Spaces:
Sleeping
Sleeping
update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,783 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import json
|
3 |
import ee
|
@@ -8,8 +788,10 @@ from datetime import datetime
|
|
8 |
import leafmap.foliumap as leafmap
|
9 |
import re
|
10 |
from shapely.geometry import base
|
11 |
-
from lxml import etree
|
12 |
-
from xml.etree import ElementTree as ET
|
|
|
|
|
13 |
|
14 |
# Set up the page layout
|
15 |
st.set_page_config(layout="wide")
|
@@ -40,12 +822,56 @@ st.write(
|
|
40 |
# Title
|
41 |
st.markdown(
|
42 |
f"""
|
43 |
-
<
|
|
|
|
|
|
|
|
|
44 |
""",
|
45 |
unsafe_allow_html=True,
|
46 |
)
|
47 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
# Authenticate and initialize Earth Engine
|
50 |
earthengine_credentials = os.environ.get("EE_Authentication")
|
51 |
|
@@ -56,6 +882,8 @@ with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
|
|
56 |
|
57 |
ee.Initialize(project='ee-yashsacisro24')
|
58 |
|
|
|
|
|
59 |
# Imagery base selection
|
60 |
imagery_base = st.selectbox("Select Imagery Base", ["Sentinel", "Landsat", "MODIS", "Custom Input"], index=0)
|
61 |
|
@@ -97,8 +925,14 @@ elif imagery_base == "Custom Input":
|
|
97 |
data = {}
|
98 |
|
99 |
# Display the title for the Streamlit app
|
100 |
-
st.title(f"{imagery_base} Dataset")
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
# Select dataset category (main selection)
|
103 |
if data:
|
104 |
main_selection = st.selectbox(f"Select {imagery_base} Dataset Category", list(data.keys()))
|
@@ -114,46 +948,22 @@ if main_selection:
|
|
114 |
sub_options = data[main_selection]["sub_options"]
|
115 |
sub_selection = st.selectbox(f"Select Specific {imagery_base} Dataset ID", list(sub_options.keys()))
|
116 |
|
117 |
-
# Display the selected dataset ID
|
118 |
if sub_selection:
|
119 |
st.write(f"You selected: {main_selection} -> {sub_options[sub_selection]}")
|
120 |
st.write(f"Dataset ID: {sub_selection}")
|
121 |
dataset_id = sub_selection # Use the key directly as the dataset ID
|
122 |
|
123 |
-
# Fetch and display dataset availability in green text
|
124 |
-
try:
|
125 |
-
# Create an Earth Engine ImageCollection object for the selected dataset
|
126 |
-
collection = ee.ImageCollection(dataset_id)
|
127 |
-
|
128 |
-
# Get the date range of the collection
|
129 |
-
range_info = collection.reduceColumns(
|
130 |
-
reducer=ee.Reducer.minMax(),
|
131 |
-
selectors=['system:time_start']
|
132 |
-
).getInfo()
|
133 |
-
|
134 |
-
# Extract min and max timestamps (in milliseconds) and convert to readable dates
|
135 |
-
min_time = range_info.get('min', None)
|
136 |
-
max_time = range_info.get('max', None)
|
137 |
-
|
138 |
-
if min_time and max_time:
|
139 |
-
start_date = datetime.fromtimestamp(min_time / 1000).strftime('%Y-%m-%d')
|
140 |
-
end_date = datetime.fromtimestamp(max_time / 1000).strftime('%Y-%m-%d')
|
141 |
-
st.markdown(
|
142 |
-
f"<strong>Dataset Availability:</strong> From <span style='color: #fc0101;'>{start_date}</span> to <span style='color: #fc0101;'>{end_date}</span>",
|
143 |
-
unsafe_allow_html=True
|
144 |
-
)
|
145 |
-
else:
|
146 |
-
st.markdown(
|
147 |
-
f"<span style='color: #fc0101;'><strong>Dataset Availability:</strong> Date range not available.</span>",
|
148 |
-
unsafe_allow_html=True
|
149 |
-
)
|
150 |
-
|
151 |
-
except Exception as e:
|
152 |
-
st.error(f"Error fetching dataset availability: {str(e)}")
|
153 |
-
|
154 |
# Earth Engine Index Calculator Section
|
155 |
-
st.header("Earth Engine Index Calculator")
|
156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
# Load band information based on selected dataset
|
158 |
if main_selection and sub_selection:
|
159 |
dataset_bands = data[main_selection]["bands"].get(sub_selection, [])
|
@@ -209,6 +1019,8 @@ if main_selection and sub_selection:
|
|
209 |
|
210 |
# Display the validated formula
|
211 |
st.write(f"Custom Formula: {custom_formula}")
|
|
|
|
|
212 |
|
213 |
# Function to get the corresponding reducer based on user input
|
214 |
def get_reducer(reducer_name):
|
@@ -229,43 +1041,85 @@ reducer_choice = st.selectbox(
|
|
229 |
index=0 # Default to 'mean'
|
230 |
)
|
231 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
# Function to convert geometry to Earth Engine format
|
233 |
def convert_to_ee_geometry(geometry):
|
|
|
234 |
if isinstance(geometry, base.BaseGeometry):
|
235 |
if geometry.is_valid:
|
236 |
geojson = geometry.__geo_interface__
|
|
|
237 |
return ee.Geometry(geojson)
|
238 |
else:
|
239 |
raise ValueError("Invalid geometry: The polygon geometry is not valid.")
|
240 |
-
elif isinstance(geometry, dict)
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
else:
|
247 |
-
raise ValueError("GeoJSON format is invalid.")
|
248 |
-
except Exception as e:
|
249 |
-
raise ValueError(f"Error parsing GeoJSON: {e}")
|
250 |
-
elif isinstance(geometry, str) and geometry.lower().endswith(".kml"):
|
251 |
try:
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
if coordinates:
|
257 |
-
coords_text = coordinates[0].text.strip()
|
258 |
-
coords = coords_text.split()
|
259 |
-
coords = [tuple(map(float, coord.split(','))) for coord in coords]
|
260 |
-
geojson = {"type": "Polygon", "coordinates": [coords]}
|
261 |
-
return ee.Geometry(geojson)
|
262 |
else:
|
263 |
-
raise ValueError("
|
264 |
-
except
|
265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
else:
|
267 |
-
raise ValueError("Unsupported geometry input type. Supported types are Shapely, GeoJSON, and KML.")
|
268 |
-
|
269 |
# Date Input for Start and End Dates
|
270 |
start_date = st.date_input("Start Date", value=pd.to_datetime('2024-11-01'))
|
271 |
end_date = st.date_input("End Date", value=pd.to_datetime('2024-12-01'))
|
@@ -301,6 +1155,85 @@ elif shape_type.lower() == "polygon":
|
|
301 |
help="Check to include pixels on the polygon boundary; uncheck to exclude them."
