update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,6 @@ import pandas as pd
|
|
6 |
import geopandas as gpd
|
7 |
from datetime import datetime
|
8 |
import leafmap.foliumap as leafmap
|
9 |
-
import time
|
10 |
import re
|
11 |
|
12 |
# Set up the page layout
|
@@ -35,6 +34,15 @@ st.write(
|
|
35 |
unsafe_allow_html=True,
|
36 |
)
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
# Authenticate and initialize Earth Engine
|
39 |
earthengine_credentials = os.environ.get("EE_Authentication")
|
40 |
|
@@ -45,24 +53,32 @@ with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
|
|
45 |
|
46 |
ee.Initialize(project='ee-yashsacisro24')
|
47 |
|
48 |
-
# Load Sentinel dataset options from JSON file
|
49 |
with open("sentinel_datasets.json") as f:
|
50 |
data = json.load(f)
|
51 |
|
52 |
-
# Display the title
|
53 |
st.title("Sentinel Dataset")
|
54 |
|
55 |
-
# Select dataset category
|
56 |
main_selection = st.selectbox("Select Sentinel Dataset Category", list(data.keys()))
|
57 |
|
|
|
58 |
if main_selection:
|
59 |
sub_options = data[main_selection]["sub_options"]
|
60 |
sub_selection = st.selectbox("Select Specific Dataset ID", list(sub_options.keys()))
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
# Earth Engine Index Calculator Section
|
63 |
st.header("Earth Engine Index Calculator")
|
64 |
|
65 |
-
# Choose Index or Custom Formula (case-insensitive)
|
66 |
index_choice = st.selectbox("Select an Index or Enter Custom Formula", ['NDVI', 'NDWI', 'Average NO₂', 'Custom Formula'])
|
67 |
|
68 |
# Initialize custom_formula variable
|
@@ -76,16 +92,41 @@ elif index_choice.lower() == 'ndwi':
|
|
76 |
elif index_choice.lower() == 'average no₂':
|
77 |
st.write("Formula for Average NO₂: Average NO₂ = Mean(NO2 band)")
|
78 |
elif index_choice.lower() == 'custom formula':
|
79 |
-
custom_formula = st.text_input("Enter Custom Formula (e.g.,
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
# Function to check if the polygon geometry is valid and convert it to the correct format
|
83 |
def convert_to_ee_geometry(geometry):
|
84 |
-
# Ensure the polygon geometry is in the right format
|
85 |
if geometry.is_valid:
|
86 |
-
# Convert the geometry to GeoJSON format
|
87 |
geojson = geometry.__geo_interface__
|
88 |
-
# Convert to Earth Engine geometry
|
89 |
return ee.Geometry(geojson)
|
90 |
else:
|
91 |
raise ValueError("Invalid geometry: The polygon geometry is not valid.")
|
@@ -111,6 +152,118 @@ shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", [
|
|
111 |
# Ask user to upload a file based on shape type (case-insensitive)
|
112 |
file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
# Date Input for Start and End Dates
|
115 |
start_date = st.date_input("Start Date", value=pd.to_datetime('2020-01-01'))
|
116 |
end_date = st.date_input("End Date", value=pd.to_datetime('2020-12-31'))
|
@@ -119,6 +272,9 @@ end_date = st.date_input("End Date", value=pd.to_datetime('2020-12-31'))
|
|
119 |
start_date_str = start_date.strftime('%Y-%m-%d')
|
120 |
end_date_str = end_date.strftime('%Y-%m-%d')
|
121 |
|
|
|
|
|
|
|
122 |
# Initialize session state for storing results if not already done
|
123 |
if 'results' not in st.session_state:
|
124 |
st.session_state.results = []
|
@@ -127,272 +283,399 @@ if 'last_params' not in st.session_state:
|
|
127 |
if 'map_data' not in st.session_state:
|
128 |
st.session_state.map_data = None # Initialize map_data
|
129 |
|
130 |
-
if 'file_upload' in st.session_state:
|
131 |
-
st.session_state.file_upload = None
|
132 |
-
|
133 |
# Function to check if parameters have changed
|
134 |
def parameters_changed():
|
135 |
return (
|
136 |
st.session_state.last_params.get('main_selection') != main_selection or
|
137 |
-
st.session_state.last_params.get('
|
138 |
st.session_state.last_params.get('index_choice') != index_choice or
|
139 |
st.session_state.last_params.get('start_date_str') != start_date_str or
|
140 |
-
st.session_state.last_params.get('end_date_str') != end_date_str
|
|
|
|
|
141 |
)
|
142 |
|
143 |
# If parameters have changed, reset the results
|
144 |
if parameters_changed():
|
145 |
st.session_state.results = [] # Clear the previous results
|
146 |
-
# Update the last parameters to the current ones
|
147 |
st.session_state.last_params = {
|
148 |
'main_selection': main_selection,
|
149 |
-
'
|
150 |
'index_choice': index_choice,
|
151 |
'start_date_str': start_date_str,
|
152 |
-
'end_date_str': end_date_str
|
|
|
|
|
153 |
}
|
154 |
|
155 |
-
# Function to
|
156 |
-
def calculate_ndvi(image, geometry):
|
157 |
ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
|
158 |
-
|
159 |
-
reducer=ee.Reducer.mean(),
|
160 |
-
geometry=geometry,
|
