YashMK89 commited on
Commit
c2da6e7
·
verified ·
1 Parent(s): 18d9825

update app.py

Browse files
Files changed (1) hide show
  1. app.py +531 -248
app.py CHANGED
@@ -6,7 +6,6 @@ import pandas as pd
6
  import geopandas as gpd
7
  from datetime import datetime
8
  import leafmap.foliumap as leafmap
9
- import time
10
  import re
11
 
12
  # Set up the page layout
@@ -35,6 +34,15 @@ st.write(
35
  unsafe_allow_html=True,
36
  )
37
 
 
 
 
 
 
 
 
 
 
38
  # Authenticate and initialize Earth Engine
39
  earthengine_credentials = os.environ.get("EE_Authentication")
40
 
@@ -45,24 +53,32 @@ with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
45
 
46
  ee.Initialize(project='ee-yashsacisro24')
47
 
48
- # Load Sentinel dataset options from JSON file
49
  with open("sentinel_datasets.json") as f:
50
  data = json.load(f)
51
 
52
- # Display the title and dataset selection
53
  st.title("Sentinel Dataset")
54
 
55
- # Select dataset category and subcategory (case-insensitive selection)
56
  main_selection = st.selectbox("Select Sentinel Dataset Category", list(data.keys()))
57
 
 
58
  if main_selection:
59
  sub_options = data[main_selection]["sub_options"]
60
  sub_selection = st.selectbox("Select Specific Dataset ID", list(sub_options.keys()))
61
 
 
 
 
 
 
 
 
 
62
  # Earth Engine Index Calculator Section
63
  st.header("Earth Engine Index Calculator")
64
 
65
- # Choose Index or Custom Formula (case-insensitive)
66
  index_choice = st.selectbox("Select an Index or Enter Custom Formula", ['NDVI', 'NDWI', 'Average NO₂', 'Custom Formula'])
67
 
68
  # Initialize custom_formula variable
@@ -76,16 +92,41 @@ elif index_choice.lower() == 'ndwi':
76
  elif index_choice.lower() == 'average no₂':
77
  st.write("Formula for Average NO₂: Average NO₂ = Mean(NO2 band)")
78
  elif index_choice.lower() == 'custom formula':
79
- custom_formula = st.text_input("Enter Custom Formula (e.g., 'B5 - B4 / B5 + B4')")
80
- st.write(f"Custom Formula: {custom_formula}") # Display the custom formula after the user inputs it
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
 
82
  # Function to check if the polygon geometry is valid and convert it to the correct format
83
  def convert_to_ee_geometry(geometry):
84
- # Ensure the polygon geometry is in the right format
85
  if geometry.is_valid:
86
- # Convert the geometry to GeoJSON format
87
  geojson = geometry.__geo_interface__
88
- # Convert to Earth Engine geometry
89
  return ee.Geometry(geojson)
90
  else:
91
  raise ValueError("Invalid geometry: The polygon geometry is not valid.")
@@ -111,6 +152,118 @@ shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", [
111
  # Ask user to upload a file based on shape type (case-insensitive)
112
  file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114
  # Date Input for Start and End Dates
115
  start_date = st.date_input("Start Date", value=pd.to_datetime('2020-01-01'))
116
  end_date = st.date_input("End Date", value=pd.to_datetime('2020-12-31'))
@@ -119,6 +272,9 @@ end_date = st.date_input("End Date", value=pd.to_datetime('2020-12-31'))
119
  start_date_str = start_date.strftime('%Y-%m-%d')
120
  end_date_str = end_date.strftime('%Y-%m-%d')
121
 
 
 
 
122
  # Initialize session state for storing results if not already done
123
  if 'results' not in st.session_state:
124
  st.session_state.results = []
@@ -127,272 +283,399 @@ if 'last_params' not in st.session_state:
127
  if 'map_data' not in st.session_state:
128
  st.session_state.map_data = None # Initialize map_data
129
 
130
- if 'file_upload' in st.session_state:
131
- st.session_state.file_upload = None
132
-
133
  # Function to check if parameters have changed
134
  def parameters_changed():
135
  return (
136
  st.session_state.last_params.get('main_selection') != main_selection or
137
- st.session_state.last_params.get('sub_selection') != sub_selection or
138
  st.session_state.last_params.get('index_choice') != index_choice or
139
  st.session_state.last_params.get('start_date_str') != start_date_str or
140
- st.session_state.last_params.get('end_date_str') != end_date_str
 
 
141
  )
142
 
143
  # If parameters have changed, reset the results
144
  if parameters_changed():
145
  st.session_state.results = [] # Clear the previous results
146
- # Update the last parameters to the current ones
147
  st.session_state.last_params = {
148
  'main_selection': main_selection,
149
- 'sub_selection': sub_selection,
150
  'index_choice': index_choice,
151
  'start_date_str': start_date_str,
152
- 'end_date_str': end_date_str
 
 
153
  }
154
 
155
- # Function to perform index calculations
156
- def calculate_ndvi(image, geometry):
157
  ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
158
- result = ndvi.reduceRegion(
159
- reducer=ee.Reducer.mean(),
160
- geometry=geometry,
161
- scale=30
162
- )
163
- return result.get('NDVI')
164
 
