|
import streamlit as st |
|
import json |
|
import ee |
|
import os |
|
import pandas as pd |
|
import geopandas as gpd |
|
from datetime import datetime |
|
import leafmap.foliumap as leafmap |
|
import re |
|
from shapely.geometry import base |
|
|
|
|
|
from xml.etree import ElementTree as XET |
|
|
|
|
|
|
|
st.set_page_config(layout="wide") |
|
|
|
|
|
m = st.markdown( |
|
""" |
|
<style> |
|
div.stButton > button:first-child { |
|
background-color: #006400; |
|
color:#ffffff; |
|
} |
|
</style>""", |
|
unsafe_allow_html=True, |
|
) |
|
|
|
|
|
st.write( |
|
f""" |
|
<div style="display: flex; justify-content: space-between; align-items: center;"> |
|
<img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/ISRO_Logo.png" style="width: 20%; margin-right: auto;"> |
|
<img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/SAC_Logo.png" style="width: 20%; margin-left: auto;"> |
|
</div> |
|
""", |
|
unsafe_allow_html=True, |
|
) |
|
|
|
|
|
st.markdown( |
|
f""" |
|
<div style="display: flex; flex-direction: column; align-items: center;"> |
|
<img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/SATRANG.png" style="width: 30%;"> |
|
<h3 style="text-align: center; margin: 0;">( Spatial and Temporal Aggregation for Remote-sensing and Analysis of Natural Geodata )</h3> |
|
</div> |
|
<hr> |
|
""", |
|
unsafe_allow_html=True, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
st.markdown( |
|
f""" |
|
<h4 style="text-align: center;">User Inputs</h4> |
|
""", |
|
unsafe_allow_html=True, |
|
) |
|
|
|
earthengine_credentials = os.environ.get("EE_Authentication") |
|
|
|
|
|
os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True) |
|
with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f: |
|
f.write(earthengine_credentials) |
|
|
|
ee.Initialize(project='ee-yashsacisro24') |
|
|
|
st.write("<h5>Image Collection</h5>", unsafe_allow_html=True) |
|
|
|
|
|
imagery_base = st.selectbox("Select Imagery Base", ["Sentinel", "Landsat", "MODIS", "Custom Input"], index=0) |
|
|
|
|
|
if imagery_base == "Sentinel": |
|
dataset_file = "sentinel_datasets.json" |
|
with open(dataset_file) as f: |
|
data = json.load(f) |
|
elif imagery_base == "Landsat": |
|
dataset_file = "landsat_datasets.json" |
|
with open(dataset_file) as f: |
|
data = json.load(f) |
|
elif imagery_base == "MODIS": |
|
dataset_file = "modis_datasets.json" |
|
with open(dataset_file) as f: |
|
data = json.load(f) |
|
elif imagery_base == "Custom Input": |
|
custom_dataset_id = st.text_input("Enter Custom Earth Engine Dataset ID (e.g., ee.ImageCollection('AHN/AHN4'))", value="") |
|
if custom_dataset_id: |
|
try: |
|
|
|
if custom_dataset_id.startswith("ee.ImageCollection("): |
|
custom_dataset_id = custom_dataset_id.replace("ee.ImageCollection('", "").replace("')", "") |
|
|
|
collection = ee.ImageCollection(custom_dataset_id) |
|
band_names = collection.first().bandNames().getInfo() |
|
data = { |
|
f"Custom Dataset: {custom_dataset_id}": { |
|
"sub_options": {custom_dataset_id: f"Custom Dataset ({custom_dataset_id})"}, |
|
"bands": {custom_dataset_id: band_names} |
|
} |
|
} |
|
st.write(f"Fetched bands for {custom_dataset_id}: {', '.join(band_names)}") |
|
except Exception as e: |
|
st.error(f"Error fetching dataset: {str(e)}. Please check the dataset ID and ensure it's valid in Google Earth Engine.") |
|
data = {} |
|
else: |
|
st.warning("Please enter a custom dataset ID to proceed.") |
|
data = {} |
|
|
|
|
|
|
|
st.markdown( |
|
f""" |
|
<hr> |
|
<h5><b>{imagery_base} Dataset</b></h5> |
|
""", |
|
unsafe_allow_html=True, |
|
) |
|
|
|
if data: |
|
main_selection = st.selectbox(f"Select {imagery_base} Dataset Category", list(data.keys())) |
|
else: |
|
main_selection = None |
|
|
|
|
|
sub_selection = None |
|
dataset_id = None |
|
|
|
|
|
if main_selection: |
|