161 |
-
scale=30
|
162 |
-
)
|
163 |
-
return result.get('NDVI')
|
164 |
|
165 |
-
|
|
|
166 |
ndwi = image.normalizedDifference(['B3', 'B8']).rename('NDWI')
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
scale=30
|
171 |
-
)
|
172 |
-
return result.get('NDWI')
|
173 |
-
|
174 |
-
def calculate_avg_no2_sentinel5p(image, geometry):
|
175 |
-
no2 = image.select('NO2').reduceRegion(
|
176 |
-
reducer=ee.Reducer.mean(),
|
177 |
-
geometry=geometry,
|
178 |
-
scale=1000
|
179 |
-
).get('NO2')
|
180 |
-
return no2
|
181 |
-
|
182 |
-
def calculate_custom_formula(image, geometry, formula):
|
183 |
-
result = image.expression(formula).rename('Custom Index').reduceRegion(
|
184 |
-
reducer=ee.Reducer.mean(),
|
185 |
-
geometry=geometry,
|
186 |
-
scale=30
|
187 |
-
)
|
188 |
-
return result.get('Custom Index')
|
189 |
-
|
190 |
-
# Check if the file uploaded is different from the previous file uploaded
|
191 |
-
if 'file_upload' in st.session_state and st.session_state.file_upload != file_upload:
|
192 |
-
reset_session_state_for_new_file() # Reset session state for new file
|
193 |
-
|
194 |
-
# Process each point or polygon
|
195 |
-
if file_upload:
|
196 |
-
locations_df = None # Initialize locations_df to None
|
197 |
-
polygons_df = None # Initialize polygons_df to None
|
198 |
-
|
199 |
-
file_extension = os.path.splitext(file_upload.name)[1].lower() # Convert extension to lowercase
|
200 |
-
|
201 |
-
# Read file based on shape type (case-insensitive)
|
202 |
-
if shape_type.lower() == 'point':
|
203 |
-
if file_extension == '.csv':
|
204 |
-
locations_df = read_csv(file_upload)
|
205 |
-
elif file_extension == '.geojson':
|
206 |
-
locations_df = read_geojson(file_upload)
|
207 |
-
elif file_extension == '.kml':
|
208 |
-
locations_df = read_kml(file_upload)
|
209 |
-
else:
|
210 |
-
st.error("Unsupported file type. Please upload a CSV, GeoJSON, or KML file for points.")
|
211 |
-
elif shape_type.lower() == 'polygon':
|
212 |
-
if file_extension == '.geojson':
|
213 |
-
polygons_df = read_geojson(file_upload)
|
214 |
-
elif file_extension == '.kml':
|
215 |
-
polygons_df = read_kml(file_upload)
|
216 |
-
else:
|
217 |
-
st.error("Unsupported file type. Please upload a GeoJSON or KML file for polygons.")
|
218 |
|
219 |
-
#
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
# Check if latitude or longitude are NaN and skip if they are
|
234 |
-
if pd.isna(latitude) or pd.isna(longitude):
|
235 |
-
continue # Skip this row and move to the next one
|
236 |
-
|
237 |
-
m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
|
238 |
|
239 |
-
|
240 |
-
|
241 |
-
|
|
|
|
|
242 |
|
243 |
-
|
244 |
-
|
|
|
|
|
245 |
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
|
|
251 |
|
252 |
-
|
253 |
-
|
254 |
-
|
|
|
255 |
|
256 |
-
|
257 |
-
|
|
|
|
|
258 |
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
else:
|
269 |
-
st.
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
# Create a LeafMap object to display the polygons
|
305 |
-
m = leafmap.Map(center=[polygons_df.geometry.centroid.y.mean(), polygons_df.geometry.centroid.x.mean()], zoom=10)
|
306 |
-
|
307 |
-
# Add polygons to the map
|
308 |
-
for _, row in polygons_df.iterrows():
|
309 |
-
polygon = row['geometry']
|
310 |
-
if polygon.is_valid: # Check if the geometry is valid
|
311 |
-
# Create a GeoDataFrame with the single row
|
312 |
-
gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=polygons_df.crs)
|
313 |
-
|
314 |
-
# Add the valid GeoDataFrame to the map
|
315 |
-
m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
|
316 |
-
|
317 |
-
# Display map
|
318 |
-
st.write("Map of Uploaded Polygons:")
|
319 |
-
m.to_streamlit()
|
320 |
-
|
321 |
-
# Store the map in session_state
|
322 |
-
st.session_state.map_data = m
|
323 |
-
|
324 |
-
# Process each polygon for index calculation
|
325 |
-
for idx, row in polygons_df.iterrows():
|
326 |
-
polygon = row['geometry']
|
327 |
-
location_name = row.get('name', f"Polygon_{idx}")
|
328 |
-
|
329 |
-
# Define the region of interest (ROI)
|
330 |
-
try:
|
331 |
-
roi = convert_to_ee_geometry(polygon)
|
332 |
-
except ValueError as e:
|
333 |
-
st.error(str(e))
|
334 |
-
continue # Skip this polygon if geometry is invalid
|
335 |
-
|
336 |
-
# Load Sentinel-2 image collection
|
337 |
-
collection = ee.ImageCollection(sub_options[sub_selection]) \
|
338 |
-
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
|
339 |
-
.filterBounds(roi)
|
340 |
-
|
341 |
-
# Check if the collection has images for the selected date range
|
342 |
-
image_count = collection.size().getInfo()
|
343 |
-
if image_count == 0:
|
344 |
-
st.warning(f"No images found for {location_name}.")
|
345 |
else:
|
346 |
-
st.