165
- def calculate_ndwi(image, geometry):
 
166
  ndwi = image.normalizedDifference(['B3', 'B8']).rename('NDWI')
167
- result = ndwi.reduceRegion(
168
- reducer=ee.Reducer.mean(),
169
- geometry=geometry,
170
- scale=30
171
- )
172
- return result.get('NDWI')
173
-
174
- def calculate_avg_no2_sentinel5p(image, geometry):
175
- no2 = image.select('NO2').reduceRegion(
176
- reducer=ee.Reducer.mean(),
177
- geometry=geometry,
178
- scale=1000
179
- ).get('NO2')
180
- return no2
181
-
182
- def calculate_custom_formula(image, geometry, formula):
183
- result = image.expression(formula).rename('Custom Index').reduceRegion(
184
- reducer=ee.Reducer.mean(),
185
- geometry=geometry,
186
- scale=30
187
- )
188
- return result.get('Custom Index')
189
-
190
- # Check if the file uploaded is different from the previous file uploaded
191
- if 'file_upload' in st.session_state and st.session_state.file_upload != file_upload:
192
- reset_session_state_for_new_file() # Reset session state for new file
193
-
194
- # Process each point or polygon
195
- if file_upload:
196
- locations_df = None # Initialize locations_df to None
197
- polygons_df = None # Initialize polygons_df to None
198
-
199
- file_extension = os.path.splitext(file_upload.name)[1].lower() # Convert extension to lowercase
200
-
201
- # Read file based on shape type (case-insensitive)
202
- if shape_type.lower() == 'point':
203
- if file_extension == '.csv':
204
- locations_df = read_csv(file_upload)
205
- elif file_extension == '.geojson':
206
- locations_df = read_geojson(file_upload)
207
- elif file_extension == '.kml':
208
- locations_df = read_kml(file_upload)
209
- else:
210
- st.error("Unsupported file type. Please upload a CSV, GeoJSON, or KML file for points.")
211
- elif shape_type.lower() == 'polygon':
212
- if file_extension == '.geojson':
213
- polygons_df = read_geojson(file_upload)
214
- elif file_extension == '.kml':
215
- polygons_df = read_kml(file_upload)
216
- else:
217
- st.error("Unsupported file type. Please upload a GeoJSON or KML file for polygons.")
218
 
219
- # Check if locations_df is populated for points
220
- if locations_df is not None:
221
- # Display a preview of the points data
222
- st.write("Preview of the uploaded points data:")
223
- st.dataframe(locations_df.head())
224
-
225
- # Create a LeafMap object to display the points
226
- m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
227
-
228
- # Add points to the map using a loop
229
- for _, row in locations_df.iterrows():
230
- latitude = row['latitude']
231
- longitude = row['longitude']
232
-
233
- # Check if latitude or longitude are NaN and skip if they are
234
- if pd.isna(latitude) or pd.isna(longitude):
235
- continue # Skip this row and move to the next one
236
-
237
- m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
238
 
239
- # Display map
240
- st.write("Map of Uploaded Points:")
241
- m.to_streamlit()
 
 
242
 
243
- # Store the map in session_state
244
- st.session_state.map_data = m
 
 
245
 
246
- # Process each point for index calculation
247
- for idx, row in locations_df.iterrows():
248
- latitude = row['latitude']
249
- longitude = row['longitude']
250
- location_name = row.get('name', f"Point_{idx}")
 
251
 
252
- # Skip processing if latitude or longitude is NaN
253
- if pd.isna(latitude) or pd.isna(longitude):
254
- continue # Skip this row and move to the next one
 
255
 
256
- # Define the region of interest (ROI)
257
- roi = ee.Geometry.Point([longitude, latitude])
 
 
258
 
259
- # Load Sentinel-2 image collection
260
- collection = ee.ImageCollection(sub_options[sub_selection]) \
261
- .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
262
- .filterBounds(roi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
263
 