sub_options = data[main_selection]["sub_options"] |
|
sub_selection = st.selectbox(f"Select Specific {imagery_base} Dataset ID", list(sub_options.keys())) |
|
|
|
|
|
if sub_selection: |
|
st.write(f"You selected: {main_selection} -> {sub_options[sub_selection]}") |
|
st.write(f"Dataset ID: {sub_selection}") |
|
dataset_id = sub_selection |
|
|
|
|
|
|
|
|
|
st.markdown( |
|
f""" |
|
<hr> |
|
<h5><b>Earth Engine Index Calculator</b></h5> |
|
""", |
|
unsafe_allow_html=True, |
|
) |
|
|
|
if main_selection and sub_selection: |
|
dataset_bands = data[main_selection]["bands"].get(sub_selection, []) |
|
st.write(f"Available Bands for {sub_options[sub_selection]}: {', '.join(dataset_bands)}") |
|
|
|
|
|
selected_bands = st.multiselect( |
|
"Select 1 or 2 Bands for Calculation", |
|
options=dataset_bands, |
|
default=[dataset_bands[0]] if dataset_bands else [], |
|
help=f"Select 1 or 2 bands from: {', '.join(dataset_bands)}" |
|
) |
|
|
|
|
|
if len(selected_bands) < 1: |
|
st.warning("Please select at least one band.") |
|
st.stop() |
|
|
|
|
|
if selected_bands: |
|
|
|
if len(selected_bands) == 1: |
|
default_formula = f"{selected_bands[0]}" |
|
example = f"'{selected_bands[0]} * 2' or '{selected_bands[0]} + 1'" |
|
else: |
|
default_formula = f"({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})" |
|
example = f"'{selected_bands[0]} * {selected_bands[1]} / 2' or '({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})'" |
|
|
|
custom_formula = st.text_input( |
|
"Enter Custom Formula (e.g (B8 - B4) / (B8 + B4) , B4*B3/2)", |
|
value=default_formula, |
|
help=f"Use only these bands: {', '.join(selected_bands)}. Examples: {example}" |
|
) |
|
|
|
|
|
def validate_formula(formula, selected_bands): |
|
allowed_chars = set(" +-*/()0123456789.") |
|
terms = re.findall(r'[a-zA-Z][a-zA-Z0-9_]*', formula) |
|
invalid_terms = [term for term in terms if term not in selected_bands] |
|
if invalid_terms: |
|
return False, f"Invalid terms in formula: {', '.join(invalid_terms)}. Use only {', '.join(selected_bands)}." |
|
if not all(char in allowed_chars or char in ''.join(selected_bands) for char in formula): |
|
return False, "Formula contains invalid characters. Use only bands, numbers, and operators (+, -, *, /, ())" |
|
return True, "" |
|
|
|
is_valid, error_message = validate_formula(custom_formula, selected_bands) |
|
if not is_valid: |
|
st.error(error_message) |
|
st.stop() |
|
elif not custom_formula: |
|
st.warning("Please enter a custom formula to proceed.") |
|
st.stop() |
|
|
|
|
|
st.write(f"Custom Formula: {custom_formula}") |
|
|
|
|
|
|
|
|
|
def get_reducer(reducer_name): |
|
reducers = { |
|
'mean': ee.Reducer.mean(), |
|
'sum': ee.Reducer.sum(), |
|
'median': ee.Reducer.median(), |
|
'min': ee.Reducer.min(), |
|
'max': ee.Reducer.max(), |
|
'count': ee.Reducer.count(), |
|
} |
|
return reducers.get(reducer_name.lower(), ee.Reducer.mean()) |
|
|
|
|
|
reducer_choice = st.selectbox( |
|
"Select Reducer (e.g, mean , sum , median , min , max , count)", |
|
['mean', 'sum', 'median', 'min', 'max', 'count'], |
|
index=0 |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def convert_to_ee_geometry(geometry): |
|
st.write(f"Debug: convert_to_ee_geometry called with type - {type(geometry)}") |
|
if isinstance(geometry, base.BaseGeometry): |
|
if geometry.is_valid: |
|
geojson = geometry.__geo_interface__ |
|
st.write(f"Debug: Converting Shapely geometry to GeoJSON - {geojson}") |
|
return ee.Geometry(geojson) |
|
else: |
|
raise ValueError("Invalid geometry: The polygon geometry is not valid.") |
|
elif isinstance(geometry, dict): |
|
if 'type' in geometry and 'coordinates' in geometry: |
|
return ee.Geometry(geometry) |
|
else: |
|
raise ValueError("GeoJSON format is invalid.") |
|
elif isinstance(geometry, str): |
|
try: |
|
|
|
parsed = json.loads(geometry) |