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
#
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
filename = f"{main_selection}_{sub_selection}_{start_date.strftime('%Y/%m/%d')}_{end_date.strftime('%Y/%m/%d')}_{shape_type}.csv"
|
390 |
-
|
391 |
-
# Convert results to DataFrame for download
|
392 |
-
st.download_button(
|
393 |
-
label="Download results as CSV",
|
394 |
-
data=result_df.to_csv(index=False).encode('utf-8'),
|
395 |
-
file_name=filename,
|
396 |
-
mime='text/csv'
|
397 |
-
)
|
398 |
|
|
|
6 |
import geopandas as gpd
|
7 |
from datetime import datetime
|
8 |
import leafmap.foliumap as leafmap
|
|
|
9 |
import re
|
10 |
|
11 |
# Set up the page layout
|
|
|
34 |
unsafe_allow_html=True,
|
35 |
)
|
36 |
|
37 |
+
# Title
|
38 |
+
st.markdown(
|
39 |
+
f"""
|
40 |
+
<h1 style="text-align: center;">Precision Analysis for Vegetation, Water, and Air Quality</h1>
|
41 |
+
""",
|
42 |
+
unsafe_allow_html=True,
|
43 |
+
)
|
44 |
+
st.write("<h2><div style='text-align: center;'>User Inputs</div></h2>", unsafe_allow_html=True)
|
45 |
+
|
46 |
# Authenticate and initialize Earth Engine
|
47 |
earthengine_credentials = os.environ.get("EE_Authentication")
|
48 |
|
|
|
53 |
|
54 |
ee.Initialize(project='ee-yashsacisro24')
|
55 |
|
56 |
+
# Load the Sentinel dataset options from JSON file
|
57 |
with open("sentinel_datasets.json") as f:
|
58 |
data = json.load(f)
|
59 |
|
60 |
+
# Display the title for the Streamlit app
|
61 |
st.title("Sentinel Dataset")
|
62 |
|
63 |
+
# Select dataset category (main selection)
|
64 |
main_selection = st.selectbox("Select Sentinel Dataset Category", list(data.keys()))
|
65 |
|
66 |
+
# If a category is selected, display the sub-options (specific datasets)
|
67 |
if main_selection:
|
68 |
sub_options = data[main_selection]["sub_options"]
|
69 |
sub_selection = st.selectbox("Select Specific Dataset ID", list(sub_options.keys()))
|
70 |
|
71 |
+
# Display the selected dataset ID based on user input
|
72 |
+
if sub_selection:
|
73 |
+
st.write(f"You selected: {main_selection} -> {sub_selection}")
|
74 |
+
st.write(f"Dataset ID: {sub_options[sub_selection]}")
|
75 |
+
|
76 |
+
# Fetch the correct dataset ID from the sub-selection
|
77 |
+
dataset_id = sub_options[sub_selection]
|
78 |
+
|
79 |
# Earth Engine Index Calculator Section
|
80 |
st.header("Earth Engine Index Calculator")
|
81 |
|
|
|
82 |
index_choice = st.selectbox("Select an Index or Enter Custom Formula", ['NDVI', 'NDWI', 'Average NO₂', 'Custom Formula'])
|
83 |
|
84 |
# Initialize custom_formula variable
|
|
|
92 |
elif index_choice.lower() == 'average no₂':
|
93 |
st.write("Formula for Average NO₂: Average NO₂ = Mean(NO2 band)")
|
94 |
elif index_choice.lower() == 'custom formula':
|
95 |
+
custom_formula = st.text_input("Enter Custom Formula (e.g., B5,B4)")
|
96 |
+
# Check if custom formula is empty and show warning
|
97 |
+
if not custom_formula:
|
98 |
+
st.warning("Please enter a custom formula before proceeding.")
|
99 |
+
else:
|
100 |
+
st.write(f"Custom Formula: (band1 - band2) / (band1 + band2)") # Display the custom formula after the user inputs it
|
101 |
+
|
102 |
+
# Function to get the corresponding reducer based on user input
|
103 |
+
def get_reducer(reducer_name):
|
104 |
+
"""
|
105 |
+
Map user-friendly reducer names to Earth Engine reducer objects.
|
106 |
+
"""
|
107 |
+
reducers = {
|
108 |
+
'mean': ee.Reducer.mean(),
|
109 |
+
'sum': ee.Reducer.sum(),
|
110 |
+
'median': ee.Reducer.median(),
|
111 |
+
'min': ee.Reducer.min(),
|
112 |
+
'max': ee.Reducer.max(),
|
113 |
+
'count': ee.Reducer.count(),
|
114 |
+
}
|
115 |
+
|
116 |
+
# Default to 'mean' if the reducer_name is not recognized
|
117 |
+
return reducers.get(reducer_name.lower(), ee.Reducer.mean())
|
118 |
+
|
119 |
+
# Streamlit selectbox for reducer choice
|
120 |
+
reducer_choice = st.selectbox(
|
121 |
+
"Select Reducer",
|
122 |
+
['mean', 'sum', 'median', 'min', 'max', 'count'],
|
123 |
+
index=0 # Default to 'mean'
|
124 |
+
)
|
125 |
|
126 |
# Function to check if the polygon geometry is valid and convert it to the correct format
|
127 |
def convert_to_ee_geometry(geometry):
|
|
|
128 |
if geometry.is_valid:
|
|
|
129 |
geojson = geometry.__geo_interface__
|
|
|
130 |
return ee.Geometry(geojson)
|
131 |
else:
|
132 |
raise ValueError("Invalid geometry: The polygon geometry is not valid.")