264
- # Check if the collection has images for the selected date range
265
- image_count = collection.size().getInfo()
266
- if image_count == 0:
267
- st.warning(f"No images found for {location_name}.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268
  else:
269
- st.write(f"Found {image_count} images for {location_name}.")
270
- image = collection.first()
271
-
272
- # Perform the calculation based on user selection
273
- result = None
274
- if index_choice.lower() == 'ndvi':
275
- result = calculate_ndvi(image, roi)
276
- elif index_choice.lower() == 'ndwi':
277
- result = calculate_ndwi(image, roi)
278
- elif index_choice.lower() == 'average no₂':
279
- if 'NO2' in image.bandNames().getInfo():
280
- result = calculate_avg_no2_sentinel5p(image, roi)
281
- else:
282
- st.warning(f"No NO2 band found for {location_name}. Please use Sentinel-5P for NO₂ data.")
283
- elif index_choice.lower() == 'custom formula' and custom_formula:
284
- result = calculate_custom_formula(image, roi, custom_formula)
285
-
286
- if result is not None:
287
- # Only store the numeric value (not the dictionary structure)
288
- calculated_value = result.getInfo() # Get the numeric value
289
-
290
- # Store the result in session state
291
- st.session_state.results.append({
292
- 'Location Name': location_name,
293
- 'Latitude': latitude,
294
- 'Longitude': longitude,
295
- 'Calculated Value': calculated_value
296
- })
297
-
298
- # Check if polygons_df is populated for polygons
299
- if polygons_df is not None:
300
- # Display a preview of the polygons data
301
- st.write("Preview of the uploaded polygons data:")
302
- st.dataframe(polygons_df.head())
303
-
304
- # Create a LeafMap object to display the polygons
305
- m = leafmap.Map(center=[polygons_df.geometry.centroid.y.mean(), polygons_df.geometry.centroid.x.mean()], zoom=10)
306
-
307
- # Add polygons to the map
308
- for _, row in polygons_df.iterrows():
309
- polygon = row['geometry']
310
- if polygon.is_valid: # Check if the geometry is valid
311
- # Create a GeoDataFrame with the single row
312
- gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=polygons_df.crs)
313
-
314
- # Add the valid GeoDataFrame to the map
315
- m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
316
-
317
- # Display map
318
- st.write("Map of Uploaded Polygons:")
319
- m.to_streamlit()
320
-
321
- # Store the map in session_state
322
- st.session_state.map_data = m
323
-
324
- # Process each polygon for index calculation
325
- for idx, row in polygons_df.iterrows():
326
- polygon = row['geometry']
327
- location_name = row.get('name', f"Polygon_{idx}")
328
-
329
- # Define the region of interest (ROI)
330
- try:
331
- roi = convert_to_ee_geometry(polygon)
332
- except ValueError as e:
333
- st.error(str(e))
334
- continue # Skip this polygon if geometry is invalid
335
-
336
- # Load Sentinel-2 image collection
337
- collection = ee.ImageCollection(sub_options[sub_selection]) \
338
- .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
339
- .filterBounds(roi)
340
-
341
- # Check if the collection has images for the selected date range
342
- image_count = collection.size().getInfo()
343
- if image_count == 0:
344
- st.warning(f"No images found for {location_name}.")
345
  else:
346
- st.write(f"Found {image_count} images for {location_name}.")
347
- image = collection.first()
348
-
349
- # Perform the calculation based on user selection
350
- result = None
351
- if index_choice.lower() == 'ndvi':
352
- result = calculate_ndvi(image, roi)
353
- elif index_choice.lower() == 'ndwi':
354
- result = calculate_ndwi(image, roi)
355
- elif index_choice.lower() == 'average no₂':
356
- if 'NO2' in image.bandNames().getInfo():
357
- result = calculate_avg_no2_sentinel5p(image, roi)
358
- else:
359
- st.warning(f"No NO2 band found for {location_name}. Please use Sentinel-5P for NO₂ data.")
360
- elif index_choice.lower() == 'custom formula' and custom_formula:
361
- result = calculate_custom_formula(image, roi, custom_formula)
362
-
363
- if result is not None:
364
- # Only store the numeric value (not the dictionary structure)
365
- calculated_value = result.getInfo() # Get the numeric value
366
-
367
- # Store the result in session state
368
- st.session_state.results.append({
369
- 'Location Name': location_name,
370
- 'Calculated Value': calculated_value
371
- })
372
-
373
- # After processing, show the results
374
- if st.session_state.results:
375
- # Convert the results to a DataFrame for better visualization
376
- result_df = pd.DataFrame(st.session_state.results)
377
-
378
- # If the shape type is 'Point', include 'Latitude' and 'Longitude'
379
- if shape_type.lower() == 'point':
380
- # Show the results in a table format with Latitude and Longitude
381
- st.write("Processed Results Table (Points):")
382
- st.dataframe(result_df[['Location Name', 'Latitude', 'Longitude', 'Calculated Value']])
383
- else:
384
- # For polygons, we only show the Location Name and Calculated Value
385
- st.write("Processed Results Table (Polygons):")
386
- st.dataframe(result_df[['Location Name', 'Calculated Value']])
387
-
388
- # Generate the dynamic filename
389
- filename = f"{main_selection}_{sub_selection}_{start_date.strftime('%Y/%m/%d')}_{end_date.strftime('%Y/%m/%d')}_{shape_type}.csv"
390
-
391
- # Convert results to DataFrame for download
392
- st.download_button(
393
- label="Download results as CSV",
394
- data=result_df.to_csv(index=False).encode('utf-8'),
395
- file_name=filename,
396
- mime='text/csv'
397
- )
398
 
 
6
  import geopandas as gpd
7
  from datetime import datetime
8
  import leafmap.foliumap as leafmap
 
9
  import re
10
 
11
  # Set up the page layout
 
34
  unsafe_allow_html=True,
35
  )
36
 
37
+ # Title
38
+ st.markdown(
39
+ f"""
40
+ <h1 style="text-align: center;">Precision Analysis for Vegetation, Water, and Air Quality</h1>
41
+ """,
42
+ unsafe_allow_html=True,
43
+ )
44
+ st.write("<h2><div style='text-align: center;'>User Inputs</div></h2>", unsafe_allow_html=True)
45
+
46
  # Authenticate and initialize Earth Engine
47
  earthengine_credentials = os.environ.get("EE_Authentication")
48
 