|
302 |
)
|
303 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
# Ask user to upload a file based on shape type
|
305 |
file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
|
306 |
|
@@ -312,7 +1245,31 @@ if file_upload is not None:
|
|
312 |
elif file_upload.name.endswith('.geojson'):
|
313 |
locations_df = gpd.read_file(file_upload)
|
314 |
elif file_upload.name.endswith('.kml'):
|
315 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
else:
|
317 |
st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
|
318 |
locations_df = pd.DataFrame()
|
@@ -350,7 +1307,30 @@ if file_upload is not None:
|
|
350 |
elif file_upload.name.endswith('.geojson'):
|
351 |
locations_df = gpd.read_file(file_upload)
|
352 |
elif file_upload.name.endswith('.kml'):
|
353 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
354 |
else:
|
355 |
st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
|
356 |
locations_df = pd.DataFrame()
|
@@ -379,6 +1359,7 @@ if file_upload is not None:
|
|
379 |
m.to_streamlit()
|
380 |
st.session_state.map_data = m
|
381 |
|
|
|
382 |
# Initialize session state for storing results
|
383 |
if 'results' not in st.session_state:
|
384 |
st.session_state.results = []
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# import json
|
3 |
+
# import ee
|
4 |
+
# import os
|
5 |
+
# import pandas as pd
|
6 |
+
# import geopandas as gpd
|
7 |
+
# from datetime import datetime
|
8 |
+
# import leafmap.foliumap as leafmap
|
9 |
+
# import re
|
10 |
+
# from shapely.geometry import base
|
11 |
+
# from lxml import etree
|
12 |
+
# from xml.etree import ElementTree as ET
|
13 |
+
|
14 |
+
# # Set up the page layout
|
15 |
+
# st.set_page_config(layout="wide")
|
16 |
+
|
17 |
+
# # Custom button styling
|
18 |
+
# m = st.markdown(
|
19 |
+
# """
|
20 |
+
# <style>
|
21 |
+
# div.stButton > button:first-child {
|
22 |
+
# background-color: #006400;
|
23 |
+
# color:#ffffff;
|
24 |
+
# }
|
25 |
+
# </style>""",
|
26 |
+
# unsafe_allow_html=True,
|
27 |
+
# )
|
28 |
+
|
29 |
+
# # Logo
|
30 |
+
# st.write(
|
31 |
+
# f"""
|
32 |
+
# <div style="display: flex; justify-content: space-between; align-items: center;">
|
33 |
+
# <img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/ISRO_Logo.png" style="width: 20%; margin-right: auto;">
|
34 |
+
# <img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/SAC_Logo.png" style="width: 20%; margin-left: auto;">
|
35 |
+
# </div>
|
36 |
+
# """,
|
37 |
+
# unsafe_allow_html=True,
|
38 |
+
# )
|
39 |
+
|
40 |
+
# # Title
|
41 |
+
# st.markdown(
|
42 |
+
# f"""
|
43 |
+
# <h1 style="text-align: center;">Precision Analysis for Vegetation, Water, and Air Quality</h1>
|
44 |
+
# """,
|
45 |
+
# unsafe_allow_html=True,
|
46 |
+
# )
|
47 |
+
# st.write("<h2><div style='text-align: center;'>User Inputs</div></h2>", unsafe_allow_html=True)
|
48 |
+
|
49 |
+
# # Authenticate and initialize Earth Engine
|
50 |
+
# earthengine_credentials = os.environ.get("EE_Authentication")
|
51 |
+
|
52 |
+
# # Initialize Earth Engine with secret credentials
|
53 |
+
# os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
|
54 |
+
# with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
|
55 |
+
# f.write(earthengine_credentials)
|
56 |
+
|
57 |
+
# ee.Initialize(project='ee-yashsacisro24')
|
58 |
+
|
59 |
+
# # Imagery base selection
|
60 |
+
# imagery_base = st.selectbox("Select Imagery Base", ["Sentinel", "Landsat", "MODIS", "Custom Input"], index=0)
|
61 |
+
|
62 |
+
# # Load the appropriate dataset based on imagery base
|
63 |
+
# if imagery_base == "Sentinel":
|
64 |
+
# dataset_file = "sentinel_datasets.json"
|
65 |
+
# with open(dataset_file) as f:
|
66 |
+
# data = json.load(f)
|
67 |
+
# elif imagery_base == "Landsat":
|
68 |
+
# dataset_file = "landsat_datasets.json"
|
69 |
+
# with open(dataset_file) as f:
|
70 |
+
# data = json.load(f)
|
71 |
+
# elif imagery_base == "MODIS":
|
72 |
+
# dataset_file = "modis_datasets.json"
|
73 |
+
# with open(dataset_file) as f:
|
74 |
+
# data = json.load(f)
|
75 |
+
# elif imagery_base == "Custom Input":
|
76 |
+
# custom_dataset_id = st.text_input("Enter Custom Earth Engine Dataset ID (e.g., ee.ImageCollection('AHN/AHN4'))", value="")
|
77 |
+
# if custom_dataset_id:
|
78 |
+
# try:
|
79 |
+
# # Remove potential "ee.ImageCollection()" wrapper for simplicity
|
80 |
+
# if custom_dataset_id.startswith("ee.ImageCollection("):
|
81 |
+
# custom_dataset_id = custom_dataset_id.replace("ee.ImageCollection('", "").replace("')", "")
|
82 |
+
# # Fetch dataset info from GEE
|
83 |
+
# collection = ee.ImageCollection(custom_dataset_id)
|
84 |
+
# band_names = collection.first().bandNames().getInfo()
|
85 |
+
# data = {
|
86 |
+
# f"Custom Dataset: {custom_dataset_id}": {
|
87 |
+
# "sub_options": {custom_dataset_id: f"Custom Dataset ({custom_dataset_id})"},
|
88 |
+
# "bands": {custom_dataset_id: band_names}
|
89 |
+
# }
|
90 |
+
# }
|
91 |
+
# st.write(f"Fetched bands for {custom_dataset_id}: {', '.join(band_names)}")
|
92 |
+
# except Exception as e:
|
93 |
+
# st.error(f"Error fetching dataset: {str(e)}. Please check the dataset ID and ensure it's valid in Google Earth Engine.")
|
94 |
+
# data = {}
|
95 |
+
# else:
|
96 |
+
# st.warning("Please enter a custom dataset ID to proceed.")
|
97 |
+
# data = {}
|
98 |
+
|
99 |
+
# # Display the title for the Streamlit app
|
100 |
+
# st.title(f"{imagery_base} Dataset")
|
101 |
+
|
102 |
+
# # Select dataset category (main selection)
|
103 |
+
# if data:
|
104 |
+
# main_selection = st.selectbox(f"Select {imagery_base} Dataset Category", list(data.keys()))
|
105 |
+
# else:
|
106 |
+
# main_selection = None
|
107 |
+
|
108 |
+
# # Initialize sub_selection and dataset_id as None
|
109 |
+
# sub_selection = None
|
110 |
+
# dataset_id = None
|
111 |
+
|
112 |
+
# # If a category is selected, display the sub-options (specific datasets)
|
113 |
+
# if main_selection:
|
114 |
+
# sub_options = data[main_selection]["sub_options"]
|
115 |
+
# sub_selection = st.selectbox(f"Select Specific {imagery_base} Dataset ID", list(sub_options.keys()))
|
116 |
+
|
117 |
+
# # Display the selected dataset ID and its availability based on user input
|
118 |
+
# if sub_selection:
|
119 |
+
# st.write(f"You selected: {main_selection} -> {sub_options[sub_selection]}")
|
120 |
+
# st.write(f"Dataset ID: {sub_selection}")
|
121 |
+
# dataset_id = sub_selection # Use the key directly as the dataset ID
|
122 |
+
|
123 |
+
# # Fetch and display dataset availability in green text
|
124 |
+
# try:
|
125 |
+
# # Create an Earth Engine ImageCollection object for the selected dataset
|
126 |
+
# collection = ee.ImageCollection(dataset_id)
|
127 |
+
|
128 |
+
# # Get the date range of the collection
|
129 |
+
# range_info = collection.reduceColumns(
|
130 |
+
# reducer=ee.Reducer.minMax(),
|
131 |
+
# selectors=['system:time_start']
|
132 |
+
# ).getInfo()
|
133 |
+
|
134 |
+
# # Extract min and max timestamps (in milliseconds) and convert to readable dates
|
135 |
+
# min_time = range_info.get('min', None)
|
136 |
+
# max_time = range_info.get('max', None)
|
137 |
+
|
138 |
+
# if min_time and max_time:
|
139 |
+
# start_date = datetime.fromtimestamp(min_time / 1000).strftime('%Y-%m-%d')
|
140 |
+
# end_date = datetime.fromtimestamp(max_time / 1000).strftime('%Y-%m-%d')
|
141 |
+
# st.markdown(
|
142 |
+
# f"<strong>Dataset Availability:</strong> From <span style='color: #fc0101;'>{start_date}</span> to <span style='color: #fc0101;'>{end_date}</span>",
|
143 |
+
# unsafe_allow_html=True
|
144 |
+
# )
|
145 |
+
# else:
|
146 |
+
# st.markdown(
|
147 |
+
# f"<span style='color: #fc0101;'><strong>Dataset Availability:</strong> Date range not available.</span>",
|
148 |
+
# unsafe_allow_html=True
|
149 |
+
# )
|
150 |
+
|
151 |
+
# except Exception as e:
|
152 |
+
# st.error(f"Error fetching dataset availability: {str(e)}")
|
153 |
+
|
154 |
+
# # Earth Engine Index Calculator Section
|
155 |
+
# st.header("Earth Engine Index Calculator")
|
156 |
+
|
157 |
+
# # Load band information based on selected dataset
|
158 |
+
# if main_selection and sub_selection:
|
159 |
+
# dataset_bands = data[main_selection]["bands"].get(sub_selection, [])
|
160 |
+
# st.write(f"Available Bands for {sub_options[sub_selection]}: {', '.join(dataset_bands)}")
|
161 |
+
|
162 |
+
# # Allow user to select 1 or 2 bands
|
163 |
+
# selected_bands = st.multiselect(
|
164 |
+
# "Select 1 or 2 Bands for Calculation",
|
165 |
+
# options=dataset_bands,
|
166 |
+
# default=[dataset_bands[0]] if dataset_bands else [],
|
167 |
+
# help=f"Select 1 or 2 bands from: {', '.join(dataset_bands)}"
|
168 |
+
# )
|
169 |
+
|
170 |
+
# # Ensure minimum 1 and maximum 2 bands are selected
|
171 |
+
# if len(selected_bands) < 1:
|
172 |
+
# st.warning("Please select at least one band.")
|
173 |
+
# st.stop()
|
174 |
+
|
175 |
+
# # Show custom formula input if bands are selected
|
176 |
+
# if selected_bands:
|
177 |
+
# # Provide a default formula based on the number of selected bands
|
178 |
+
# if len(selected_bands) == 1:
|
179 |
+
# default_formula = f"{selected_bands[0]}"
|
180 |
+
# example = f"'{selected_bands[0]} * 2' or '{selected_bands[0]} + 1'"
|
181 |
+
# else: # len(selected_bands) == 2
|
182 |
+
# default_formula = f"({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})"
|
183 |
+
# example = f"'{selected_bands[0]} * {selected_bands[1]} / 2' or '({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})'"