|
if 'type' in parsed and 'coordinates' in parsed: |
|
return ee.Geometry(parsed) |
|
else: |
|
raise ValueError("GeoJSON string format is invalid.") |
|
except json.JSONDecodeError: |
|
|
|
try: |
|
root = XET.fromstring(geometry) |
|
ns = {'kml': 'http://www.opengis.net/kml/2.2'} |
|
coords_elem = root.find('.//kml:Polygon//kml:coordinates', ns) |
|
if coords_elem is not None: |
|
coords_text = ' '.join(coords_elem.text.split()) |
|
st.write(f"Debug: KML string coordinates - {coords_text}") |
|
coords = [tuple(map(float, coord.split(','))) for coord in coords_text.split()] |
|
geojson = {"type": "Polygon", "coordinates": [coords]} |
|
return ee.Geometry(geojson) |
|
else: |
|
raise ValueError("KML string does not contain valid coordinates.") |
|
except Exception as e: |
|
raise ValueError(f"Error parsing KML string: {e}") |
|
else: |
|
raise ValueError(f"Unsupported geometry input type: {type(geometry)}. Supported types are Shapely, GeoJSON, and KML string.") |
|
|
|
|
|
start_date = st.date_input("Start Date", value=pd.to_datetime('2024-11-01')) |
|
end_date = st.date_input("End Date", value=pd.to_datetime('2024-12-01')) |
|
|
|
|
|
start_date_str = start_date.strftime('%Y-%m-%d') |
|
end_date_str = end_date.strftime('%Y-%m-%d') |
|
|
|
|
|
aggregation_period = st.selectbox( |
|
"Select Aggregation Period (e.g, Custom(Start Date to End Date) , Weekly , Monthly , Yearly)", |
|
["Custom (Start Date to End Date)", "Weekly", "Monthly", "Yearly"], |
|
index=0 |
|
) |
|
|
|
|
|
shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"]) |
|
|
|
|
|
kernel_size = None |
|
include_boundary = None |
|
if shape_type.lower() == "point": |
|
kernel_size = st.selectbox( |
|
"Select Calculation Area(e.g, Point , 3x3 Kernel , 5x5 Kernel)", |
|
["Point", "3x3 Kernel", "5x5 Kernel"], |
|
index=0, |
|
help="Choose 'Point' for exact point calculation, or a kernel size for area averaging." |
|
) |
|
elif shape_type.lower() == "polygon": |
|
include_boundary = st.checkbox( |
|
"Include Boundary Pixels", |
|
value=True, |
|
help="Check to include pixels on the polygon boundary; uncheck to exclude them." |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"]) |
|
|
|
if file_upload is not None: |
|
|
|
if shape_type.lower() == "point": |
|
if file_upload.name.endswith('.csv'): |
|
locations_df = pd.read_csv(file_upload) |
|
elif file_upload.name.endswith('.geojson'): |
|
locations_df = gpd.read_file(file_upload) |
|
elif file_upload.name.endswith('.kml'): |
|
|
|
kml_string = file_upload.read().decode('utf-8') |
|
try: |
|
|
|
root = XET.fromstring(kml_string) |
|
ns = {'kml': 'http://www.opengis.net/kml/2.2'} |
|
points = [] |
|
for placemark in root.findall('.//kml:Placemark', ns): |
|
name = placemark.findtext('kml:name', default=f"Point_{len(points)}", namespaces=ns) |
|
coords_elem = placemark.find('.//kml:Point/kml:coordinates', ns) |
|
if coords_elem is not None: |
|
coords_text = coords_elem.text.strip() |
|
st.write(f"Debug: Point coordinates found - {coords_text}") |
|
coords = [c.strip() for c in coords_text.split(',')] |
|
if len(coords) >= 2: |
|
lon, lat = float(coords[0]), float(coords[1]) |
|
points.append({'name': name, 'geometry': f"POINT ({lon} {lat})"}) |
|
if not points: |
|
st.error("No valid Point data found in the KML file.") |
|
locations_df = pd.DataFrame() |
|
else: |
|
locations_df = gpd.GeoDataFrame(points, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in points]), crs="EPSG:4326") |
|
except Exception as e: |
|
st.error(f"Error parsing KML file: {str(e)}") |
|
locations_df = pd.DataFrame() |
|
else: |
|
st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.") |
|
locations_df = pd.DataFrame() |
|
|
|
if 'geometry' in locations_df.columns: |
|
if locations_df.geometry.geom_type.isin(['Polygon', 'MultiPolygon']).any(): |
|