 
53
 
54
  ee.Initialize(project='ee-yashsacisro24')
55
 
56
+ # Load the Sentinel dataset options from JSON file
57
  with open("sentinel_datasets.json") as f:
58
  data = json.load(f)
59
 
60
+ # Display the title for the Streamlit app
61
  st.title("Sentinel Dataset")
62
 
63
+ # Select dataset category (main selection)
64
  main_selection = st.selectbox("Select Sentinel Dataset Category", list(data.keys()))
65
 
66
+ # If a category is selected, display the sub-options (specific datasets)
67
  if main_selection:
68
  sub_options = data[main_selection]["sub_options"]
69
  sub_selection = st.selectbox("Select Specific Dataset ID", list(sub_options.keys()))
70
 
71
+ # Display the selected dataset ID based on user input
72
+ if sub_selection:
73
+ st.write(f"You selected: {main_selection} -> {sub_selection}")
74
+ st.write(f"Dataset ID: {sub_options[sub_selection]}")
75
+
76
+ # Fetch the correct dataset ID from the sub-selection
77
+ dataset_id = sub_options[sub_selection]
78
+
79
  # Earth Engine Index Calculator Section
80
  st.header("Earth Engine Index Calculator")
81
 
 
82
  index_choice = st.selectbox("Select an Index or Enter Custom Formula", ['NDVI', 'NDWI', 'Average NO₂', 'Custom Formula'])
83
 
84
  # Initialize custom_formula variable
 
92
  elif index_choice.lower() == 'average no₂':
93
  st.write("Formula for Average NO₂: Average NO₂ = Mean(NO2 band)")
94
  elif index_choice.lower() == 'custom formula':
95
+ custom_formula = st.text_input("Enter Custom Formula (e.g., B5,B4)")
96
+ # Check if custom formula is empty and show warning
97
+ if not custom_formula:
98
+ st.warning("Please enter a custom formula before proceeding.")
99
+ else:
100
+ st.write(f"Custom Formula: (band1 - band2) / (band1 + band2)") # Display the custom formula after the user inputs it
101
+
102
+ # Function to get the corresponding reducer based on user input
103
+ def get_reducer(reducer_name):
104
+ """
105
+ Map user-friendly reducer names to Earth Engine reducer objects.
106
+ """
107
+ reducers = {
108
+ 'mean': ee.Reducer.mean(),
109
+ 'sum': ee.Reducer.sum(),
110
+ 'median': ee.Reducer.median(),
111
+ 'min': ee.Reducer.min(),
112
+ 'max': ee.Reducer.max(),
113
+ 'count': ee.Reducer.count(),
114
+ }
115
+
116
+ # Default to 'mean' if the reducer_name is not recognized
117
+ return reducers.get(reducer_name.lower(), ee.Reducer.mean())
118
+
119
+ # Streamlit selectbox for reducer choice
120
+ reducer_choice = st.selectbox(
121
+ "Select Reducer",
122
+ ['mean', 'sum', 'median', 'min', 'max', 'count'],
123
+ index=0 # Default to 'mean'
124
+ )
125
 
126
  # Function to check if the polygon geometry is valid and convert it to the correct format
127
  def convert_to_ee_geometry(geometry):
 
128
  if geometry.is_valid:
 
129
  geojson = geometry.__geo_interface__
 
130
  return ee.Geometry(geojson)
131
  else:
132
  raise ValueError("Invalid geometry: The polygon geometry is not valid.")
 
152
  # Ask user to upload a file based on shape type (case-insensitive)
153
  file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
154
 