|
184 |
+
|
185 |
+
# custom_formula = st.text_input(
|
186 |
+
# "Enter Custom Formula (e.g (B8 - B4) / (B8 + B4) , B4*B3/2)",
|
187 |
+
# value=default_formula,
|
188 |
+
# help=f"Use only these bands: {', '.join(selected_bands)}. Examples: {example}"
|
189 |
+
# )
|
190 |
+
|
191 |
+
# # Validate the formula
|
192 |
+
# def validate_formula(formula, selected_bands):
|
193 |
+
# allowed_chars = set(" +-*/()0123456789.")
|
194 |
+
# terms = re.findall(r'[a-zA-Z][a-zA-Z0-9_]*', formula)
|
195 |
+
# invalid_terms = [term for term in terms if term not in selected_bands]
|
196 |
+
# if invalid_terms:
|
197 |
+
# return False, f"Invalid terms in formula: {', '.join(invalid_terms)}. Use only {', '.join(selected_bands)}."
|
198 |
+
# if not all(char in allowed_chars or char in ''.join(selected_bands) for char in formula):
|
199 |
+
# return False, "Formula contains invalid characters. Use only bands, numbers, and operators (+, -, *, /, ())"
|
200 |
+
# return True, ""
|
201 |
+
|
202 |
+
# is_valid, error_message = validate_formula(custom_formula, selected_bands)
|
203 |
+
# if not is_valid:
|
204 |
+
# st.error(error_message)
|
205 |
+
# st.stop()
|
206 |
+
# elif not custom_formula:
|
207 |
+
# st.warning("Please enter a custom formula to proceed.")
|
208 |
+
# st.stop()
|
209 |
+
|
210 |
+
# # Display the validated formula
|
211 |
+
# st.write(f"Custom Formula: {custom_formula}")
|
212 |
+
|
213 |
+
# # Function to get the corresponding reducer based on user input
|
214 |
+
# def get_reducer(reducer_name):
|
215 |
+
# reducers = {
|
216 |
+
# 'mean': ee.Reducer.mean(),
|
217 |
+
# 'sum': ee.Reducer.sum(),
|
218 |
+
# 'median': ee.Reducer.median(),
|
219 |
+
# 'min': ee.Reducer.min(),
|
220 |
+
# 'max': ee.Reducer.max(),
|
221 |
+
# 'count': ee.Reducer.count(),
|
222 |
+
# }
|
223 |
+
# return reducers.get(reducer_name.lower(), ee.Reducer.mean())
|
224 |
+
|
225 |
+
# # Streamlit selectbox for reducer choice
|
226 |
+
# reducer_choice = st.selectbox(
|
227 |
+
# "Select Reducer (e.g, mean , sum , median , min , max , count)",
|
228 |
+
# ['mean', 'sum', 'median', 'min', 'max', 'count'],
|
229 |
+
# index=0 # Default to 'mean'
|
230 |
+
# )
|
231 |
+
|
232 |
+
# # Function to convert geometry to Earth Engine format
|
233 |
+
# def convert_to_ee_geometry(geometry):
|
234 |
+
# if isinstance(geometry, base.BaseGeometry):
|
235 |
+
# if geometry.is_valid:
|
236 |
+
# geojson = geometry.__geo_interface__
|
237 |
+
# return ee.Geometry(geojson)
|
238 |
+
# else:
|
239 |
+
# raise ValueError("Invalid geometry: The polygon geometry is not valid.")
|
240 |
+
# elif isinstance(geometry, dict) or isinstance(geometry, str):
|
241 |
+
# try:
|
242 |
+
# if isinstance(geometry, str):
|
243 |
+
# geometry = json.loads(geometry)
|
244 |
+
# if 'type' in geometry and 'coordinates' in geometry:
|
245 |
+
# return ee.Geometry(geometry)
|
246 |
+
# else:
|
247 |
+
# raise ValueError("GeoJSON format is invalid.")
|
248 |
+
# except Exception as e:
|
249 |
+
# raise ValueError(f"Error parsing GeoJSON: {e}")
|
250 |
+
# elif isinstance(geometry, str) and geometry.lower().endswith(".kml"):
|
251 |
+
# try:
|
252 |
+
# tree = ET.parse(geometry)
|
253 |
+
# kml_root = tree.getroot()
|
254 |
+
# kml_namespace = {'kml': 'http://www.opengis.net/kml/2.2'}
|
255 |
+
# coordinates = kml_root.findall(".//kml:coordinates", kml_namespace)
|
256 |
+
# if coordinates:
|
257 |
+
# coords_text = coordinates[0].text.strip()
|
258 |
+
# coords = coords_text.split()
|
259 |
+
# coords = [tuple(map(float, coord.split(','))) for coord in coords]
|
260 |
+
# geojson = {"type": "Polygon", "coordinates": [coords]}
|
261 |
+
# return ee.Geometry(geojson)
|
262 |
+
# else:
|
263 |
+
# raise ValueError("KML does not contain valid coordinates.")
|
264 |
+
# except Exception as e:
|
265 |
+
# raise ValueError(f"Error parsing KML: {e}")
|
266 |
+
# else:
|
267 |
+
# raise ValueError("Unsupported geometry input type. Supported types are Shapely, GeoJSON, and KML.")
|
268 |
+
|
269 |
+
# # Date Input for Start and End Dates
|
270 |
+
# start_date = st.date_input("Start Date", value=pd.to_datetime('2024-11-01'))
|
271 |
+
# end_date = st.date_input("End Date", value=pd.to_datetime('2024-12-01'))
|
272 |
+
|
273 |
+
# # Convert start_date and end_date to string format for Earth Engine
|
274 |
+
# start_date_str = start_date.strftime('%Y-%m-%d')
|
275 |
+
# end_date_str = end_date.strftime('%Y-%m-%d')
|
276 |
+
|
277 |
+
# # Aggregation period selection
|
278 |
+
# aggregation_period = st.selectbox(
|
279 |
+
# "Select Aggregation Period (e.g, Custom(Start Date to End Date) , Weekly , Monthly , Yearly)",
|
280 |
+
# ["Custom (Start Date to End Date)", "Weekly", "Monthly", "Yearly"],
|
281 |
+
# index=0
|
282 |
+
# )
|
283 |
+
|
284 |
+
# # Ask user whether they want to process 'Point' or 'Polygon' data
|
285 |
+
# shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"])
|
286 |
+
|
287 |
+
# # Additional options based on shape type
|
288 |
+
# kernel_size = None
|
289 |
+
# include_boundary = None
|
290 |
+
# if shape_type.lower() == "point":
|
291 |
+
# kernel_size = st.selectbox(
|
292 |
+
# "Select Calculation Area(e.g, Point , 3x3 Kernel , 5x5 Kernel)",
|
293 |
+
# ["Point", "3x3 Kernel", "5x5 Kernel"],
|
294 |
+
# index=0,
|
295 |
+
# help="Choose 'Point' for exact point calculation, or a kernel size for area averaging."
|
296 |
+
# )
|
297 |
+
# elif shape_type.lower() == "polygon":
|
298 |
+
# include_boundary = st.checkbox(
|
299 |
+
# "Include Boundary Pixels",
|
300 |
+
# value=True,
|
301 |
+
# help="Check to include pixels on the polygon boundary; uncheck to exclude them."
|
302 |
+
# )
|
303 |
+
|
304 |
+
# # Ask user to upload a file based on shape type
|
305 |
+
# file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
|
306 |
+
|
307 |
+
# if file_upload is not None:
|
308 |
+
# # Read the user-uploaded file
|
309 |
+
# if shape_type.lower() == "point":
|
310 |
+
# if file_upload.name.endswith('.csv'):
|
311 |
+
# locations_df = pd.read_csv(file_upload)
|
312 |
+
# elif file_upload.name.endswith('.geojson'):
|
313 |
+
# locations_df = gpd.read_file(file_upload)
|
314 |
+
# elif file_upload.name.endswith('.kml'):
|
315 |
+
# locations_df = gpd.read_file(file_upload)
|
316 |
+
# else:
|
317 |
+
# st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
|
318 |
+
# locations_df = pd.DataFrame()
|
319 |
+
|
320 |
+
# if 'geometry' in locations_df.columns:
|
321 |
+
# if locations_df.geometry.geom_type.isin(['Polygon', 'MultiPolygon']).any():
|
322 |
+
# st.warning("The uploaded file contains polygon data. Please select 'Polygon' for processing.")
|
323 |
+
# st.stop()
|
324 |
+
|
325 |
+
# with st.spinner('Processing Map...'):
|
326 |
+
# if locations_df is not None and not locations_df.empty:
|
327 |
+
# if 'geometry' in locations_df.columns:
|
328 |
+
# locations_df['latitude'] = locations_df['geometry'].y
|
329 |
+
# locations_df['longitude'] = locations_df['geometry'].x
|
330 |
+
|
331 |
+
# if 'latitude' not in locations_df.columns or 'longitude' not in locations_df.columns:
|
332 |
+
# st.error("Uploaded file is missing required 'latitude' or 'longitude' columns.")
|
333 |
+
# else:
|
334 |
+
# st.write("Preview of the uploaded points data:")
|
335 |
+
# st.dataframe(locations_df.head())
|
336 |
+
# m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
|
337 |
+
# for _, row in locations_df.iterrows():
|
338 |
+
# latitude = row['latitude']
|
339 |
+
# longitude = row['longitude']
|
340 |
+
# if pd.isna(latitude) or pd.isna(longitude):
|
341 |
+
# continue
|
342 |
+
# m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
|
343 |
+
# st.write("Map of Uploaded Points:")
|
344 |
+
# m.to_streamlit()
|
345 |
+
# st.session_state.map_data = m
|
346 |
+
|
347 |
+
# elif shape_type.lower() == "polygon":
|
348 |
+
# if file_upload.name.endswith('.csv'):
|
349 |
+