st.warning("The uploaded file contains polygon data. Please select 'Polygon' for processing.") |
|
st.stop() |
|
|
|
with st.spinner('Processing Map...'): |
|
if locations_df is not None and not locations_df.empty: |
|
if 'geometry' in locations_df.columns: |
|
locations_df['latitude'] = locations_df['geometry'].y |
|
locations_df['longitude'] = locations_df['geometry'].x |
|
|
|
if 'latitude' not in locations_df.columns or 'longitude' not in locations_df.columns: |
|
st.error("Uploaded file is missing required 'latitude' or 'longitude' columns.") |
|
else: |
|
st.write("Preview of the uploaded points data:") |
|
st.dataframe(locations_df.head()) |
|
m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10) |
|
for _, row in locations_df.iterrows(): |
|
latitude = row['latitude'] |
|
longitude = row['longitude'] |
|
if pd.isna(latitude) or pd.isna(longitude): |
|
continue |
|
m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name')) |
|
st.write("Map of Uploaded Points:") |
|
m.to_streamlit() |
|
st.session_state.map_data = m |
|
|
|
elif shape_type.lower() == "polygon": |
|
if file_upload.name.endswith('.csv'): |
|
locations_df = pd.read_csv(file_upload) |
|
elif file_upload.name.endswith('.geojson'): |
|
locations_df = gpd.read_file(file_upload) |
|
elif file_upload.name.endswith('.kml'): |
|
|
|
kml_string = file_upload.read().decode('utf-8') |
|
try: |
|
root = XET.fromstring(kml_string) |
|
ns = {'kml': 'http://www.opengis.net/kml/2.2'} |
|
polygons = [] |
|
for placemark in root.findall('.//kml:Placemark', ns): |
|
name = placemark.findtext('kml:name', default=f"Polygon_{len(polygons)}", namespaces=ns) |
|
coords_elem = placemark.find('.//kml:Polygon//kml:coordinates', ns) |
|
if coords_elem is not None: |
|
coords_text = ' '.join(coords_elem.text.split()) |
|
st.write(f"Debug: Polygon coordinates found - {coords_text}") |
|
coord_pairs = [pair.split(',')[:2] for pair in coords_text.split() if pair] |
|
if len(coord_pairs) >= 4: |
|
coords_str = " ".join([f"{float(lon)} {float(lat)}" for lon, lat in coord_pairs]) |
|
polygons.append({'name': name, 'geometry': f"POLYGON (({coords_str}))"}) |
|
if not polygons: |
|
st.error("No valid Polygon data found in the KML file.") |
|
locations_df = pd.DataFrame() |
|
else: |
|
locations_df = gpd.GeoDataFrame(polygons, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in polygons]), crs="EPSG:4326") |
|
except Exception as e: |
|
st.error(f"Error parsing KML file: {str(e)}") |
|
locations_df = pd.DataFrame() |
|
else: |
|
st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.") |
|
locations_df = pd.DataFrame() |
|
|
|
if 'geometry' in locations_df.columns: |
|
if locations_df.geometry.geom_type.isin(['Point', 'MultiPoint']).any(): |
|
st.warning("The uploaded file contains point data. Please select 'Point' for processing.") |
|
st.stop() |
|
|
|
with st.spinner('Processing Map...'): |
|
if locations_df is not None and not locations_df.empty: |
|
if 'geometry' not in locations_df.columns: |
|
st.error("Uploaded file is missing required 'geometry' column.") |
|
else: |
|
st.write("Preview of the uploaded polygons data:") |
|
st.dataframe(locations_df.head()) |
|
centroid_lat = locations_df.geometry.centroid.y.mean() |
|
centroid_lon = locations_df.geometry.centroid.x.mean() |
|
m = leafmap.Map(center=[centroid_lat, centroid_lon], zoom=10) |
|
for _, row in locations_df.iterrows(): |
|
polygon = row['geometry'] |
|
if polygon.is_valid: |
|
gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=locations_df.crs) |
|
m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon')) |
|
st.write("Map of Uploaded Polygons:") |
|
m.to_streamlit() |
|
st.session_state.map_data = m |
|
|
|
|
|
if 'results' not in st.session_state: |
|
st.session_state.results = [] |
|
if 'last_params' not in st.session_state: |
|