155
+ if file_upload is not None:
156
+ # Read the user-uploaded file
157
+ if shape_type.lower() == "point":
158
+ # Handle different file types for Point data
159
+ if file_upload.name.endswith('.csv'):
160
+ locations_df = pd.read_csv(file_upload)
161
+ elif file_upload.name.endswith('.geojson'):
162
+ locations_df = gpd.read_file(file_upload)
163
+ elif file_upload.name.endswith('.kml'):
164
+ locations_df = gpd.read_file(file_upload)
165
+ else:
166
+ st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
167
+ locations_df = pd.DataFrame()
168
+
169
+ # Check if the file contains polygons when the user selected "Point"
170
+ if 'geometry' in locations_df.columns:
171
+ # Check if the geometry type is Polygon or MultiPolygon
172
+ if locations_df.geometry.geom_type.isin(['Polygon', 'MultiPolygon']).any():
173
+ st.warning("The uploaded file contains polygon data. Please select 'Polygon' for processing.")
174
+ st.stop() # Stop further processing if polygons are detected
175
+
176
+ # Processing the point data
177
+ with st.spinner('Processing data...'):
178
+ if locations_df is not None and not locations_df.empty:
179
+ # For GeoJSON data, the coordinates are in the geometry column
180
+ if 'geometry' in locations_df.columns:
181
+ # Extract latitude and longitude from the geometry column
182
+ locations_df['latitude'] = locations_df['geometry'].y
183
+ locations_df['longitude'] = locations_df['geometry'].x
184
+
185
+ # Ensure the necessary columns exist in the dataframe
186
+ if 'latitude' not in locations_df.columns or 'longitude' not in locations_df.columns:
187
+ st.error("Uploaded file is missing required 'latitude' or 'longitude' columns.")
188
+ else:
189
+ # Display a preview of the points data
190
+ st.write("Preview of the uploaded points data:")
191
+ st.dataframe(locations_df.head())
192
+
193
+ # Create a LeafMap object to display the points
194
+ m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
195
+
196
+ # Add points to the map using a loop
197
+ for _, row in locations_df.iterrows():
198
+ latitude = row['latitude']
199
+ longitude = row['longitude']
200
+
201
+ # Check if latitude or longitude are NaN and skip if they are
202
+ if pd.isna(latitude) or pd.isna(longitude):
203
+ continue # Skip this row and move to the next one
204
+
205
+ m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
206
+
207
+ # Display map
208
+ st.write("Map of Uploaded Points:")
209
+ m.to_streamlit()
210
+
211
+ # Store the map in session_state
212
+ st.session_state.map_data = m
213
+
214
+ elif shape_type.lower() == "polygon":
215
+ # Handle different file types for Polygon data:
216
+ if file_upload.name.endswith('.csv'):
217
+ locations_df = pd.read_csv(file_upload)
218
+ elif file_upload.name.endswith('.geojson'):
219
+ locations_df = gpd.read_file(file_upload)
220
+ elif file_upload.name.endswith('.kml'):
221
+ locations_df = gpd.read_file(file_upload)
222
+ else:
223
+ st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
224
+ locations_df = pd.DataFrame()
225
+
226
+ # Check if the file contains points when the user selected "Polygon"
227
+ if 'geometry' in locations_df.columns:
228
+ # Check if the geometry type is Point or MultiPoint
229
+ if locations_df.geometry.geom_type.isin(['Point', 'MultiPoint']).any():
230
+ st.warning("The uploaded file contains point data. Please select 'Point' for processing.")
231
+ st.stop() # Stop further processing if point data is detected
232
+
233
+ # Processing the polygon data
234
+ with st.spinner('Processing data...'):
235
+ if locations_df is not None and not locations_df.empty:
236
+ # Ensure the 'geometry' column exists in the dataframe
237
+ if 'geometry' not in locations_df.columns:
238
+ st.error("Uploaded file is missing required 'geometry' column.")
239
+ else:
240
+ # Display a preview of the polygons data
241
+ st.write("Preview of the uploaded polygons data:")
242
+ st.dataframe(locations_df.head())
243
+
244
+ # Create a LeafMap object to display the polygons
245
+ # Calculate the centroid of the polygons for the map center
246
+ centroid_lat = locations_df.geometry.centroid.y.mean()
247
+ centroid_lon = locations_df.geometry.centroid.x.mean()
248
+
249
+ m = leafmap.Map(center=[centroid_lat, centroid_lon], zoom=10)
250
+
251
+ # Add polygons to the map using a loop
252
+ for _, row in locations_df.iterrows():
253
+ polygon = row['geometry']
254
+ if polygon.is_valid: # Check if polygon is valid
255
+ # Create a GeoDataFrame for this polygon
256
+ gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=locations_df.crs)
257
+ m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
258
+
259
+ # Display map
260
+ st.write("Map of Uploaded Polygons:")
261
+ m.to_streamlit()
262
+
263
+ # Store the map in session_state
264
+ st.session_state.map_data = m
265
+
266
+
267
  # Date Input for Start and End Dates
268
  start_date = st.date_input("Start Date", value=pd.to_datetime('2020-01-01'))
269
  end_date = st.date_input("End Date", value=pd.to_datetime('2020-12-31'))
 
272
  start_date_str = start_date.strftime('%Y-%m-%d')
273
  end_date_str = end_date.strftime('%Y-%m-%d')
274
 
275
+ # Aggregation period selection
276
+ aggregation_period = st.selectbox("Select Aggregation Period", ["Daily", "Weekly", "Monthly", "Yearly"], index=0)
277
+
278
  # Initialize session state for storing results if not already done
279
  if 'results' not in st.session_state:
280
  st.session_state.results = []
 
283
  if 'map_data' not in st.session_state:
284
  st.session_state.map_data = None # Initialize map_data
285
 
 
 
 
286
  # Function to check if parameters have changed
287
  def parameters_changed():
288
  return (
289
  st.session_state.last_params.get('main_selection') != main_selection or
290
+ st.session_state.last_params.get('dataset_id') != dataset_id or
291
  st.session_state.last_params.get('index_choice') != index_choice or
292
  st.session_state.last_params.get('start_date_str') != start_date_str or
293
+ st.session_state.last_params.get('end_date_str') != end_date_str or
294
+ st.session_state.last_params.get('shape_type') != shape_type or
295
+ st.session_state.last_params.get('file_upload') != file_upload
296
  )
297
 
298
  # If parameters have changed, reset the results
299
  if parameters_changed():
300
  st.session_state.results = [] # Clear the previous results
 
301
  st.session_state.last_params = {
302
  'main_selection': main_selection,
303
+ 'dataset_id': dataset_id,
304
  'index_choice': index_choice,
305
  'start_date_str': start_date_str,
306
+ 'end_date_str': end_date_str,
307
+ 'shape_type': shape_type,
308
+ 'file_upload': file_upload
309
  }
310
 