# locations_df = pd.read_csv(file_upload)
|
350 |
+
# elif file_upload.name.endswith('.geojson'):
|
351 |
+
# locations_df = gpd.read_file(file_upload)
|
352 |
+
# elif file_upload.name.endswith('.kml'):
|
353 |
+
# locations_df = gpd.read_file(file_upload)
|
354 |
+
# else:
|
355 |
+
# st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
|
356 |
+
# locations_df = pd.DataFrame()
|
357 |
+
|
358 |
+
# if 'geometry' in locations_df.columns:
|
359 |
+
# if locations_df.geometry.geom_type.isin(['Point', 'MultiPoint']).any():
|
360 |
+
# st.warning("The uploaded file contains point data. Please select 'Point' for processing.")
|
361 |
+
# st.stop()
|
362 |
+
|
363 |
+
# with st.spinner('Processing Map...'):
|
364 |
+
# if locations_df is not None and not locations_df.empty:
|
365 |
+
# if 'geometry' not in locations_df.columns:
|
366 |
+
# st.error("Uploaded file is missing required 'geometry' column.")
|
367 |
+
# else:
|
368 |
+
# st.write("Preview of the uploaded polygons data:")
|
369 |
+
# st.dataframe(locations_df.head())
|
370 |
+
# centroid_lat = locations_df.geometry.centroid.y.mean()
|
371 |
+
# centroid_lon = locations_df.geometry.centroid.x.mean()
|
372 |
+
# m = leafmap.Map(center=[centroid_lat, centroid_lon], zoom=10)
|
373 |
+
# for _, row in locations_df.iterrows():
|
374 |
+
# polygon = row['geometry']
|
375 |
+
# if polygon.is_valid:
|
376 |
+
# gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=locations_df.crs)
|
377 |
+
# m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
|
378 |
+
# st.write("Map of Uploaded Polygons:")
|
379 |
+
# m.to_streamlit()
|
380 |
+
# st.session_state.map_data = m
|
381 |
+
|
382 |
+
# # Initialize session state for storing results
|
383 |
+
# if 'results' not in st.session_state:
|
384 |
+
# st.session_state.results = []
|
385 |
+
# if 'last_params' not in st.session_state:
|
386 |
+
# st.session_state.last_params = {}
|
387 |
+
# if 'map_data' not in st.session_state:
|
388 |
+
# st.session_state.map_data = None
|
389 |
+
# if 'show_example' not in st.session_state:
|
390 |
+
# st.session_state.show_example = True
|
391 |
+
|
392 |
+
# # Function to check if parameters have changed
|
393 |
+
# def parameters_changed():
|
394 |
+
# return (
|
395 |
+
# st.session_state.last_params.get('main_selection') != main_selection or
|
396 |
+
# st.session_state.last_params.get('dataset_id') != dataset_id or
|
397 |
+
# st.session_state.last_params.get('selected_bands') != selected_bands or
|
398 |
+
# st.session_state.last_params.get('custom_formula') != custom_formula or
|
399 |
+
# st.session_state.last_params.get('start_date_str') != start_date_str or
|
400 |
+
# st.session_state.last_params.get('end_date_str') != end_date_str or
|
401 |
+
# st.session_state.last_params.get('shape_type') != shape_type or
|
402 |
+
# st.session_state.last_params.get('file_upload') != file_upload or
|
403 |
+
# st.session_state.last_params.get('kernel_size') != kernel_size or
|
404 |
+
# st.session_state.last_params.get('include_boundary') != include_boundary
|
405 |
+
# )
|
406 |
+
|
407 |
+
# # If parameters have changed, reset the results
|
408 |
+
# if parameters_changed():
|
409 |
+
# st.session_state.results = []
|
410 |
+
# st.session_state.last_params = {
|
411 |
+
# 'main_selection': main_selection,
|
412 |
+
# 'dataset_id': dataset_id,
|
413 |
+
# 'selected_bands': selected_bands,
|
414 |
+
# 'custom_formula': custom_formula,
|
415 |
+
# 'start_date_str': start_date_str,
|
416 |
+
# 'end_date_str': end_date_str,
|
417 |
+
# 'shape_type': shape_type,
|
418 |
+
# 'file_upload': file_upload,
|
419 |
+
# 'kernel_size': kernel_size,
|
420 |
+
# 'include_boundary': include_boundary
|
421 |
+
# }
|
422 |
+
|
423 |
+
# # Function to calculate custom formula
|
424 |
+
# def calculate_custom_formula(image, geometry, selected_bands, custom_formula, reducer_choice, scale=30):
|
425 |
+
# try:
|
426 |
+
# band_values = {}
|
427 |
+
# band_names = image.bandNames().getInfo()
|
428 |
+
|
429 |
+
# for band in selected_bands:
|
430 |
+
# if band not in band_names:
|
431 |
+
# raise ValueError(f"Band '{band}' not found in the dataset.")
|
432 |
+
# band_values[band] = image.select(band)
|
433 |
+
|
434 |
+
# reducer = get_reducer(reducer_choice)
|
435 |
+
# reduced_values = {}
|
436 |
+
# for band in selected_bands:
|
437 |
+
# value = band_values[band].reduceRegion(
|
438 |
+
# reducer=reducer,
|
439 |
+
# geometry=geometry,
|
440 |
+
# scale=scale
|
441 |
+
# ).get(band).getInfo()
|
442 |
+
# reduced_values[band] = float(value if value is not None else 0)
|
443 |
+
|
444 |
+
# formula = custom_formula
|
445 |
+
# for band in selected_bands:
|
446 |
+
# formula = formula.replace(band, str(reduced_values[band]))
|
447 |
+
|
448 |
+
# result = eval(formula, {"__builtins__": {}}, reduced_values)
|
449 |
+
# if not isinstance(result, (int, float)):
|
450 |
+
# raise ValueError("Formula did not result in a numeric value.")
|
451 |
+
|
452 |
+
# return ee.Image.constant(result).rename('custom_result')
|
453 |
+
|
454 |
+
# except ZeroDivisionError:
|
455 |
+
# st.error("Error: Division by zero in the formula.")
|
456 |
+
# return ee.Image(0).rename('custom_result').set('error', 'Division by zero')
|
457 |
+
# except SyntaxError:
|
458 |
+
# st.error(f"Error: Invalid syntax in formula '{custom_formula}'.")
|
459 |
+
# return ee.Image(0).rename('custom_result').set('error', 'Invalid syntax')
|
460 |
+
# except ValueError as e:
|
461 |
+
# st.error(f"Error: {str(e)}")
|
462 |
+
# return ee.Image(0).rename('custom_result').set('error', str(e))
|
463 |
+
# except Exception as e:
|
464 |
+
# st.error(f"Unexpected error: {e}")
|
465 |
+
# return ee.Image(0).rename('custom_result').set('error', str(e))
|
466 |
+
|
467 |
+
# # Function to calculate index for a period
|
468 |
+
# def calculate_index_for_period(image, roi, selected_bands, custom_formula, reducer_choice):
|
469 |
+
# return calculate_custom_formula(image, roi, selected_bands, custom_formula, reducer_choice)
|
470 |
+
|
471 |
+
# # Aggregation functions
|
472 |
+
# def aggregate_data_custom(collection):
|
473 |
+
# collection = collection.map(lambda image: image.set('day', ee.Date(image.get('system:time_start')).format('YYYY-MM-dd')))
|
474 |
+
# grouped_by_day = collection.aggregate_array('day').distinct()
|
475 |
+
# def calculate_daily_mean(day):
|
476 |
+
# daily_collection = collection.filter(ee.Filter.eq('day', day))
|
477 |
+
# daily_mean = daily_collection.mean()
|
478 |
+
# return daily_mean.set('day', day)
|
479 |
+
# daily_images = ee.List(grouped_by_day.map(calculate_daily_mean))
|
480 |
+
# return ee.ImageCollection(daily_images)
|
481 |
+
|
482 |
+
# def aggregate_data_weekly(collection):
|
483 |
+
# def set_week_start(image):
|
484 |
+
# date = ee.Date(image.get('system:time_start'))
|
485 |
+
# days_since_week_start = date.getRelative('day', 'week')
|
486 |
+
# offset = ee.Number(days_since_week_start).multiply(-1)
|
487 |
+
# week_start = date.advance(offset, 'day')
|
488 |
+
# return image.set('week_start', week_start.format('YYYY-MM-dd'))
|
489 |
+
# collection = collection.map(set_week_start)
|
490 |
+
# grouped_by_week = collection.aggregate_array('week_start').distinct()
|
491 |
+
# def calculate_weekly_mean(week_start):
|
492 |
+
# weekly_collection = collection.filter(ee.Filter.eq('week_start', week_start))
|
493 |
+
# weekly_mean = weekly_collection.mean()
|
494 |
+
# return weekly_mean.set('week_start', week_start)
|
495 |
+
# weekly_images = ee.List(grouped_by_week.map(calculate_weekly_mean))
|
496 |
+
# return ee.ImageCollection(weekly_images)
|
497 |
+
|
498 |
+
# def aggregate_data_monthly(collection, start_date, end_date):
|
499 |
+
# collection = collection.filterDate(start_date, end_date)
|
500 |
+
# collection = collection.map(lambda image: image.set('month', ee.Date(image.get('system:time_start')).format('YYYY-MM')))