st.session_state.last_params = {} |
|
if 'map_data' not in st.session_state: |
|
st.session_state.map_data = None |
|
if 'show_example' not in st.session_state: |
|
st.session_state.show_example = True |
|
|
|
|
|
def parameters_changed(): |
|
return ( |
|
st.session_state.last_params.get('main_selection') != main_selection or |
|
st.session_state.last_params.get('dataset_id') != dataset_id or |
|
st.session_state.last_params.get('selected_bands') != selected_bands or |
|
st.session_state.last_params.get('custom_formula') != custom_formula or |
|
st.session_state.last_params.get('start_date_str') != start_date_str or |
|
st.session_state.last_params.get('end_date_str') != end_date_str or |
|
st.session_state.last_params.get('shape_type') != shape_type or |
|
st.session_state.last_params.get('file_upload') != file_upload or |
|
st.session_state.last_params.get('kernel_size') != kernel_size or |
|
st.session_state.last_params.get('include_boundary') != include_boundary |
|
) |
|
|
|
|
|
if parameters_changed(): |
|
st.session_state.results = [] |
|
st.session_state.last_params = { |
|
'main_selection': main_selection, |
|
'dataset_id': dataset_id, |
|
'selected_bands': selected_bands, |
|
'custom_formula': custom_formula, |
|
'start_date_str': start_date_str, |
|
'end_date_str': end_date_str, |
|
'shape_type': shape_type, |
|
'file_upload': file_upload, |
|
'kernel_size': kernel_size, |
|
'include_boundary': include_boundary |
|
} |
|
|
|
|
|
def calculate_custom_formula(image, geometry, selected_bands, custom_formula, reducer_choice, scale=30): |
|
try: |
|
band_values = {} |
|
band_names = image.bandNames().getInfo() |
|
|
|
for band in selected_bands: |
|
if band not in band_names: |
|
raise ValueError(f"Band '{band}' not found in the dataset.") |
|
band_values[band] = image.select(band) |
|
|
|
reducer = get_reducer(reducer_choice) |
|
reduced_values = {} |
|
for band in selected_bands: |
|
value = band_values[band].reduceRegion( |
|
reducer=reducer, |
|
geometry=geometry, |
|
scale=scale |
|
).get(band).getInfo() |
|
reduced_values[band] = float(value if value is not None else 0) |
|
|
|
formula = custom_formula |
|
for band in selected_bands: |
|
formula = formula.replace(band, str(reduced_values[band])) |
|
|
|
result = eval(formula, {"__builtins__": {}}, reduced_values) |
|
if not isinstance(result, (int, float)): |
|
raise ValueError("Formula did not result in a numeric value.") |
|
|
|
return ee.Image.constant(result).rename('custom_result') |
|
|
|
except ZeroDivisionError: |
|
st.error("Error: Division by zero in the formula.") |
|
return ee.Image(0).rename('custom_result').set('error', 'Division by zero') |
|
except SyntaxError: |
|
st.error(f"Error: Invalid syntax in formula '{custom_formula}'.") |
|
return ee.Image(0).rename('custom_result').set('error', 'Invalid syntax') |
|
except ValueError as e: |
|
st.error(f"Error: {str(e)}") |
|
return ee.Image(0).rename('custom_result').set('error', str(e)) |
|
except Exception as e: |
|
st.error(f"Unexpected error: {e}") |
|
return ee.Image(0).rename('custom_result').set('error', str(e)) |
|
|
|
|
|
def calculate_index_for_period(image, roi, selected_bands, custom_formula, reducer_choice): |
|
return calculate_custom_formula(image, roi, selected_bands, custom_formula, reducer_choice) |
|
|
|
|
|
def aggregate_data_custom(collection): |
|
collection = collection.map(lambda image: image.set('day', ee.Date(image.get('system:time_start')).format('YYYY-MM-dd'))) |
|
grouped_by_day = collection.aggregate_array('day').distinct() |
|
def calculate_daily_mean(day): |
|
daily_collection = collection.filter(ee.Filter.eq('day', day)) |
|
daily_mean = daily_collection.mean() |
|
return daily_mean.set('day', day) |
|
daily_images = ee.List(grouped_by_day.map(calculate_daily_mean)) |
|
return ee.ImageCollection(daily_images) |