|
|
|
152 |
# Ask user to upload a file based on shape type (case-insensitive)
|
153 |
file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
|
154 |
|
155 |
+
if file_upload is not None:
|
156 |
+
# Read the user-uploaded file
|
157 |
+
if shape_type.lower() == "point":
|
158 |
+
# Handle different file types for Point data
|
159 |
+
if file_upload.name.endswith('.csv'):
|
160 |
+
locations_df = pd.read_csv(file_upload)
|
161 |
+
elif file_upload.name.endswith('.geojson'):
|
162 |
+
locations_df = gpd.read_file(file_upload)
|
163 |
+
elif file_upload.name.endswith('.kml'):
|
164 |
+
locations_df = gpd.read_file(file_upload)
|
165 |
+
else:
|
166 |
+
st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
|
167 |
+
locations_df = pd.DataFrame()
|
168 |
+
|
169 |
+
# Check if the file contains polygons when the user selected "Point"
|
170 |
+
if 'geometry' in locations_df.columns:
|
171 |
+
# Check if the geometry type is Polygon or MultiPolygon
|
172 |
+
if locations_df.geometry.geom_type.isin(['Polygon', 'MultiPolygon']).any():
|
173 |
+
st.warning("The uploaded file contains polygon data. Please select 'Polygon' for processing.")
|
174 |
+
st.stop() # Stop further processing if polygons are detected
|
175 |
+
|
176 |
+
# Processing the point data
|
177 |
+
with st.spinner('Processing data...'):
|
178 |
+
if locations_df is not None and not locations_df.empty:
|
179 |
+
# For GeoJSON data, the coordinates are in the geometry column
|
180 |
+
if 'geometry' in locations_df.columns:
|
181 |
+
# Extract latitude and longitude from the geometry column
|
182 |
+
locations_df['latitude'] = locations_df['geometry'].y
|
183 |
+
locations_df['longitude'] = locations_df['geometry'].x
|
184 |
+
|
185 |
+
# Ensure the necessary columns exist in the dataframe
|
186 |
+
if 'latitude' not in locations_df.columns or 'longitude' not in locations_df.columns:
|
187 |
+
st.error("Uploaded file is missing required 'latitude' or 'longitude' columns.")
|
188 |
+
else:
|
189 |
+
# Display a preview of the points data
|
190 |
+
st.write("Preview of the uploaded points data:")
|
191 |
+
st.dataframe(locations_df.head())
|
192 |
+
|
193 |
+
# Create a LeafMap object to display the points
|
194 |
+
m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
|
195 |
+
|
196 |
+
# Add points to the map using a loop
|
197 |
+
for _, row in locations_df.iterrows():
|
198 |
+
latitude = row['latitude']
|
199 |
+
longitude = row['longitude']
|
200 |
+
|
201 |
+
# Check if latitude or longitude are NaN and skip if they are
|
202 |
+
if pd.isna(latitude) or pd.isna(longitude):
|
203 |
+
continue # Skip this row and move to the next one
|
204 |
+
|
205 |
+
m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
|
206 |
+
|
207 |
+
# Display map
|
208 |
+
st.write("Map of Uploaded Points:")
|
209 |
+
m.to_streamlit()
|
210 |
+
|
211 |
+
# Store the map in session_state
|
212 |
+
st.session_state.map_data = m
|
213 |
+
|
214 |
+
elif shape_type.lower() == "polygon":
|
215 |
+
# Handle different file types for Polygon data:
|
216 |
+
if file_upload.name.endswith('.csv'):
|
217 |
+
locations_df = pd.read_csv(file_upload)
|
218 |
+
elif file_upload.name.endswith('.geojson'):
|
219 |
+
locations_df = gpd.read_file(file_upload)
|
220 |
+
elif file_upload.name.endswith('.kml'):
|
221 |
+
locations_df = gpd.read_file(file_upload)
|
222 |
+
else:
|
223 |
+
st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
|
224 |
+
locations_df = pd.DataFrame()
|
225 |
+
|
226 |
+
# Check if the file contains points when the user selected "Polygon"
|
227 |
+
if 'geometry' in locations_df.columns:
|
228 |
+
# Check if the geometry type is Point or MultiPoint
|
229 |
+
if locations_df.geometry.geom_type.isin(['Point', 'MultiPoint']).any():
|
230 |
+
st.warning("The uploaded file contains point data. Please select 'Point' for processing.")
|
231 |
+
st.stop() # Stop further processing if point data is detected
|
232 |
+
|
233 |
+
# Processing the polygon data
|
234 |
+
with st.spinner('Processing data...'):
|
235 |
+
if locations_df is not None and not locations_df.empty:
|
236 |
+
# Ensure the 'geometry' column exists in the dataframe
|
237 |
+
if 'geometry' not in locations_df.columns:
|
238 |
+
st.error("Uploaded file is missing required 'geometry' column.")