|
501 |
+
# grouped_by_month = collection.aggregate_array('month').distinct()
|
502 |
+
# def calculate_monthly_mean(month):
|
503 |
+
# monthly_collection = collection.filter(ee.Filter.eq('month', month))
|
504 |
+
# monthly_mean = monthly_collection.mean()
|
505 |
+
# return monthly_mean.set('month', month)
|
506 |
+
# monthly_images = ee.List(grouped_by_month.map(calculate_monthly_mean))
|
507 |
+
# return ee.ImageCollection(monthly_images)
|
508 |
+
|
509 |
+
# def aggregate_data_yearly(collection):
|
510 |
+
# collection = collection.map(lambda image: image.set('year', ee.Date(image.get('system:time_start')).format('YYYY')))
|
511 |
+
# grouped_by_year = collection.aggregate_array('year').distinct()
|
512 |
+
# def calculate_yearly_mean(year):
|
513 |
+
# yearly_collection = collection.filter(ee.Filter.eq('year', year))
|
514 |
+
# yearly_mean = yearly_collection.mean()
|
515 |
+
# return yearly_mean.set('year', year)
|
516 |
+
# yearly_images = ee.List(grouped_by_year.map(calculate_yearly_mean))
|
517 |
+
# return ee.ImageCollection(yearly_images)
|
518 |
+
|
519 |
+
# # Process aggregation function
|
520 |
+
# def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, custom_formula="", kernel_size=None, include_boundary=None):
|
521 |
+
# aggregated_results = []
|
522 |
+
|
523 |
+
# if not custom_formula:
|
524 |
+
# st.error("Custom formula cannot be empty. Please provide a formula.")
|
525 |
+
# return aggregated_results
|
526 |
+
|
527 |
+
# total_steps = len(locations_df)
|
528 |
+
# progress_bar = st.progress(0)
|
529 |
+
# progress_text = st.empty()
|
530 |
+
|
531 |
+
# with st.spinner('Processing data...'):
|
532 |
+
# if shape_type.lower() == "point":
|
533 |
+
# for idx, row in locations_df.iterrows():
|
534 |
+
# latitude = row.get('latitude')
|
535 |
+
# longitude = row.get('longitude')
|
536 |
+
# if pd.isna(latitude) or pd.isna(longitude):
|
537 |
+
# st.warning(f"Skipping location {idx} with missing latitude or longitude")
|
538 |
+
# continue
|
539 |
+
|
540 |
+
# location_name = row.get('name', f"Location_{idx}")
|
541 |
+
|
542 |
+
# if kernel_size == "3x3 Kernel":
|
543 |
+
# buffer_size = 45 # 90m x 90m
|
544 |
+
# roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds()
|
545 |
+
# elif kernel_size == "5x5 Kernel":
|
546 |
+
# buffer_size = 75 # 150m x 150m
|
547 |
+
# roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds()
|
548 |
+
# else: # Point
|
549 |
+
# roi = ee.Geometry.Point([longitude, latitude])
|
550 |
+
|
551 |
+
# collection = ee.ImageCollection(dataset_id) \
|
552 |
+
# .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
|
553 |
+
# .filterBounds(roi)
|
554 |
+
|
555 |
+
# if aggregation_period.lower() == 'custom (start date to end date)':
|
556 |
+
# collection = aggregate_data_custom(collection)
|
557 |
+
# elif aggregation_period.lower() == 'weekly':
|
558 |
+
# collection = aggregate_data_weekly(collection)
|
559 |
+
# elif aggregation_period.lower() == 'monthly':
|
560 |
+
# collection = aggregate_data_monthly(collection, start_date_str, end_date_str)
|
561 |
+
# elif aggregation_period.lower() == 'yearly':
|
562 |
+
# collection = aggregate_data_yearly(collection)
|
563 |
+
|
564 |
+
# image_list = collection.toList(collection.size())
|
565 |
+
# processed_weeks = set()
|
566 |
+
# for i in range(image_list.size().getInfo()):
|
567 |
+
# image = ee.Image(image_list.get(i))
|
568 |
+
|
569 |
+
# if aggregation_period.lower() == 'custom (start date to end date)':
|
570 |
+
# timestamp = image.get('day')
|
571 |
+
# period_label = 'Date'
|
572 |
+
# date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo()
|
573 |
+
# elif aggregation_period.lower() == 'weekly':
|
574 |
+
# timestamp = image.get('week_start')
|
575 |
+
# period_label = 'Week'
|
576 |
+
# date = ee.String(timestamp).getInfo()
|
577 |
+
# if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or
|
578 |
+
# pd.to_datetime(date) > pd.to_datetime(end_date_str) or
|
579 |
+
# date in processed_weeks):
|
580 |
+
# continue
|
581 |
+
# processed_weeks.add(date)
|
582 |
+
# elif aggregation_period.lower() == 'monthly':
|
583 |
+
# timestamp = image.get('month')
|
584 |
+
# period_label = 'Month'
|
585 |
+
# date = ee.Date(timestamp).format('YYYY-MM').getInfo()
|
586 |
+
# elif aggregation_period.lower() == 'yearly':
|
587 |
+
# timestamp = image.get('year')
|
588 |
+
# period_label = 'Year'
|
589 |
+
# date = ee.Date(timestamp).format('YYYY').getInfo()
|
590 |
+
|
591 |
+
# index_image = calculate_index_for_period(image, roi, selected_bands, custom_formula, reducer_choice)
|
592 |
+
|
593 |
+
# try:
|
594 |
+
# index_value = index_image.reduceRegion(
|
595 |
+
# reducer=get_reducer(reducer_choice),
|
596 |
+
# geometry=roi,
|
597 |
+
# scale=30
|
598 |
+
# ).get('custom_result')
|
599 |
+
|
600 |
+
# calculated_value = index_value.getInfo()
|
601 |
+
|
602 |
+
# if isinstance(calculated_value, (int, float)):
|
603 |
+
# aggregated_results.append({
|
604 |
+
# 'Location Name': location_name,
|
605 |
+
# 'Latitude': latitude,
|
606 |
+
# 'Longitude': longitude,
|
607 |
+
# period_label: date,
|
608 |
+
# 'Start Date': start_date_str,
|
609 |
+
# 'End Date': end_date_str,
|
610 |
+
# 'Calculated Value': calculated_value
|
611 |
+
# })
|
612 |
+
# else:
|
613 |
+
# st.warning(f"Skipping invalid value for {location_name} on {date}")
|
614 |
+
# except Exception as e:
|
615 |
+
# st.error(f"Error retrieving value for {location_name}: {e}")
|
616 |
+
|
617 |
+
# progress_percentage = (idx + 1) / total_steps
|
618 |
+
# progress_bar.progress(progress_percentage)
|
619 |
+
# progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
|
620 |
+
|
621 |
+
# elif shape_type.lower() == "polygon":
|
622 |
+
# for idx, row in locations_df.iterrows():
|
623 |
+
# polygon_name = row.get('name', f"Polygon_{idx}")
|
624 |
+
# polygon_geometry = row.get('geometry')
|
625 |
+
# location_name = polygon_name
|
626 |
+
|
627 |
+
# try:
|
628 |
+
# roi = convert_to_ee_geometry(polygon_geometry)
|
629 |
+
# if not include_boundary:
|
630 |
+
# roi = roi.buffer(-30).bounds()
|
631 |
+
# except ValueError as e:
|
632 |
+
# st.warning(f"Skipping invalid polygon {polygon_name}: {e}")
|
633 |
+
# continue
|
634 |
+
|
635 |
+
# collection = ee.ImageCollection(dataset_id) \
|
636 |
+
# .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
|
637 |
+
# .filterBounds(roi)
|
638 |
+
|
639 |
+
# if aggregation_period.lower() == 'custom (start date to end date)':
|
640 |
+
# collection = aggregate_data_custom(collection)
|
641 |
+
# elif aggregation_period.lower() == 'weekly':
|
642 |
+
# collection = aggregate_data_weekly(collection)
|
643 |
+
# elif aggregation_period.lower() == 'monthly':
|
644 |
+
# collection = aggregate_data_monthly(collection, start_date_str, end_date_str)
|
645 |
+
# elif aggregation_period.lower() == 'yearly':
|
646 |
+
# collection = aggregate_data_yearly(collection)
|
647 |
+
|
648 |
+
# image_list = collection.toList(collection.size())
|
649 |
+
# processed_weeks = set()
|
650 |
+
# for i in range(image_list.size().getInfo()):
|
651 |
+
# image = ee.Image(image_list.get(i))
|
652 |
+
|
653 |
+
# if aggregation_period.lower() == 'custom (start date to end date)':
|
654 |
+
# timestamp = image.get('day')
|
655 |
+
# period_label = 'Date'
|
656 |
+
# date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo()
|
657 |
+
# elif aggregation_period.lower() == 'weekly':
|
658 |
+
# timestamp = image.get('week_start')
|
659 |
+
# period_label = 'Week'
|
660 |
+
# date = ee.String(timestamp).getInfo()
|