|
|
|
def aggregate_data_weekly(collection): |
|
def set_week_start(image): |
|
date = ee.Date(image.get('system:time_start')) |
|
days_since_week_start = date.getRelative('day', 'week') |
|
offset = ee.Number(days_since_week_start).multiply(-1) |
|
week_start = date.advance(offset, 'day') |
|
return image.set('week_start', week_start.format('YYYY-MM-dd')) |
|
collection = collection.map(set_week_start) |
|
grouped_by_week = collection.aggregate_array('week_start').distinct() |
|
def calculate_weekly_mean(week_start): |
|
weekly_collection = collection.filter(ee.Filter.eq('week_start', week_start)) |
|
weekly_mean = weekly_collection.mean() |
|
return weekly_mean.set('week_start', week_start) |
|
weekly_images = ee.List(grouped_by_week.map(calculate_weekly_mean)) |
|
return ee.ImageCollection(weekly_images) |
|
|
|
def aggregate_data_monthly(collection, start_date, end_date): |
|
collection = collection.filterDate(start_date, end_date) |
|
collection = collection.map(lambda image: image.set('month', ee.Date(image.get('system:time_start')).format('YYYY-MM'))) |
|
grouped_by_month = collection.aggregate_array('month').distinct() |
|
def calculate_monthly_mean(month): |
|
monthly_collection = collection.filter(ee.Filter.eq('month', month)) |
|
monthly_mean = monthly_collection.mean() |
|
return monthly_mean.set('month', month) |
|
monthly_images = ee.List(grouped_by_month.map(calculate_monthly_mean)) |
|
return ee.ImageCollection(monthly_images) |
|
|
|
def aggregate_data_yearly(collection): |
|
collection = collection.map(lambda image: image.set('year', ee.Date(image.get('system:time_start')).format('YYYY'))) |
|
grouped_by_year = collection.aggregate_array('year').distinct() |
|
def calculate_yearly_mean(year): |
|
yearly_collection = collection.filter(ee.Filter.eq('year', year)) |
|
yearly_mean = yearly_collection.mean() |
|
return yearly_mean.set('year', year) |
|
yearly_images = ee.List(grouped_by_year.map(calculate_yearly_mean)) |
|
return ee.ImageCollection(yearly_images) |
|
|
|
|
|
def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, custom_formula="", kernel_size=None, include_boundary=None): |
|
aggregated_results = [] |
|
|
|
if not custom_formula: |
|
st.error("Custom formula cannot be empty. Please provide a formula.") |
|
return aggregated_results |
|
|
|
total_steps = len(locations_df) |
|
progress_bar = st.progress(0) |
|
progress_text = st.empty() |
|
|
|
with st.spinner('Processing data...'): |
|
if shape_type.lower() == "point": |
|
for idx, row in locations_df.iterrows(): |
|
latitude = row.get('latitude') |
|
longitude = row.get('longitude') |
|
if pd.isna(latitude) or pd.isna(longitude): |
|
st.warning(f"Skipping location {idx} with missing latitude or longitude") |
|
continue |
|
|
|
location_name = row.get('name', f"Location_{idx}") |
|
|
|
if kernel_size == "3x3 Kernel": |
|
buffer_size = 45 |
|
roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds() |
|
elif kernel_size == "5x5 Kernel": |
|
buffer_size = 75 |
|
roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds() |
|
else: |
|
roi = ee.Geometry.Point([longitude, latitude]) |
|
|
|
collection = ee.ImageCollection(dataset_id) \ |
|
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \ |
|
.filterBounds(roi) |
|
|
|
if aggregation_period.lower() == 'custom (start date to end date)': |
|
collection = aggregate_data_custom(collection) |
|
elif aggregation_period.lower() == 'weekly': |
|
collection = aggregate_data_weekly(collection) |
|
elif aggregation_period.lower() == 'monthly': |
|
collection = aggregate_data_monthly(collection, start_date_str, end_date_str) |
|
elif aggregation_period.lower() == 'yearly': |
|
collection = aggregate_data_yearly(collection) |
|
|
|
image_list = collection.toList(collection.size()) |
|
processed_weeks = set() |
|