|
239 |
+
else:
|
240 |
+
# Display a preview of the polygons data
|
241 |
+
st.write("Preview of the uploaded polygons data:")
|
242 |
+
st.dataframe(locations_df.head())
|
243 |
+
|
244 |
+
# Create a LeafMap object to display the polygons
|
245 |
+
# Calculate the centroid of the polygons for the map center
|
246 |
+
centroid_lat = locations_df.geometry.centroid.y.mean()
|
247 |
+
centroid_lon = locations_df.geometry.centroid.x.mean()
|
248 |
+
|
249 |
+
m = leafmap.Map(center=[centroid_lat, centroid_lon], zoom=10)
|
250 |
+
|
251 |
+
# Add polygons to the map using a loop
|
252 |
+
for _, row in locations_df.iterrows():
|
253 |
+
polygon = row['geometry']
|
254 |
+
if polygon.is_valid: # Check if polygon is valid
|
255 |
+
# Create a GeoDataFrame for this polygon
|
256 |
+
gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=locations_df.crs)
|
257 |
+
m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
|
258 |
+
|
259 |
+
# Display map
|
260 |
+
st.write("Map of Uploaded Polygons:")
|
261 |
+
m.to_streamlit()
|
262 |
+
|
263 |
+
# Store the map in session_state
|
264 |
+
st.session_state.map_data = m
|
265 |
+
|
266 |
+
|
267 |
# Date Input for Start and End Dates
|
268 |
start_date = st.date_input("Start Date", value=pd.to_datetime('2020-01-01'))
|
269 |
end_date = st.date_input("End Date", value=pd.to_datetime('2020-12-31'))
|
|
|
272 |
start_date_str = start_date.strftime('%Y-%m-%d')
|
273 |
end_date_str = end_date.strftime('%Y-%m-%d')
|
274 |
|
275 |
+
# Aggregation period selection
|
276 |
+
aggregation_period = st.selectbox("Select Aggregation Period", ["Daily", "Weekly", "Monthly", "Yearly"], index=0)
|
277 |
+
|
278 |
# Initialize session state for storing results if not already done
|
279 |
if 'results' not in st.session_state:
|
280 |
st.session_state.results = []
|
|
|
283 |
if 'map_data' not in st.session_state:
|
284 |
st.session_state.map_data = None # Initialize map_data
|
285 |
|
|
|
|
|
|
|
286 |
# Function to check if parameters have changed
|
287 |
def parameters_changed():
|
288 |
return (
|
289 |
st.session_state.last_params.get('main_selection') != main_selection or
|
290 |
+
st.session_state.last_params.get('dataset_id') != dataset_id or
|
291 |
st.session_state.last_params.get('index_choice') != index_choice or
|
292 |
st.session_state.last_params.get('start_date_str') != start_date_str or
|
293 |
+
st.session_state.last_params.get('end_date_str') != end_date_str or
|
294 |
+
st.session_state.last_params.get('shape_type') != shape_type or
|
295 |
+
st.session_state.last_params.get('file_upload') != file_upload
|
296 |
)
|
297 |
|
298 |
# If parameters have changed, reset the results
|
299 |
if parameters_changed():
|
300 |
st.session_state.results = [] # Clear the previous results
|
|
|
301 |
st.session_state.last_params = {
|
302 |
'main_selection': main_selection,
|
303 |
+
'dataset_id': dataset_id,
|
304 |
'index_choice': index_choice,
|
305 |
'start_date_str': start_date_str,
|
306 |
+
'end_date_str': end_date_str,
|
307 |
+
'shape_type': shape_type,
|
308 |
+
'file_upload': file_upload
|
309 |
}
|
310 |
|
311 |
+
# Function to calculate NDVI with the selected reducer
|
312 |
+
def calculate_ndvi(image, geometry, reducer_choice):
|
313 |
ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
|
314 |
+
return ndvi
|
|
|
|
|
|
|
|
|
|
|
315 |
|
316 |
+
# Function to calculate NDWI
|
317 |
+
def calculate_ndwi(image, geometry, reducer_choice):
|
318 |
ndwi = image.normalizedDifference(['B3', 'B8']).rename('NDWI')
|
319 |
+
return ndwi
|
320 |
+
|
321 |
+
def calculate_custom_formula(image, geometry, custom_formula, reducer_choice, scale=30):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
|
323 |
+
# Calculate NDWI using the user-specified bands
|
324 |
+
band1 = custom_formula[:custom_formula.find(",")]
|
325 |
+
band2 = custom_formula[custom_formula.find(",")+1:]
|
326 |
+
custom_formula = image.normalizedDifference([band1, band2]).rename('custom formula')
|
327 |
+
return custom_formula
|
328 |
+
|
329 |
+
# Modify aggregation functions to return the correct time period and aggregated results
|
330 |
+
def aggregate_data_daily(collection):
|
331 |
+
# Extract day from the image date (using the exact date)
|
332 |
+
collection = collection.map(lambda image: image.set('day', ee.Date(image.get('system:time_start')).format('YYYY-MM-dd')))
|
333 |
+
|
334 |
+
# Group images by day (distinct days)
|
335 |
+
grouped_by_day = collection.aggregate_array('day').distinct()
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
|
337 |
+
def calculate_daily_mean(day):
|
338 |
+
# Filter the collection by the specific day
|
339 |
+
daily_collection = collection.filter(ee.Filter.eq('day', day))
|
340 |
+
daily_mean = daily_collection.mean() # Calculate mean for the day
|
341 |
+
return daily_mean.set('day', day)
|
342 |
|
343 |
+
# Calculate the daily mean for each day
|
344 |
+
daily_images = ee.List(grouped_by_day.map(calculate_daily_mean))
|
345 |
+
|
346 |
+
return ee.ImageCollection(daily_images)
|
347 |
|
348 |
+
def aggregate_data_weekly(collection):
|
349 |
+
# Extract week and year from the image date
|
350 |
+
collection = collection.map(lambda image: image.set('week', ee.Date(image.get('system:time_start')).format('YYYY-ww')))
|
351 |
+
|
352 |
+
# Group images by week
|
353 |
+
grouped_by_week = collection.aggregate_array('week').distinct()
|
354 |
|
355 |
+
def calculate_weekly_mean(week):
|
356 |
+
weekly_collection = collection.filter(ee.Filter.eq('week', week))
|
357 |
+
weekly_mean = weekly_collection.mean()
|
358 |
+
return weekly_mean.set('week', week)
|
359 |
|
360 |
+