311
+ # Function to calculate NDVI with the selected reducer
312
+ def calculate_ndvi(image, geometry, reducer_choice):
313
  ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
314
+ return ndvi
 
 
 
 
 
315
 
316
+ # Function to calculate NDWI
317
+ def calculate_ndwi(image, geometry, reducer_choice):
318
  ndwi = image.normalizedDifference(['B3', 'B8']).rename('NDWI')
319
+ return ndwi
320
+
321
+ def calculate_custom_formula(image, geometry, custom_formula, reducer_choice, scale=30):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
322
 
323
+ # Calculate NDWI using the user-specified bands
324
+ band1 = custom_formula[:custom_formula.find(",")]
325
+ band2 = custom_formula[custom_formula.find(",")+1:]
326
+ custom_formula = image.normalizedDifference([band1, band2]).rename('custom formula')
327
+ return custom_formula
328
+
329
+ # Modify aggregation functions to return the correct time period and aggregated results
330
+ def aggregate_data_daily(collection):
331
+ # Extract day from the image date (using the exact date)
332
+ collection = collection.map(lambda image: image.set('day', ee.Date(image.get('system:time_start')).format('YYYY-MM-dd')))
333
+
334
+ # Group images by day (distinct days)
335
+ grouped_by_day = collection.aggregate_array('day').distinct()
 
 
 
 
 
 
336
 
337
+ def calculate_daily_mean(day):
338
+ # Filter the collection by the specific day
339
+ daily_collection = collection.filter(ee.Filter.eq('day', day))
340
+ daily_mean = daily_collection.mean() # Calculate mean for the day
341
+ return daily_mean.set('day', day)
342
 
343
+ # Calculate the daily mean for each day
344
+ daily_images = ee.List(grouped_by_day.map(calculate_daily_mean))
345
+
346
+ return ee.ImageCollection(daily_images)
347
 
348
+ def aggregate_data_weekly(collection):
349
+ # Extract week and year from the image date
350
+ collection = collection.map(lambda image: image.set('week', ee.Date(image.get('system:time_start')).format('YYYY-ww')))
351
+
352
+ # Group images by week
353
+ grouped_by_week = collection.aggregate_array('week').distinct()
354
 
355
+ def calculate_weekly_mean(week):
356
+ weekly_collection = collection.filter(ee.Filter.eq('week', week))
357
+ weekly_mean = weekly_collection.mean()
358
+ return weekly_mean.set('week', week)
359
 
360
+ # Calculate the weekly mean for each week
361
+ weekly_images = ee.List(grouped_by_week.map(calculate_weekly_mean))
362
+
363
+ return ee.ImageCollection(weekly_images)
364
 
365
+ def aggregate_data_monthly(collection):
366
+ # Extract month and year from the image date
367
+ collection = collection.map(lambda image: image.set('month', ee.Date(image.get('system:time_start')).format('YYYY-MM')))
368
+
369
+ # Group images by month
370
+ grouped_by_month = collection.aggregate_array('month').distinct()
371
+
372
+ def calculate_monthly_mean(month):
373
+ monthly_collection = collection.filter(ee.Filter.eq('month', month))
374
+ monthly_mean = monthly_collection.mean()
375
+ return monthly_mean.set('month', month)
376
+
377
+ # Calculate the monthly mean for each month
378
+ monthly_images = ee.List(grouped_by_month.map(calculate_monthly_mean))
379
+
380
+ return ee.ImageCollection(monthly_images)
381
+
382
+ def aggregate_data_yearly(collection):
383
+ # Extract year from the image date
384
+ collection = collection.map(lambda image: image.set('year', ee.Date(image.get('system:time_start')).format('YYYY')))
385
+
386
+ # Group images by year
387
+ grouped_by_year = collection.aggregate_array('year').distinct()
388
 