for i in range(image_list.size().getInfo()): |
|
image = ee.Image(image_list.get(i)) |
|
|
|
if aggregation_period.lower() == 'custom (start date to end date)': |
|
timestamp = image.get('day') |
|
period_label = 'Date' |
|
date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo() |
|
elif aggregation_period.lower() == 'weekly': |
|
timestamp = image.get('week_start') |
|
period_label = 'Week' |
|
date = ee.String(timestamp).getInfo() |
|
if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or |
|
pd.to_datetime(date) > pd.to_datetime(end_date_str) or |
|
date in processed_weeks): |
|
continue |
|
processed_weeks.add(date) |
|
elif aggregation_period.lower() == 'monthly': |
|
timestamp = image.get('month') |
|
period_label = 'Month' |
|
date = ee.Date(timestamp).format('YYYY-MM').getInfo() |
|
elif aggregation_period.lower() == 'yearly': |
|
timestamp = image.get('year') |
|
period_label = 'Year' |
|
date = ee.Date(timestamp).format('YYYY').getInfo() |
|
|
|
index_image = calculate_index_for_period(image, roi, selected_bands, custom_formula, reducer_choice) |
|
|
|
try: |
|
index_value = index_image.reduceRegion( |
|
reducer=get_reducer(reducer_choice), |
|
geometry=roi, |
|
scale=30 |
|
).get('custom_result') |
|
|
|
calculated_value = index_value.getInfo() |
|
|
|
if isinstance(calculated_value, (int, float)): |
|
aggregated_results.append({ |
|
'Location Name': location_name, |
|
'Latitude': latitude, |
|
'Longitude': longitude, |
|
period_label: date, |
|
'Start Date': start_date_str, |
|
'End Date': end_date_str, |
|
'Calculated Value': calculated_value |
|
}) |
|
else: |
|
st.warning(f"Skipping invalid value for {location_name} on {date}") |
|
except Exception as e: |
|
st.error(f"Error retrieving value for {location_name}: {e}") |
|
|
|
progress_percentage = (idx + 1) / total_steps |
|
progress_bar.progress(progress_percentage) |
|
progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%") |
|
|
|
elif shape_type.lower() == "polygon": |
|
for idx, row in locations_df.iterrows(): |
|
polygon_name = row.get('name', f"Polygon_{idx}") |
|
polygon_geometry = row.get('geometry') |
|
location_name = polygon_name |
|
|
|
try: |
|
roi = convert_to_ee_geometry(polygon_geometry) |
|
if not include_boundary: |
|
roi = roi.buffer(-30).bounds() |
|
except ValueError as e: |
|
st.warning(f"Skipping invalid polygon {polygon_name}: {e}") |
|
continue |
|
|
|
collection = ee.ImageCollection(dataset_id) \ |
|
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \ |
|
.filterBounds(roi) |
|
|
|
if aggregation_period.lower() == 'custom (start date to end date)': |
|
collection = aggregate_data_custom(collection) |
|
elif aggregation_period.lower() == 'weekly': |
|
collection = aggregate_data_weekly(collection) |
|
elif aggregation_period.lower() == 'monthly': |
|
collection = aggregate_data_monthly(collection, start_date_str, end_date_str) |
|
elif aggregation_period.lower() == 'yearly': |
|
collection = aggregate_data_yearly(collection) |
|
|
|
image_list = collection.toList(collection.size()) |
|
processed_weeks = set() |
|
for i in range(image_list.size().getInfo()): |
|
image = ee.Image(image_list.get(i)) |
|
|
|
if aggregation_period.lower() == 'custom (start date to end date)': |
|
timestamp = image.get('day') |
|
period_label = 'Date' |
|
date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo() |
|
elif aggregation_period.lower() == 'weekly': |
|
timestamp = image.get('week_start') |
|
period_label = 'Week' |
|
date = ee.String(timestamp).getInfo() |
|
if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or |
|
pd.to_datetime(date) > pd.to_datetime(end_date_str) or |
|
date in processed_weeks): |
|
continue |
|
processed_weeks.add(date) |
|
elif aggregation_period.lower() == 'monthly': |
|
timestamp = image.get('month') |
|
period_label = 'Month' |