# Calculate the weekly mean for each week
|
361 |
+
weekly_images = ee.List(grouped_by_week.map(calculate_weekly_mean))
|
362 |
+
|
363 |
+
return ee.ImageCollection(weekly_images)
|
364 |
|
365 |
+
def aggregate_data_monthly(collection):
|
366 |
+
# Extract month and year from the image date
|
367 |
+
collection = collection.map(lambda image: image.set('month', ee.Date(image.get('system:time_start')).format('YYYY-MM')))
|
368 |
+
|
369 |
+
# Group images by month
|
370 |
+
grouped_by_month = collection.aggregate_array('month').distinct()
|
371 |
+
|
372 |
+
def calculate_monthly_mean(month):
|
373 |
+
monthly_collection = collection.filter(ee.Filter.eq('month', month))
|
374 |
+
monthly_mean = monthly_collection.mean()
|
375 |
+
return monthly_mean.set('month', month)
|
376 |
+
|
377 |
+
# Calculate the monthly mean for each month
|
378 |
+
monthly_images = ee.List(grouped_by_month.map(calculate_monthly_mean))
|
379 |
+
|
380 |
+
return ee.ImageCollection(monthly_images)
|
381 |
+
|
382 |
+
def aggregate_data_yearly(collection):
|
383 |
+
# Extract year from the image date
|
384 |
+
collection = collection.map(lambda image: image.set('year', ee.Date(image.get('system:time_start')).format('YYYY')))
|
385 |
+
|
386 |
+
# Group images by year
|
387 |
+
grouped_by_year = collection.aggregate_array('year').distinct()
|
388 |
|
389 |
+
def calculate_yearly_mean(year):
|
390 |
+
yearly_collection = collection.filter(ee.Filter.eq('year', year))
|
391 |
+
yearly_mean = yearly_collection.mean()
|
392 |
+
return yearly_mean.set('year', year)
|
393 |
+
|
394 |
+
# Calculate the yearly mean for each year
|
395 |
+
yearly_images = ee.List(grouped_by_year.map(calculate_yearly_mean))
|
396 |
+
|
397 |
+
return ee.ImageCollection(yearly_images)
|
398 |
+
|
399 |
+
# Function to calculate index based on the selected choice
|
400 |
+
def calculate_index_for_period(image, roi, index_choice, reducer_choice, custom_formula):
|
401 |
+
if index_choice.lower() == 'ndvi':
|
402 |
+
return calculate_ndvi(image, roi, reducer_choice)
|
403 |
+
elif index_choice.lower() == 'ndwi':
|
404 |
+
return calculate_ndwi(image, roi, reducer_choice)
|
405 |
+
elif index_choice.lower() == 'average no₂':
|
406 |
+
mean_no2 = image.select('NO2').mean().rename('Average NO₂')
|
407 |
+
return mean_no2
|
408 |
+
elif index_choice.lower() == 'custom formula':
|
409 |
+
# Pass the custom formula here, not the index_choice
|
410 |
+
return calculate_custom_formula(image, roi, custom_formula, reducer_choice)
|
411 |
+
else:
|
412 |
+
st.write("Please Select any one option...."+ index_choice.lower())
|
413 |
+
|
414 |
+
def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id, index_choice, reducer_choice, shape_type, aggregation_period, custom_formula=""):
|
415 |
+
aggregated_results = []
|
416 |
+
|
417 |
+
# Check if the index_choice is 'custom formula' and the custom formula is empty
|
418 |
+
if index_choice.lower() == 'custom_formula' and not custom_formula:
|
419 |
+
st.error("Custom formula cannot be empty. Please provide a formula.")
|
420 |
+
return aggregated_results # Return early to avoid further processing
|
421 |
+
|
422 |
+
# Initialize progress bar
|
423 |
+
total_steps = len(locations_df)
|
424 |
+
progress_bar = st.progress(0)
|
425 |
+
progress_text = st.empty()
|
426 |
+
|
427 |
+
with st.spinner('Processing data...'):
|
428 |
+
if shape_type.lower() == "point":
|
429 |
+
for idx, row in locations_df.iterrows():
|
430 |
+
# Check if the latitude and longitude columns exist and have values
|
431 |
+
latitude = row.get('latitude')
|
432 |
+
longitude = row.get('longitude')
|
433 |
+
|
434 |
+
if pd.isna(latitude) or pd.isna(longitude):
|
435 |
+
st.warning(f"Skipping location {idx} with missing latitude or longitude")
|
436 |
+
continue
|
437 |
+
|
438 |
+
location_name = row.get('name', f"Location_{idx}")
|
439 |
+
|
440 |
+
roi = ee.Geometry.Point([longitude, latitude])
|
441 |
+
|
442 |
+
collection = ee.ImageCollection(dataset_id) \
|
443 |
+
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
|
444 |
+
.filterBounds(roi)
|
445 |
+
|
446 |
+
# Aggregate data based on the selected period
|
447 |
+
if aggregation_period.lower() == 'daily':
|
448 |
+
collection = aggregate_data_daily(collection)
|
449 |
+
elif aggregation_period.lower() == 'weekly':
|
450 |
+
collection = aggregate_data_weekly(collection)
|
451 |
+
elif aggregation_period.lower() == 'monthly':
|
452 |
+
collection = aggregate_data_monthly(collection)
|
453 |
+
elif aggregation_period.lower() == 'yearly':
|
454 |
+
collection = aggregate_data_yearly(collection)
|
455 |
+
|
456 |
+
# Process each image in the collection
|
457 |
+
image_list = collection.toList(collection.size())
|
458 |
+
|
459 |
+
for i in range(image_list.size().getInfo()):
|
460 |
+
image = ee.Image(image_list.get(i))
|
461 |
+
|
462 |
+
if aggregation_period.lower() == 'daily':
|
463 |
+
timestamp = image.get('day')
|
464 |
+
elif aggregation_period.lower() == 'weekly':
|
465 |
+
timestamp = image.get('week')
|
466 |
+
elif aggregation_period.lower() == 'monthly':
|
467 |
+
timestamp = image.get('month')
|
468 |
+
elif aggregation_period.lower() == 'yearly':
|
469 |
+
timestamp = image.get('year')
|
470 |
+
|
471 |
+
date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo()
|
472 |
+
|
473 |
+
# Calculate the index for each period
|
474 |
+
index_image = calculate_index_for_period(image, roi, index_choice, reducer_choice, custom_formula)
|
475 |
+
|
476 |
+
# Skip if index_image is None
|
477 |
+
if index_image is None:
|
478 |
+
st.warning(f"Index calculation failed for {location_name} on {date}. Skipping this entry.")