389
+ def calculate_yearly_mean(year):
390
+ yearly_collection = collection.filter(ee.Filter.eq('year', year))
391
+ yearly_mean = yearly_collection.mean()
392
+ return yearly_mean.set('year', year)
393
+
394
+ # Calculate the yearly mean for each year
395
+ yearly_images = ee.List(grouped_by_year.map(calculate_yearly_mean))
396
+
397
+ return ee.ImageCollection(yearly_images)
398
+
399
+ # Function to calculate index based on the selected choice
400
+ def calculate_index_for_period(image, roi, index_choice, reducer_choice, custom_formula):
401
+ if index_choice.lower() == 'ndvi':
402
+ return calculate_ndvi(image, roi, reducer_choice)
403
+ elif index_choice.lower() == 'ndwi':
404
+ return calculate_ndwi(image, roi, reducer_choice)
405
+ elif index_choice.lower() == 'average no₂':
406
+ mean_no2 = image.select('NO2').mean().rename('Average NO₂')
407
+ return mean_no2
408
+ elif index_choice.lower() == 'custom formula':
409
+ # Pass the custom formula here, not the index_choice
410
+ return calculate_custom_formula(image, roi, custom_formula, reducer_choice)
411
+ else:
412
+ st.write("Please Select any one option...."+ index_choice.lower())
413
+
414
+ def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id, index_choice, reducer_choice, shape_type, aggregation_period, custom_formula=""):
415
+ aggregated_results = []
416
+
417
+ # Check if the index_choice is 'custom formula' and the custom formula is empty
418
+ if index_choice.lower() == 'custom_formula' and not custom_formula:
419
+ st.error("Custom formula cannot be empty. Please provide a formula.")
420
+ return aggregated_results # Return early to avoid further processing
421
+
422
+ # Initialize progress bar
423
+ total_steps = len(locations_df)
424
+ progress_bar = st.progress(0)
425
+ progress_text = st.empty()
426
+
427
+ with st.spinner('Processing data...'):
428
+ if shape_type.lower() == "point":
429
+ for idx, row in locations_df.iterrows():
430
+ # Check if the latitude and longitude columns exist and have values
431
+ latitude = row.get('latitude')
432
+ longitude = row.get('longitude')
433
+
434
+ if pd.isna(latitude) or pd.isna(longitude):
435
+ st.warning(f"Skipping location {idx} with missing latitude or longitude")
436
+ continue
437
+
438
+ location_name = row.get('name', f"Location_{idx}")
439
+
440
+ roi = ee.Geometry.Point([longitude, latitude])
441
+
442
+ collection = ee.ImageCollection(dataset_id) \
443
+ .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
444
+ .filterBounds(roi)
445
+
446
+ # Aggregate data based on the selected period
447
+ if aggregation_period.lower() == 'daily':
448
+ collection = aggregate_data_daily(collection)
449
+ elif aggregation_period.lower() == 'weekly':
450
+ collection = aggregate_data_weekly(collection)
451
+ elif aggregation_period.lower() == 'monthly':
452
+ collection = aggregate_data_monthly(collection)
453
+ elif aggregation_period.lower() == 'yearly':
454
+ collection = aggregate_data_yearly(collection)
455
+
456
+ # Process each image in the collection
457
+ image_list = collection.toList(collection.size())
458
+
459
+ for i in range(image_list.size().getInfo()):
460
+ image = ee.Image(image_list.get(i))
461
+
462
+ if aggregation_period.lower() == 'daily':
463
+ timestamp = image.get('day')
464
+ elif aggregation_period.lower() == 'weekly':
465
+ timestamp = image.get('week')
466
+ elif aggregation_period.lower() == 'monthly':
467
+ timestamp = image.get('month')
468
+ elif aggregation_period.lower() == 'yearly':
469
+ timestamp = image.get('year')
470
+
471
+ date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo()
472
+
473
+ # Calculate the index for each period
474
+ index_image = calculate_index_for_period(image, roi, index_choice, reducer_choice, custom_formula)
475
+
476
+ # Skip if index_image is None
477
+ if index_image is None:
478
+ st.warning(f"Index calculation failed for {location_name} on {date}. Skipping this entry.")
479
+ continue
480
+
481
+ # Reduce the region to get the aggregated value
482
+ try:
483
+ index_value = index_image.reduceRegion(
484
+ reducer=get_reducer(reducer_choice),
485
+ geometry=roi,
486
+ scale=30
487
+ ).get(index_image.bandNames().get(0))
488
+
489
+ calculated_value = index_value.getInfo()
490
+
491
+ # Append the results if valid
492
+ if isinstance(calculated_value, (int, float)):
493
+ aggregated_results.append({
494
+ 'Location Name': location_name,
495
+ 'Latitude': latitude,
496
+ 'Longitude': longitude,
497
+ 'Date': date,
498
+ 'Calculated Value': calculated_value
499
+ })
500
+ else:
501
+ st.warning(f"Skipping invalid value for {location_name} on {date}")
502
+ except Exception as e:
503
+ st.error(f"Error retrieving value for {location_name}: {e}")
504
+
505
+ # Update progress bar
506
+ progress_percentage = (idx + 1) / total_steps
507
+ progress_bar.progress(progress_percentage)
508
+ progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
509
+
510
+ elif shape_type.lower() == "polygon":
511
+ for idx, row in locations_df.iterrows():
512
+ polygon_name = row.get('name', f"Polygon_{idx}")
513
+ polygon_geometry = row.get('geometry')
514
+
515
+ location_name = polygon_name
516
+
517
+ try:
518
+ roi = convert_to_ee_geometry(polygon_geometry)
519
+ except ValueError as e:
520
+ st.warning(f"Skipping invalid polygon {polygon_name}: {e}")
521
+ continue
522
+
523
+ collection = ee.ImageCollection(dataset_id) \
524
+ .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
525
+ .filterBounds(roi)
526
+
527