|
date = ee.Date(timestamp).format('YYYY-MM').getInfo() |
|
elif aggregation_period.lower() == 'yearly': |
|
timestamp = image.get('year') |
|
period_label = 'Year' |
|
date = ee.Date(timestamp).format('YYYY').getInfo() |
|
|
|
index_image = calculate_index_for_period(image, roi, selected_bands, custom_formula, reducer_choice) |
|
|
|
try: |
|
index_value = index_image.reduceRegion( |
|
reducer=get_reducer(reducer_choice), |
|
geometry=roi, |
|
scale=30 |
|
).get('custom_result') |
|
|
|
calculated_value = index_value.getInfo() |
|
|
|
if isinstance(calculated_value, (int, float)): |
|
aggregated_results.append({ |
|
'Location Name': location_name, |
|
period_label: date, |
|
'Start Date': start_date_str, |
|
'End Date': end_date_str, |
|
'Calculated Value': calculated_value |
|
}) |
|
else: |
|
st.warning(f"Skipping invalid value for {location_name} on {date}") |
|
except Exception as e: |
|
st.error(f"Error retrieving value for {location_name}: {e}") |
|
|
|
progress_percentage = (idx + 1) / total_steps |
|
progress_bar.progress(progress_percentage) |
|
progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%") |
|
|
|
if aggregated_results: |
|
result_df = pd.DataFrame(aggregated_results) |
|
if aggregation_period.lower() == 'custom (start date to end date)': |
|
agg_dict = { |
|
'Start Date': 'first', |
|
'End Date': 'first', |
|
'Calculated Value': 'mean' |
|
} |
|
if shape_type.lower() == 'point': |
|
agg_dict['Latitude'] = 'first' |
|
agg_dict['Longitude'] = 'first' |
|
aggregated_output = result_df.groupby('Location Name').agg(agg_dict).reset_index() |
|
aggregated_output.rename(columns={'Calculated Value': 'Aggregated Value'}, inplace=True) |
|
return aggregated_output.to_dict(orient='records') |
|
else: |
|
return result_df.to_dict(orient='records') |
|
return [] |
|
|
|
|
|
if st.button(f"Calculate {custom_formula}"): |
|
if file_upload is not None: |
|
if shape_type.lower() in ["point", "polygon"]: |
|
results = process_aggregation( |
|
locations_df, |
|
start_date_str, |
|
end_date_str, |
|
dataset_id, |
|
selected_bands, |
|
reducer_choice, |
|
shape_type, |
|
aggregation_period, |
|
custom_formula, |
|
kernel_size=kernel_size, |
|
include_boundary=include_boundary |
|
) |
|
if results: |
|
result_df = pd.DataFrame(results) |
|
st.write(f"Processed Results Table ({aggregation_period}) for Formula: {custom_formula}") |
|
st.dataframe(result_df) |
|
filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y%m%d')}_{end_date.strftime('%Y%m%d')}_{aggregation_period.lower()}.csv" |
|
st.download_button( |
|
label="Download results as CSV", |
|
data=result_df.to_csv(index=False).encode('utf-8'), |
|
file_name=filename, |
|
mime='text/csv' |
|
) |
|
|
|
if st.session_state.show_example and results: |
|
example_result = results[0] |
|
example_image = ee.ImageCollection(dataset_id).filterDate(start_date_str, end_date_str).first() |
|
example_roi = ( |
|
ee.Geometry.Point([example_result['Longitude'], example_result['Latitude']]) |
|
if shape_type.lower() == 'point' |
|
else convert_to_ee_geometry(locations_df['geometry'].iloc[0]) |
|
) |
|
example_values = {} |
|
for band in selected_bands: |
|
value = example_image.select(band).reduceRegion( |
|
reducer=get_reducer(reducer_choice), |
|
geometry=example_roi, |
|
scale=30 |
|
).get(band).getInfo() |
|
example_values[band] = float(value if value is not None else 0) |
|
example_formula = custom_formula |
|
for band in selected_bands: |
|
example_formula = example_formula.replace(band, str(example_values[band])) |
|
|
|
st.session_state.show_example = False |
|
st.success('Processing complete!') |
|
else: |
|
st.warning("No results were generated. Check your inputs or formula.") |
|
else: |
|
st.warning("Please upload a file to process.") |
|
else: |
|
st.warning("Please upload a file to proceed.") |