|
479 |
+
continue
|
480 |
+
|
481 |
+
# Reduce the region to get the aggregated value
|
482 |
+
try:
|
483 |
+
index_value = index_image.reduceRegion(
|
484 |
+
reducer=get_reducer(reducer_choice),
|
485 |
+
geometry=roi,
|
486 |
+
scale=30
|
487 |
+
).get(index_image.bandNames().get(0))
|
488 |
+
|
489 |
+
calculated_value = index_value.getInfo()
|
490 |
+
|
491 |
+
# Append the results if valid
|
492 |
+
if isinstance(calculated_value, (int, float)):
|
493 |
+
aggregated_results.append({
|
494 |
+
'Location Name': location_name,
|
495 |
+
'Latitude': latitude,
|
496 |
+
'Longitude': longitude,
|
497 |
+
'Date': date,
|
498 |
+
'Calculated Value': calculated_value
|
499 |
+
})
|
500 |
+
else:
|
501 |
+
st.warning(f"Skipping invalid value for {location_name} on {date}")
|
502 |
+
except Exception as e:
|
503 |
+
st.error(f"Error retrieving value for {location_name}: {e}")
|
504 |
+
|
505 |
+
# Update progress bar
|
506 |
+
progress_percentage = (idx + 1) / total_steps
|
507 |
+
progress_bar.progress(progress_percentage)
|
508 |
+
progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
|
509 |
+
|
510 |
+
elif shape_type.lower() == "polygon":
|
511 |
+
for idx, row in locations_df.iterrows():
|
512 |
+
polygon_name = row.get('name', f"Polygon_{idx}")
|
513 |
+
polygon_geometry = row.get('geometry')
|
514 |
+
|
515 |
+
location_name = polygon_name
|
516 |
+
|
517 |
+
try:
|
518 |
+
roi = convert_to_ee_geometry(polygon_geometry)
|
519 |
+
except ValueError as e:
|
520 |
+
st.warning(f"Skipping invalid polygon {polygon_name}: {e}")
|
521 |
+
continue
|
522 |
+
|
523 |
+
collection = ee.ImageCollection(dataset_id) \
|
524 |
+
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
|
525 |
+
.filterBounds(roi)
|
526 |
+
|
527 |
+
# Aggregate data based on the selected period
|
528 |
+
if aggregation_period.lower() == 'daily':
|
529 |
+
collection = aggregate_data_daily(collection)
|
530 |
+
elif aggregation_period.lower() == 'weekly':
|
531 |
+
collection = aggregate_data_weekly(collection)
|
532 |
+
elif aggregation_period.lower() == 'monthly':
|
533 |
+
collection = aggregate_data_monthly(collection)
|
534 |
+
elif aggregation_period.lower() == 'yearly':
|
535 |
+
collection = aggregate_data_yearly(collection)
|
536 |
+
|
537 |
+
# Process each image in the collection
|
538 |
+
image_list = collection.toList(collection.size())
|
539 |
+
|
540 |
+
for i in range(image_list.size().getInfo()):
|
541 |
+
image = ee.Image(image_list.get(i))
|
542 |
+
|
543 |
+
if aggregation_period.lower() == 'daily':
|
544 |
+
timestamp = image.get('day')
|
545 |
+
elif aggregation_period.lower() == 'weekly':
|
546 |
+
timestamp = image.get('week')
|
547 |
+
elif aggregation_period.lower() == 'monthly':
|
548 |
+
timestamp = image.get('month')
|
549 |
+
elif aggregation_period.lower() == 'yearly':
|
550 |
+
timestamp = image.get('year')
|
551 |
+
|
552 |
+
date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo()
|
553 |
+
|
554 |
+
# Calculate the index for each period
|
555 |
+
index_image = calculate_index_for_period(image, roi, index_choice, reducer_choice, custom_formula)
|
556 |
+
|
557 |
+
# Skip if index_image is None
|
558 |
+
if index_image is None:
|
559 |
+
st.warning(f"Index calculation failed for {location_name} on {date}. Skipping this entry.")