661 |
+
# if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or
|
662 |
+
# pd.to_datetime(date) > pd.to_datetime(end_date_str) or
|
663 |
+
# date in processed_weeks):
|
664 |
+
# continue
|
665 |
+
# processed_weeks.add(date)
|
666 |
+
# elif aggregation_period.lower() == 'monthly':
|
667 |
+
# timestamp = image.get('month')
|
668 |
+
# period_label = 'Month'
|
669 |
+
# date = ee.Date(timestamp).format('YYYY-MM').getInfo()
|
670 |
+
# elif aggregation_period.lower() == 'yearly':
|
671 |
+
# timestamp = image.get('year')
|
672 |
+
# period_label = 'Year'
|
673 |
+
# date = ee.Date(timestamp).format('YYYY').getInfo()
|
674 |
+
|
675 |
+
# index_image = calculate_index_for_period(image, roi, selected_bands, custom_formula, reducer_choice)
|
676 |
+
|
677 |
+
# try:
|
678 |
+
# index_value = index_image.reduceRegion(
|
679 |
+
# reducer=get_reducer(reducer_choice),
|
680 |
+
# geometry=roi,
|
681 |
+
# scale=30
|
682 |
+
# ).get('custom_result')
|
683 |
+
|
684 |
+
# calculated_value = index_value.getInfo()
|
685 |
+
|
686 |
+
# if isinstance(calculated_value, (int, float)):
|
687 |
+
# aggregated_results.append({
|
688 |
+
# 'Location Name': location_name,
|
689 |
+
# period_label: date,
|
690 |
+
# 'Start Date': start_date_str,
|
691 |
+
# 'End Date': end_date_str,
|
692 |
+
# 'Calculated Value': calculated_value
|
693 |
+
# })
|
694 |
+
# else:
|
695 |
+
# st.warning(f"Skipping invalid value for {location_name} on {date}")
|
696 |
+
# except Exception as e:
|
697 |
+
# st.error(f"Error retrieving value for {location_name}: {e}")
|
698 |
+
|
699 |
+
# progress_percentage = (idx + 1) / total_steps
|
700 |
+
# progress_bar.progress(progress_percentage)
|
701 |
+
# progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
|
702 |
+
|
703 |
+
# if aggregated_results:
|
704 |
+
# result_df = pd.DataFrame(aggregated_results)
|
705 |
+
# if aggregation_period.lower() == 'custom (start date to end date)':
|
706 |
+
# agg_dict = {
|
707 |
+
# 'Start Date': 'first',
|
708 |
+
# 'End Date': 'first',
|
709 |
+
# 'Calculated Value': 'mean'
|
710 |
+
# }
|
711 |
+
# if shape_type.lower() == 'point':
|
712 |
+
# agg_dict['Latitude'] = 'first'
|
713 |
+
# agg_dict['Longitude'] = 'first'
|
714 |
+
# aggregated_output = result_df.groupby('Location Name').agg(agg_dict).reset_index()
|
715 |
+
# aggregated_output.rename(columns={'Calculated Value': 'Aggregated Value'}, inplace=True)
|
716 |
+
# return aggregated_output.to_dict(orient='records')
|
717 |
+
# else:
|
718 |
+
# return result_df.to_dict(orient='records')
|
719 |
+
# return []
|
720 |
+
|
721 |
+
# # Button to trigger calculation
|
722 |
+
# if st.button(f"Calculate {custom_formula}"):
|
723 |
+
# if file_upload is not None:
|
724 |
+
# if shape_type.lower() in ["point", "polygon"]:
|
725 |
+
# results = process_aggregation(
|
726 |
+
# locations_df,
|
727 |
+
# start_date_str,
|
728 |
+
# end_date_str,
|
729 |
+
# dataset_id,
|
730 |
+
# selected_bands,
|
731 |
+
# reducer_choice,
|
732 |
+
# shape_type,
|
733 |
+
# aggregation_period,
|
734 |
+
# custom_formula,
|
735 |
+
# kernel_size=kernel_size,
|
736 |
+
# include_boundary=include_boundary
|
737 |
+
# )
|
738 |
+
# if results:
|
739 |
+
# result_df = pd.DataFrame(results)
|
740 |
+
# st.write(f"Processed Results Table ({aggregation_period}) for Formula: {custom_formula}")
|
741 |
+
# st.dataframe(result_df)
|
742 |
+
# filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y%m%d')}_{end_date.strftime('%Y%m%d')}_{aggregation_period.lower()}.csv"
|
743 |
+
# st.download_button(
|
744 |
+
# label="Download results as CSV",
|
745 |
+
# data=result_df.to_csv(index=False).encode('utf-8'),
|
746 |
+
# file_name=filename,
|
747 |
+
# mime='text/csv'
|
748 |
+
# )
|
749 |
+
# # Show an example calculation
|
750 |
+
# if st.session_state.show_example and results:
|
751 |
+
# example_result = results[0]
|
752 |
+
# example_image = ee.ImageCollection(dataset_id).filterDate(start_date_str, end_date_str).first()
|
753 |
+
# example_roi = (
|
754 |
+
# ee.Geometry.Point([example_result['Longitude'], example_result['Latitude']])
|
755 |
+
# if shape_type.lower() == 'point'
|
756 |
+
# else convert_to_ee_geometry(locations_df['geometry'].iloc[0])
|
757 |
+
# )
|
758 |
+
# example_values = {}
|
759 |
+
# for band in selected_bands:
|
760 |
+
# value = example_image.select(band).reduceRegion(
|
761 |
+
# reducer=get_reducer(reducer_choice),
|
762 |
+
# geometry=example_roi,
|
763 |
+
# scale=30
|
764 |
+
# ).get(band).getInfo()
|
765 |
+
# example_values[band] = float(value if value is not None else 0)
|
766 |
+
# example_formula = custom_formula
|
767 |
+
# for band in selected_bands:
|
768 |
+
# example_formula = example_formula.replace(band, str(example_values[band]))
|
769 |
+
# # st.write(f"Example Calculation: {custom_formula} -> {example_formula} = {example_result.get('Calculated Value', example_result.get('Aggregated Value'))}")
|
770 |
+
# st.session_state.show_example = False
|
771 |
+
# st.success('Processing complete!')
|
772 |
+
# else:
|
773 |
+
# st.warning("No results were generated. Check your inputs or formula.")
|
774 |
+
# else:
|
775 |
+
# st.warning("Please upload a file to process.")
|
776 |
+
# else:
|
777 |
+
# st.warning("Please upload a file to proceed.")
|
778 |
+
|
779 |
+
|
780 |
+
|
781 |
import streamlit as st
|
782 |
import json
|
783 |
import ee
|
|
|
788 |
import leafmap.foliumap as leafmap
|
789 |
import re
|
790 |
from shapely.geometry import base
|
791 |
+
# from lxml import etree
|
792 |
+
# from xml.etree import ElementTree as ET
|
793 |
+
from xml.etree import ElementTree as XET
|
794 |
+
|
795 |
|
796 |
# Set up the page layout
|
797 |
st.set_page_config(layout="wide")
|
|
|
822 |
# Title
|
823 |
st.markdown(
|
824 |
f"""
|
825 |
+
<div style="display: flex; flex-direction: column; align-items: center;">
|
826 |
+
<img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/SATRANG.png" style="width: 30%;">
|
827 |
+
<h3 style="text-align: center; margin: 0;">( Spatial and Temporal Aggregation for Remote-sensing and Analysis of Natural Geodata )</h3>
|
828 |
+
</div>
|
829 |
+
<hr>
|
830 |
""",
|
831 |
unsafe_allow_html=True,
|
832 |
)
|
833 |
+
# st.markdown(
|
834 |
+
# f"""
|
835 |
+
# <div style="text-align: center; background-image: url('https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/B1.jpg'); background-size: cover; padding: 20px;">
|
836 |
+
# <h1 style="display: inline-block; margin: 0;">
|
837 |
+
# <img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/B1.png" style="width: 20%; vertical-align: middle; margin-right: 10px;">
|
838 |
+
# BHOOMI
|
839 |
+
# </h1>
|
840 |
+
# <h3 style="margin: 0;">(Bandwise Harmonization & Optimized Output for multispectral integration)</h3>
|
841 |
+
# </div>
|
842 |
+
# <hr>
|
843 |
+
# """,
|
844 |
+
# unsafe_allow_html=True,
|
845 |
+
# )
|
846 |
+
# st.write("<h4><div style='text-align: center;'>User Inputs</div></h4>", unsafe_allow_html=True)
|
847 |
+
|
848 |
+
# st.markdown(
|
849 |
+
# f"""
|
850 |
+
# <div style="position: relative; text-align: center; padding: 20px;">
|
851 |
+
# <div style="background-image: url('https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/B1.jpg'); background-size: cover; position: absolute; top: 0; left: 0; right: 0; bottom: 0; z-index: 1;"></div>
|
852 |
+
# <div style="background-color: rgba(255, 255, 255, 0.2); position: absolute; top: 0; left: 0; right: 0; bottom: 0; z-index: 2;"></div>
|
853 |
+
# <div style="position: relative; z-index: 3;">
|
