2 = gradient_processing(img_np_og, intensity=45, equalize=True)
424
  minmax_image = minmax_process(img_np_og)
425
  minmax_image2 = minmax_process(img_np_og, radius=6)
426
- bitplane_image = bit_plane_extractor(img_pil)
427
  ela1 = ELA(img_np_og, quality=75, scale=50, contrast=20, linear=False, grayscale=True)
428
  ela2 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=True)
429
  ela3 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=False)
430
- forensics_images = [img_pil, ela1, ela2, ela3, gradient_image, gradient_image2, minmax_image, minmax_image2, bitplane_image]
431
  forensic_output_descriptions = [
432
  f"Original augmented image (PIL): {img_pil.width}x{img_pil.height}",
433
  "ELA analysis (Pass 1): Grayscale error map, quality 75.",
@@ -437,7 +437,7 @@ def full_prediction(img, confidence_threshold, rotate_degrees, noise_level, shar
437
  "Gradient processing: Int=45, Equalize=True",
438
  "MinMax processing: Deviations in local pixel values.",
439
  "MinMax processing (Radius=6): Deviations in local pixel values.",
440
- "Bit Plane extractor: Visualization of individual bit planes from different color channels."
441
  ]
442
  anomaly_detection_results = anomaly_agent.analyze_forensic_outputs(forensic_output_descriptions)
443
  logger.info(f"Forensic anomaly detection: {anomaly_detection_results['summary']}")
@@ -554,7 +554,7 @@ def predict(img):
554
  handle_file(img),
555
  api_name="/simple_predict"
556
  )
557
- return result
558
  community_forensics_preview = gr.Interface(
559
  fn=predict,
560
  inputs=gr.Image(type="filepath"),
 
122
  )
123
 
124
  # --- ONNX Quantized Model Example ---
125
+ ONNX_QUANTIZED_MODEL_PATH = "./models/model_1_quantized.onnx"
126
 
127
  def preprocess_onnx_input(image: Image.Image):
128
  # Preprocess image for ONNX model (e.g., for SwinV2, usually 256x256, normalized)
 
423
  gradient_image2 = gradient_processing(img_np_og, intensity=45, equalize=True)
424
  minmax_image = minmax_process(img_np_og)
425
  minmax_image2 = minmax_process(img_np_og, radius=6)
426
+ # bitplane_image = bit_plane_extractor(img_pil)
427
  ela1 = ELA(img_np_og, quality=75, scale=50, contrast=20, linear=False, grayscale=True)
428
  ela2 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=True)
429
  ela3 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=False)
430
+ forensics_images = [img_pil, ela1, ela2, ela3, gradient_image, gradient_image2, minmax_image, minmax_image2]
431
  forensic_output_descriptions = [
432
  f"Original augmented image (PIL): {img_pil.width}x{img_pil.height}",
433
  "ELA analysis (Pass 1): Grayscale error map, quality 75.",
 
437
  "Gradient processing: Int=45, Equalize=True",
438
  "MinMax processing: Deviations in local pixel values.",
439
  "MinMax processing (Radius=6): Deviations in local pixel values.",
440
+ # "Bit Plane extractor: Visualization of individual bit planes from different color channels."
441
  ]
442
  anomaly_detection_results = anomaly_agent.analyze_forensic_outputs(forensic_output_descriptions)
443
  logger.info(f"Forensic anomaly detection: {anomaly_detection_results['summary']}")
 
554
  handle_file(img),
555
  api_name="/simple_predict"
556
  )
557
+ return str(result)
558
  community_forensics_preview = gr.Interface(
559
  fn=predict,
560
  inputs=gr.Image(type="filepath"),