|
560 |
+
continue
|
561 |
+
|
562 |
+
# Reduce the region to get the aggregated value
|
563 |
+
try:
|
564 |
+
index_value = index_image.reduceRegion(
|
565 |
+
reducer=get_reducer(reducer_choice),
|
566 |
+
geometry=roi,
|
567 |
+
scale=30
|
568 |
+
).get(index_image.bandNames().get(0))
|
569 |
+
|
570 |
+
calculated_value = index_value.getInfo()
|
571 |
+
|
572 |
+
# Append the results if valid
|
573 |
+
if isinstance(calculated_value, (int, float)):
|
574 |
+
aggregated_results.append({
|
575 |
+
'Location Name': location_name,
|
576 |
+
'Date': date,
|
577 |
+
'Calculated Value': calculated_value
|
578 |
+
})
|
579 |
+
else:
|
580 |
+
st.warning(f"Skipping invalid value for {location_name} on {date}")
|
581 |
+
except Exception as e:
|
582 |
+
st.error(f"Error retrieving value for {location_name}: {e}")
|
583 |
+
|
584 |
+
# Update progress bar
|
585 |
+
progress_percentage = (idx + 1) / total_steps
|
586 |
+
progress_bar.progress(progress_percentage)
|
587 |
+
progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
|
588 |
+
|
589 |
+
return aggregated_results
|
590 |
+
|
591 |
+
# When the user clicks the process button, start the calculation
|
592 |
+
if st.button(f"Calculate ({index_choice})"):
|
593 |
+
if file_upload is not None:
|
594 |
+
# Read the user-uploaded file
|
595 |
+
if shape_type.lower() == "point":
|
596 |
+
if file_upload.name.endswith('.csv'):
|
597 |
+
locations_df = read_csv(file_upload)
|
598 |
+
elif file_upload.name.endswith('.geojson'):
|
599 |
+
locations_df = read_geojson(file_upload)
|
600 |
+
elif file_upload.name.endswith('.kml'):
|
601 |
+
locations_df = read_kml(file_upload)
|
602 |
else:
|
603 |
+
st.error("Unsupported file format. Please upload CSV, GeoJSON, or KML.")
|
604 |
+
locations_df = pd.DataFrame()
|
605 |
+
|
606 |
+
# Process results for the selected aggregation period
|
607 |
+
results = process_aggregation(
|
608 |
+
locations_df,
|
609 |
+
start_date_str,
|
610 |
+
end_date_str,
|
611 |
+
dataset_id,
|
612 |
+
index_choice,
|
613 |
+
reducer_choice,
|
614 |
+
shape_type,
|
615 |
+
aggregation_period,
|
616 |
+
custom_formula
|
617 |
+
)
|
618 |
+
|
619 |
+
# Display the results in a DataFrame
|
620 |
+
if results:
|
621 |
+
result_df = pd.DataFrame(results)
|
622 |
+
st.write(f"Processed Results Table ({aggregation_period}):")
|
623 |
+
st.dataframe(result_df)
|
624 |
+
|
625 |
+
# Provide a download button for the result CSV file
|
626 |
+
filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y/%m/%d')}_{end_date.strftime('%Y/%m/%d')}_{aggregation_period.lower()}.csv"
|
627 |
+
st.download_button(
|
628 |
+
label="Download results as CSV",
|
629 |
+
data=result_df.to_csv(index=False).encode('utf-8'),
|
630 |
+
file_name=filename,
|
631 |
+
mime='text/csv'
|
632 |
+
)
|
633 |
+
|
634 |
+
# Once processing is complete, hide the spinner
|
635 |
+
st.spinner('') # This will stop the spinner
|
636 |
+
st.success('Processing complete!')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
637 |
else:
|
638 |
+
st.warning("No results were generated.")
|
639 |
+
|
640 |
+
elif shape_type.lower() == "polygon":
|
641 |
+
if file_upload.name.endswith('.geojson'):
|
642 |
+
locations_df = read_geojson(file_upload)
|
643 |
+
else:
|
644 |
+
st.error("Please upload a valid GeoJSON file for polygons.")
|
645 |
+
|
646 |
+
# Process results for the selected aggregation period
|
647 |
+
results = process_aggregation(
|
648 |
+
locations_df,
|
649 |
+
start_date_str,
|
650 |
+
end_date_str,
|
651 |
+
dataset_id,
|
652 |
+
index_choice,
|
653 |
+
reducer_choice,
|
654 |
+
shape_type,
|
655 |
+
aggregation_period,
|
656 |
+
custom_formula
|
657 |
+
)
|
658 |
+
|
659 |
+
# Display the results in a DataFrame
|
660 |
+
if results:
|
661 |
+
result_df = pd.DataFrame(results)
|
662 |
+
st.write(f"Processed Results Table ({aggregation_period}):")
|
663 |
+
st.dataframe(result_df)
|
664 |
+
|
665 |
+
# Provide a download button for the result CSV file
|
666 |
+
filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y/%m/%d')}_{end_date.strftime('%Y/%m/%d')}_{aggregation_period.lower()}.csv"
|
667 |
+
st.download_button(
|
668 |
+
label="Download results as CSV",
|
669 |
+
data=result_df.to_csv(index=False).encode('utf-8'),
|
670 |
+
file_name=filename,
|
671 |
+
mime='text/csv'
|
672 |
+
)
|
673 |
+
# Once processing is complete, hide the spinner
|
674 |
+
st.spinner('') # This will stop the spinner
|
675 |
+
st.success('Processing complete!')
|
676 |
+
else:
|
677 |
+
st.warning("No results were generated.")
|
678 |
+
|
679 |
+
else:
|
680 |
+
st.warning("Please upload a file.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
681 |
|