LPX55 commited on
Commit
f9a9db5
·
verified ·
1 Parent(s): e01838e

custom server we go... soon

Browse files
Files changed (1) hide show
  1. app.py +11 -12
app.py CHANGED
@@ -46,7 +46,7 @@ log_queue = collections.deque(maxlen=1000) # Store last 1000 log messages
46
  gradio_handler = GradioLogHandler(log_queue)
47
 
48
  # Set root logger level to DEBUG to capture all messages from agents
49
- logging.getLogger().setLevel(logging.DEBUG)
50
  logging.getLogger().addHandler(gradio_handler)
51
  # --- End Gradio Log Handler ---
52
 
@@ -110,14 +110,14 @@ def register_model_with_metadata(model_id, model, preprocess, postprocess, class
110
  MODEL_REGISTRY[model_id] = entry
111
 
112
  # Load and register models (copied from app_mcp.py)
113
- image_processor_1 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_1"], use_fast=True)
114
- model_1 = Swinv2ForImageClassification.from_pretrained(MODEL_PATHS["model_1"]).to(device)
115
- clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device)
116
- register_model_with_metadata(
117
- "model_1", clf_1, preprocess_resize_256, postprocess_pipeline, CLASS_NAMES["model_1"],
118
- display_name="SWIN1", contributor="haywoodsloan", model_path=MODEL_PATHS["model_1"],
119
- architecture="SwinV2", dataset="TBA"
120
- )
121
 
122
  # --- ONNX Quantized Model Example ---
123
  ONNX_QUANTIZED_MODEL_PATH = "./models/model_1_quantized.onnx"
@@ -714,7 +714,6 @@ with gr.Blocks() as app:
714
  demo.render()
715
  footer.render()
716
 
717
- app.queue(max_size=3)
718
 
719
- if __name__ == "__main__":
720
- app.launch(mcp_server=True)
 
46
  gradio_handler = GradioLogHandler(log_queue)
47
 
48
  # Set root logger level to DEBUG to capture all messages from agents
49
+ logging.getLogger().setLevel(logging.INFO)
50
  logging.getLogger().addHandler(gradio_handler)
51
  # --- End Gradio Log Handler ---
52
 
 
110
  MODEL_REGISTRY[model_id] = entry
111
 
112
  # Load and register models (copied from app_mcp.py)
113
+ # image_processor_1 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_1"], use_fast=True)
114
+ # model_1 = Swinv2ForImageClassification.from_pretrained(MODEL_PATHS["model_1"]).to(device)
115
+ # clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device)
116
+ # register_model_with_metadata(
117
+ # "model_1", clf_1, preprocess_resize_256, postprocess_pipeline, CLASS_NAMES["model_1"],
118
+ # display_name="SWIN1", contributor="haywoodsloan", model_path=MODEL_PATHS["model_1"],
119
+ # architecture="SwinV2", dataset="TBA"
120
+ # )
121
 
122
  # --- ONNX Quantized Model Example ---
123
  ONNX_QUANTIZED_MODEL_PATH = "./models/model_1_quantized.onnx"
 
714
  demo.render()
715
  footer.render()
716
 
717
+ app.unload(demo)
718
 
719
+ app.queue(max_size=10, default_concurrency_limit=2).launch(mcp_server=True)