854 |
+
# <div style="display: flex; justify-content: space-between; align-items: center;">
|
855 |
+
# <img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/ISRO_Logo.png" style="width: 20%; margin-right: auto;">
|
856 |
+
# <img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/SAC_Logo.png" style="width: 20%; margin-left: auto;">
|
857 |
+
# </div>
|
858 |
+
# <h1 style="display: inline-block; margin: 0;">
|
859 |
+
# BHOOMI
|
860 |
+
# </h1>
|
861 |
+
# <h3 style="margin: 0;">(Bandwise Harmonization & Optimized Output for multispectral integration)</h3>
|
862 |
+
# </div>
|
863 |
+
# </div>
|
864 |
+
# <hr>
|
865 |
+
# """,
|
866 |
+
# unsafe_allow_html=True,
|
867 |
+
# )
|
868 |
|
869 |
+
st.markdown(
|
870 |
+
f"""
|
871 |
+
<h4 style="text-align: center;">User Inputs</h4>
|
872 |
+
""",
|
873 |
+
unsafe_allow_html=True,
|
874 |
+
)
|
875 |
# Authenticate and initialize Earth Engine
|
876 |
earthengine_credentials = os.environ.get("EE_Authentication")
|
877 |
|
|
|
882 |
|
883 |
ee.Initialize(project='ee-yashsacisro24')
|
884 |
|
885 |
+
st.write("<h5>Image Collection</h5>", unsafe_allow_html=True)
|
886 |
+
|
887 |
# Imagery base selection
|
888 |
imagery_base = st.selectbox("Select Imagery Base", ["Sentinel", "Landsat", "MODIS", "Custom Input"], index=0)
|
889 |
|
|
|
925 |
data = {}
|
926 |
|
927 |
# Display the title for the Streamlit app
|
928 |
+
# st.title(f"{imagery_base} Dataset")
|
929 |
+
st.markdown(
|
930 |
+
f"""
|
931 |
+
<hr>
|
932 |
+
<h5><b>{imagery_base} Dataset</b></h5>
|
933 |
+
""",
|
934 |
+
unsafe_allow_html=True,
|
935 |
+
)
|
936 |
# Select dataset category (main selection)
|
937 |
if data:
|
938 |
main_selection = st.selectbox(f"Select {imagery_base} Dataset Category", list(data.keys()))
|
|
|
948 |
sub_options = data[main_selection]["sub_options"]
|
949 |
sub_selection = st.selectbox(f"Select Specific {imagery_base} Dataset ID", list(sub_options.keys()))
|
950 |
|
951 |
+
# Display the selected dataset ID based on user input
|
952 |
if sub_selection:
|
953 |
st.write(f"You selected: {main_selection} -> {sub_options[sub_selection]}")
|
954 |
st.write(f"Dataset ID: {sub_selection}")
|
955 |
dataset_id = sub_selection # Use the key directly as the dataset ID
|
956 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
957 |
# Earth Engine Index Calculator Section
|
958 |
+
# st.header("Earth Engine Index Calculator")
|
959 |
|
960 |
+
st.markdown(
|
961 |
+
f"""
|
962 |
+
<hr>
|
963 |
+
<h5><b>Earth Engine Index Calculator</b></h5>
|
964 |
+
""",
|
965 |
+
unsafe_allow_html=True,
|
966 |
+
)
|
967 |
# Load band information based on selected dataset
|
968 |
if main_selection and sub_selection:
|
969 |
dataset_bands = data[main_selection]["bands"].get(sub_selection, [])
|
|
|
1019 |
|
1020 |
# Display the validated formula
|
1021 |
st.write(f"Custom Formula: {custom_formula}")
|
1022 |
+
|
1023 |
+
# The rest of your code (reducer, geometry conversion, date input, aggregation, etc.) remains unchanged...
|
1024 |
|
1025 |
# Function to get the corresponding reducer based on user input
|
1026 |
def get_reducer(reducer_name):
|
|
|
1041 |
index=0 # Default to 'mean'
|
1042 |
)
|
1043 |
|
1044 |
+
# # Function to convert geometry to Earth Engine format
|
1045 |
+
# def convert_to_ee_geometry(geometry):
|
1046 |
+
# if isinstance(geometry, base.BaseGeometry):
|
1047 |
+
# if geometry.is_valid:
|
1048 |
+
# geojson = geometry.__geo_interface__
|
1049 |
+
# return ee.Geometry(geojson)
|
1050 |
+
# else:
|
1051 |
+
# raise ValueError("Invalid geometry: The polygon geometry is not valid.")
|
1052 |
+
# elif isinstance(geometry, dict) or isinstance(geometry, str):
|
1053 |
+
# try:
|
1054 |
+
# if isinstance(geometry, str):
|
1055 |
+
# geometry = json.loads(geometry)
|
1056 |
+
# if 'type' in geometry and 'coordinates' in geometry:
|
1057 |
+
# return ee.Geometry(geometry)
|
1058 |
+
# else:
|
1059 |
+
# raise ValueError("GeoJSON format is invalid.")
|
1060 |
+
# except Exception as e:
|
1061 |
+
# raise ValueError(f"Error parsing GeoJSON: {e}")
|
1062 |
+
# elif isinstance(geometry, str) and geometry.lower().endswith(".kml"):
|
1063 |
+
# try:
|
1064 |
+
# tree = ET.parse(geometry)
|
1065 |
+
# kml_root = tree.getroot()
|
1066 |
+
# kml_namespace = {'kml': 'http://www.opengis.net/kml/2.2'}
|
1067 |
+
# coordinates = kml_root.findall(".//kml:coordinates", kml_namespace)
|
1068 |
+
# if coordinates:
|
1069 |
+
# coords_text = coordinates[0].text.strip()
|
1070 |
+
# coords = coords_text.split()
|
1071 |
+
# coords = [tuple(map(float, coord.split(','))) for coord in coords]
|
1072 |
+
# geojson = {"type": "Polygon", "coordinates": [coords]}
|
1073 |
+
# return ee.Geometry(geojson)
|
1074 |
+
# else:
|
1075 |
+
# raise ValueError("KML does not contain valid coordinates.")
|
1076 |
+
# except Exception as e:
|
1077 |
+
# raise ValueError(f"Error parsing KML: {e}")
|
1078 |
+
# else:
|
1079 |
+
# raise ValueError("Unsupported geometry input type. Supported types are Shapely, GeoJSON, and KML.")
|
1080 |
+
|
1081 |
# Function to convert geometry to Earth Engine format
|
1082 |
def convert_to_ee_geometry(geometry):
|
1083 |
+
st.write(f"Debug: convert_to_ee_geometry called with type - {type(geometry)}") # Debug input type
|
1084 |
if isinstance(geometry, base.BaseGeometry):
|
1085 |
if geometry.is_valid:
|
1086 |
geojson = geometry.__geo_interface__
|
1087 |
+
st.write(f"Debug: Converting Shapely geometry to GeoJSON - {geojson}") # Debug GeoJSON
|
1088 |
return ee.Geometry(geojson)
|
1089 |
else:
|
1090 |
raise ValueError("Invalid geometry: The polygon geometry is not valid.")
|
1091 |
+
elif isinstance(geometry, dict):
|
1092 |
+
if 'type' in geometry and 'coordinates' in geometry:
|
1093 |
+
return ee.Geometry(geometry)
|
1094 |
+
else:
|
1095 |
+
raise ValueError("GeoJSON format is invalid.")
|
1096 |
+
elif isinstance(geometry, str):
|
|
|
|
|
|
|
|
|
|
|
1097 |
try:
|
1098 |
+
# If it’s a JSON string, parse it
|
1099 |
+
parsed = json.loads(geometry)
|
1100 |
+
if 'type' in parsed and 'coordinates' in parsed:
|
1101 |
+
return ee.Geometry(parsed)
|
|
|
|
|
|
|
|
|
|
|
|
|
1102 |
else:
|
1103 |
+
raise ValueError("GeoJSON string format is invalid.")
|
1104 |
+
except json.JSONDecodeError:
|
1105 |
+
# If it’s a KML string (not a file path)
|
1106 |
+
try:
|
1107 |
+
root = XET.fromstring(geometry)
|
1108 |
+
ns = {'kml': 'http://www.opengis.net/kml/2.2'}
|
1109 |
+
coords_elem = root.find('.//kml:Polygon//kml:coordinates', ns)
|
1110 |
+
if coords_elem is not None:
|
1111 |
+
coords_text = ' '.join(coords_elem.text.split())
|
1112 |
+
st.write(f"Debug: KML string coordinates - {coords_text}") # Debug KML parsing
|
1113 |
+
coords = [tuple(map(float, coord.split(','))) for coord in coords_text.split()]
|
1114 |
+
geojson = {"type": "Polygon", "coordinates": [coords]}
|
1115 |
+
return ee.Geometry(geojson)
|
1116 |
+
else:
|
1117 |
+
raise ValueError("KML string does not contain valid coordinates.")
|
1118 |
+
except Exception as e:
|
1119 |
+
raise ValueError(f"Error parsing KML string: {e}")
|
1120 |
else:
|
1121 |
+
raise ValueError(f"Unsupported geometry input type: {type(geometry)}. Supported types are Shapely, GeoJSON, and KML string.")
|
1122 |
+
|
1123 |
# Date Input for Start and End Dates
|
1124 |
start_date = st.date_input("Start Date", value=pd.to_datetime('2024-11-01'))
|
1125 |
end_date = st.date_input("End Date", value=pd.to_datetime('2024-12-01'))
|
|
|
1155 |
help="Check to include pixels on the polygon boundary; uncheck to exclude them."