+ # Aggregate data based on the selected period
528
+ if aggregation_period.lower() == 'daily':
529
+ collection = aggregate_data_daily(collection)
530
+ elif aggregation_period.lower() == 'weekly':
531
+ collection = aggregate_data_weekly(collection)
532
+ elif aggregation_period.lower() == 'monthly':
533
+ collection = aggregate_data_monthly(collection)
534
+ elif aggregation_period.lower() == 'yearly':
535
+ collection = aggregate_data_yearly(collection)
536
+
537
+ # Process each image in the collection
538
+ image_list = collection.toList(collection.size())
539
+
540
+ for i in range(image_list.size().getInfo()):
541
+ image = ee.Image(image_list.get(i))
542
+
543
+ if aggregation_period.lower() == 'daily':
544
+ timestamp = image.get('day')
545
+ elif aggregation_period.lower() == 'weekly':
546
+ timestamp = image.get('week')
547
+ elif aggregation_period.lower() == 'monthly':
548
+ timestamp = image.get('month')
549
+ elif aggregation_period.lower() == 'yearly':
550
+ timestamp = image.get('year')
551
+
552
+ date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo()
553
+
554
+ # Calculate the index for each period
555
+ index_image = calculate_index_for_period(image, roi, index_choice, reducer_choice, custom_formula)
556
+
557
+ # Skip if index_image is None
558
+ if index_image is None:
559
+ st.warning(f"Index calculation failed for {location_name} on {date}. Skipping this entry.")
560
+ continue
561
+
562
+ # Reduce the region to get the aggregated value
563
+ try:
564
+ index_value = index_image.reduceRegion(
565
+ reducer=get_reducer(reducer_choice),
566
+ geometry=roi,
567
+ scale=30
568
+ ).get(index_image.bandNames().get(0))
569
+
570
+ calculated_value = index_value.getInfo()
571
+
572
+ # Append the results if valid
573
+ if isinstance(calculated_value, (int, float)):
574
+ aggregated_results.append({
575
+ 'Location Name': location_name,
576
+ 'Date': date,
577
+ 'Calculated Value': calculated_value
578
+ })
579
+ else:
580
+ st.warning(f"Skipping invalid value for {location_name} on {date}")
581
+ except Exception as e:
582
+ st.error(f"Error retrieving value for {location_name}: {e}")
583
+
584
+ # Update progress bar
585
+ progress_percentage = (idx + 1) / total_steps
586
+ progress_bar.progress(progress_percentage)
587
+ progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
588
+
589
+ return aggregated_results
590
+
591
+ # When the user clicks the process button, start the calculation
592
+ if st.button(f"Calculate ({index_choice})"):
593
+ if file_upload is not None:
594
+ # Read the user-uploaded file
595
+ if shape_type.lower() == "point":
596
+ if file_upload.name.endswith('.csv'):
597
+ locations_df = read_csv(file_upload)
598
+ elif file_upload.name.endswith('.geojson'):
599
+ locations_df = read_geojson(file_upload)
600
+ elif file_upload.name.endswith('.kml'):
601
+ locations_df = read_kml(file_upload)
602
  else:
603
+ st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
604
+ locations_df = pd.DataFrame()
605
+
606
+ # Process results for the selected aggregation period
607
+ results = process_aggregation(
608
+ locations_df,
609
+ start_date_str,
610
+ end_date_str,
611
+ dataset_id,
612
+ index_choice,
613
+ reducer_choice,
614
+ shape_type,
615
+ aggregation_period,
616
+ custom_formula
617
+ )
618
+
619
+ # Display the results in a DataFrame
620
+ if results:
621
+ result_df = pd.DataFrame(results)
622
+ st.write(f"Processed Results Table ({aggregation_period}):")
623
+ st.dataframe(result_df)
624
+
625
+ # Provide a download button for the result CSV file
626
+ filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y/%m/%d')}_{end_date.strftime('%Y/%m/%d')}_{aggregation_period.lower()}.csv"
627
+ st.download_button(
628
+ label="Download results as CSV",
629
+ data=result_df.to_csv(index=False).encode('utf-8'),
630
+ file_name=filename,
631
+ mime='text/csv'
632
+ )
633
+
634
+ # Once processing is complete, hide the spinner
635
+ st.spinner('') # This will stop the spinner
636
+ st.success('Processing complete!')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
637
  else:
638
+ st.warning("No results were generated.")
639
+
640
+ elif shape_type.lower() == "polygon":
641
+ if file_upload.name.endswith('.geojson'):
642
+ locations_df = read_geojson(file_upload)
643
+ else:
644
+ st.error("Please upload a valid GeoJSON file for polygons.")
645
+
646
+ # Process results for the selected aggregation period
647
+ results = process_aggregation(
648
+ locations_df,
649
+ start_date_str,
650
+ end_date_str,
651
+ dataset_id,
652
+ index_choice,
653
+ reducer_choice,
654
+ shape_type,
655
+ aggregation_period,
656
+ custom_formula
657
+ )
658
+
659
+ # Display the results in a DataFrame
660
+ if results:
661
+ result_df = pd.DataFrame(results)
662
+ st.write(f"Processed Results Table ({aggregation_period}):")
663
+ st.dataframe(result_df)
664
+
665
+ # Provide a download button for the result CSV file
666
+ filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y/%m/%d')}_{end_date.strftime('%Y/%m/%d')}_{aggregation_period.lower()}.csv"
667
+ st.download_button(
668
+ label="Download results as CSV",
669
+ data=result_df.to_csv(index=False).encode('utf-8'),
670
+ file_name=filename,
671
+ mime='text/csv'
672
+ )
673
+ # Once processing is complete, hide the spinner
674
+ st.spinner('') # This will stop the spinner
675
+ st.success('Processing complete!')
676
+ else:
677
+ st.warning("No results were generated.")
678
+
679
+ else:
680
+ st.warning("Please upload a file.")
 
 
 
 
 
 
 
 
 
681