|
1156 |
)
|
1157 |
|
1158 |
+
# # Ask user to upload a file based on shape type
|
1159 |
+
# file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
|
1160 |
+
|
1161 |
+
# if file_upload is not None:
|
1162 |
+
# # Read the user-uploaded file
|
1163 |
+
# if shape_type.lower() == "point":
|
1164 |
+
# if file_upload.name.endswith('.csv'):
|
1165 |
+
# locations_df = pd.read_csv(file_upload)
|
1166 |
+
# elif file_upload.name.endswith('.geojson'):
|
1167 |
+
# locations_df = gpd.read_file(file_upload)
|
1168 |
+
# elif file_upload.name.endswith('.kml'):
|
1169 |
+
# locations_df = gpd.read_file(file_upload)
|
1170 |
+
# else:
|
1171 |
+
# st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
|
1172 |
+
# locations_df = pd.DataFrame()
|
1173 |
+
|
1174 |
+
# if 'geometry' in locations_df.columns:
|
1175 |
+
# if locations_df.geometry.geom_type.isin(['Polygon', 'MultiPolygon']).any():
|
1176 |
+
# st.warning("The uploaded file contains polygon data. Please select 'Polygon' for processing.")
|
1177 |
+
# st.stop()
|
1178 |
+
|
1179 |
+
# with st.spinner('Processing Map...'):
|
1180 |
+
# if locations_df is not None and not locations_df.empty:
|
1181 |
+
# if 'geometry' in locations_df.columns:
|
1182 |
+
# locations_df['latitude'] = locations_df['geometry'].y
|
1183 |
+
# locations_df['longitude'] = locations_df['geometry'].x
|
1184 |
+
|
1185 |
+
# if 'latitude' not in locations_df.columns or 'longitude' not in locations_df.columns:
|
1186 |
+
# st.error("Uploaded file is missing required 'latitude' or 'longitude' columns.")
|
1187 |
+
# else:
|
1188 |
+
# st.write("Preview of the uploaded points data:")
|
1189 |
+
# st.dataframe(locations_df.head())
|
1190 |
+
# m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
|
1191 |
+
# for _, row in locations_df.iterrows():
|
1192 |
+
# latitude = row['latitude']
|
1193 |
+
# longitude = row['longitude']
|
1194 |
+
# if pd.isna(latitude) or pd.isna(longitude):
|
1195 |
+
# continue
|
1196 |
+
# m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
|
1197 |
+
# st.write("Map of Uploaded Points:")
|
1198 |
+
# m.to_streamlit()
|
1199 |
+
# st.session_state.map_data = m
|
1200 |
+
|
1201 |
+
# elif shape_type.lower() == "polygon":
|
1202 |
+
# if file_upload.name.endswith('.csv'):
|
1203 |
+
# locations_df = pd.read_csv(file_upload)
|
1204 |
+
# elif file_upload.name.endswith('.geojson'):
|
1205 |
+
# locations_df = gpd.read_file(file_upload)
|
1206 |
+
# elif file_upload.name.endswith('.kml'):
|
1207 |
+
# locations_df = gpd.read_file(file_upload)
|
1208 |
+
# else:
|
1209 |
+
# st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
|
1210 |
+
# locations_df = pd.DataFrame()
|
1211 |
+
|
1212 |
+
# if 'geometry' in locations_df.columns:
|
1213 |
+
# if locations_df.geometry.geom_type.isin(['Point', 'MultiPoint']).any():
|
1214 |
+
# st.warning("The uploaded file contains point data. Please select 'Point' for processing.")
|
1215 |
+
# st.stop()
|
1216 |
+
|
1217 |
+
# with st.spinner('Processing Map...'):
|
1218 |
+
# if locations_df is not None and not locations_df.empty:
|
1219 |
+
# if 'geometry' not in locations_df.columns:
|
1220 |
+
# st.error("Uploaded file is missing required 'geometry' column.")
|
1221 |
+
# else:
|
1222 |
+
# st.write("Preview of the uploaded polygons data:")
|
1223 |
+
# st.dataframe(locations_df.head())
|
1224 |
+
# centroid_lat = locations_df.geometry.centroid.y.mean()
|
1225 |
+
# centroid_lon = locations_df.geometry.centroid.x.mean()
|
1226 |
+
# m = leafmap.Map(center=[centroid_lat, centroid_lon], zoom=10)
|
1227 |
+
# for _, row in locations_df.iterrows():
|
1228 |
+
# polygon = row['geometry']
|
1229 |
+
# if polygon.is_valid:
|
1230 |
+
# gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=locations_df.crs)
|
1231 |
+
# m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
|
1232 |
+
# st.write("Map of Uploaded Polygons:")
|
1233 |
+
# m.to_streamlit()
|
1234 |
+
# st.session_state.map_data = m
|
1235 |
+
|
1236 |
+
|
1237 |
# Ask user to upload a file based on shape type
|
1238 |
file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
|
1239 |
|
|
|
1245 |
elif file_upload.name.endswith('.geojson'):
|
1246 |
locations_df = gpd.read_file(file_upload)
|
1247 |
elif file_upload.name.endswith('.kml'):
|
1248 |
+
# Parse KML file for point data
|
1249 |
+
kml_string = file_upload.read().decode('utf-8')
|
1250 |
+
try:
|
1251 |
+
# Use xml.etree.ElementTree with unique alias
|
1252 |
+
root = XET.fromstring(kml_string)
|
1253 |
+
ns = {'kml': 'http://www.opengis.net/kml/2.2'}
|
1254 |
+
points = []
|
1255 |
+
for placemark in root.findall('.//kml:Placemark', ns):
|
1256 |
+
name = placemark.findtext('kml:name', default=f"Point_{len(points)}", namespaces=ns)
|
1257 |
+
coords_elem = placemark.find('.//kml:Point/kml:coordinates', ns)
|
1258 |
+
if coords_elem is not None:
|
1259 |
+
coords_text = coords_elem.text.strip()
|
1260 |
+
st.write(f"Debug: Point coordinates found - {coords_text}") # Debug output
|
1261 |
+
coords = [c.strip() for c in coords_text.split(',')]
|
1262 |
+
if len(coords) >= 2: # Ensure at least lon, lat
|
1263 |
+
lon, lat = float(coords[0]), float(coords[1])
|
1264 |
+
points.append({'name': name, 'geometry': f"POINT ({lon} {lat})"})
|
1265 |
+
if not points:
|
1266 |
+
st.error("No valid Point data found in the KML file.")
|
1267 |
+
locations_df = pd.DataFrame()
|
1268 |
+
else:
|
1269 |
+
locations_df = gpd.GeoDataFrame(points, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in points]), crs="EPSG:4326")
|
1270 |
+
except Exception as e:
|
1271 |
+
st.error(f"Error parsing KML file: {str(e)}")
|
1272 |
+
locations_df = pd.DataFrame()
|
1273 |
else:
|
1274 |
st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
|
1275 |
locations_df = pd.DataFrame()
|
|
|
1307 |
elif file_upload.name.endswith('.geojson'):
|
1308 |
locations_df = gpd.read_file(file_upload)
|
1309 |
elif file_upload.name.endswith('.kml'):
|
1310 |
+
# Parse KML file for polygon data
|
1311 |
+
kml_string = file_upload.read().decode('utf-8')
|
1312 |
+
try:
|
1313 |
+
root = XET.fromstring(kml_string)
|
1314 |
+
ns = {'kml': 'http://www.opengis.net/kml/2.2'}
|
1315 |
+
polygons = []
|
1316 |
+
for placemark in root.findall('.//kml:Placemark', ns):
|
1317 |
+
name = placemark.findtext('kml:name', default=f"Polygon_{len(polygons)}", namespaces=ns)
|
1318 |
+
coords_elem = placemark.find('.//kml:Polygon//kml:coordinates', ns)
|
1319 |
+
if coords_elem is not None:
|
1320 |
+
coords_text = ' '.join(coords_elem.text.split()) # Normalize whitespace
|
1321 |
+
st.write(f"Debug: Polygon coordinates found - {coords_text}") # Debug output
|
1322 |
+
coord_pairs = [pair.split(',')[:2] for pair in coords_text.split() if pair]
|
1323 |
+
if len(coord_pairs) >= 4: # Minimum 4 points for a closed polygon
|
1324 |
+
coords_str = " ".join([f"{float(lon)} {float(lat)}" for lon, lat in coord_pairs])
|
1325 |
+
polygons.append({'name': name, 'geometry': f"POLYGON (({coords_str}))"})
|
1326 |
+
if not polygons:
|
1327 |
+
st.error("No valid Polygon data found in the KML file.")
|
1328 |
+
locations_df = pd.DataFrame()
|
1329 |
+
else:
|
1330 |
+
locations_df = gpd.GeoDataFrame(polygons, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in polygons]), crs="EPSG:4326")
|
1331 |
+
except Exception as e:
|
1332 |
+
st.error(f"Error parsing KML file: {str(e)}")
|
1333 |
+
locations_df = pd.DataFrame()
|
1334 |
else:
|
1335 |
st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
|
1336 |
locations_df = pd.DataFrame()
|
|
|
1359 |
m.to_streamlit()
|
1360 |
st.session_state.map_data = m
|
1361 |
|
1362 |
+
# ... (Rest of the code until convert_to_ee_geometry) ...
|
1363 |
# Initialize session state for storing results
|
1364 |
if 'results' not in st.session_state:
|
1365 |
st.session_state.results = []
|