File size: 36,506 Bytes
626c6f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
import streamlit as st
import json
import ee
import os
import pandas as pd
import geopandas as gpd
from datetime import datetime
import leafmap.foliumap as leafmap
import re
from shapely.geometry import base
from xml.etree import ElementTree as XET
from concurrent.futures import ThreadPoolExecutor, as_completed
import time
import matplotlib.pyplot as plt
import plotly.express as px

# Set up the page layout
st.set_page_config(layout="wide")

# Custom button styling
m = st.markdown(
    """

    <style>

    div.stButton > button:first-child {

        background-color: #006400;

        color:#ffffff;

    }

    </style>""",
    unsafe_allow_html=True,
)

# Logo and Title
st.write(
    f"""

    <div style="display: flex; justify-content: space-between; align-items: center;">

        <img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/ISRO_Logo.png" style="width: 20%; margin-right: auto;">

        <img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/SAC_Logo.png" style="width: 20%; margin-left: auto;">

    </div>

    """,
    unsafe_allow_html=True,
)
st.markdown(
    f"""

    <div style="display: flex; flex-direction: column; align-items: center;">

        <img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/SATRANG.png" style="width: 30%;">

        <h3 style="text-align: center; margin: 0;">( Spatial and Temporal Aggregation for Remote-sensing Analysis of GEE Data )</h3>

    </div>

    <hr>

    """,
    unsafe_allow_html=True,
)

# Authenticate and initialize Earth Engine
earthengine_credentials = os.environ.get("EE_Authentication")
os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
    f.write(earthengine_credentials)
ee.Initialize(project='ee-yashsacisro24')

# Helper function to get reducer
def get_reducer(reducer_name):
    reducers = {
        'mean': ee.Reducer.mean(),
        'sum': ee.Reducer.sum(),
        'median': ee.Reducer.median(),
        'min': ee.Reducer.min(),
        'max': ee.Reducer.max(),
        'count': ee.Reducer.count(),
    }
    return reducers.get(reducer_name.lower(), ee.Reducer.mean())

# Function to convert geometry to Earth Engine format
def convert_to_ee_geometry(geometry):
    if isinstance(geometry, base.BaseGeometry):
        if geometry.is_valid:
            geojson = geometry.__geo_interface__
            return ee.Geometry(geojson)
        else:
            raise ValueError("Invalid geometry: The polygon geometry is not valid.")
    elif isinstance(geometry, dict) or isinstance(geometry, str):
        try:
            if isinstance(geometry, str):
                geometry = json.loads(geometry)
            if 'type' in geometry and 'coordinates' in geometry:
                return ee.Geometry(geometry)
            else:
                raise ValueError("GeoJSON format is invalid.")
        except Exception as e:
            raise ValueError(f"Error parsing GeoJSON: {e}")
    elif isinstance(geometry, str) and geometry.lower().endswith(".kml"):
        try:
            tree = XET.parse(geometry)
            kml_root = tree.getroot()
            kml_namespace = {'kml': 'http://www.opengis.net/kml/2.2'}
            coordinates = kml_root.findall(".//kml:coordinates", kml_namespace)
            if coordinates:
                coords_text = coordinates[0].text.strip()
                coords = coords_text.split()
                coords = [tuple(map(float, coord.split(','))) for coord in coords]
                geojson = {"type": "Polygon", "coordinates": [coords]}
                return ee.Geometry(geojson)
            else:
                raise ValueError("KML does not contain valid coordinates.")
        except Exception as e:
            raise ValueError(f"Error parsing KML: {e}")
    else:
        raise ValueError("Unsupported geometry input type. Supported types are Shapely, GeoJSON, and KML.")

# Function to calculate custom formula
def calculate_custom_formula(image, geometry, selected_bands, custom_formula, reducer_choice, dataset_id, user_scale=None):
    try:
        # Determine the scale: Use user-defined scale if provided, otherwise use dataset's native resolution
        default_scale = ee.ImageCollection(dataset_id).first().select(0).projection().nominalScale().getInfo()
        scale = user_scale if user_scale is not None else default_scale
        band_values = {}
        band_names = image.bandNames().getInfo()
        for band in selected_bands:
            if band not in band_names:
                raise ValueError(f"Band '{band}' not found in the dataset.")
            band_values[band] = image.select(band)
        reducer = get_reducer(reducer_choice)
        reduced_values = {}
        for band in selected_bands:
            value = band_values[band].reduceRegion(
                reducer=reducer,
                geometry=geometry,
                scale=scale
            ).get(band).getInfo()
            reduced_values[band] = float(value if value is not None else 0)
        formula = custom_formula
        for band in selected_bands:
            formula = formula.replace(band, str(reduced_values[band]))
        result = eval(formula, {"__builtins__": {}}, reduced_values)
        if not isinstance(result, (int, float)):
            raise ValueError("Formula did not result in a numeric value.")
        return ee.Image.constant(result).rename('custom_result')
    except ZeroDivisionError:
        st.error("Error: Division by zero in the formula.")
        return ee.Image(0).rename('custom_result').set('error', 'Division by zero')
    except SyntaxError:
        st.error(f"Error: Invalid syntax in formula '{custom_formula}'.")
        return ee.Image(0).rename('custom_result').set('error', 'Invalid syntax')
    except ValueError as e:
        st.error(f"Error: {str(e)}")
        return ee.Image(0).rename('custom_result').set('error', str(e))
    except Exception as e:
        st.error(f"Unexpected error: {e}")
        return ee.Image(0).rename('custom_result').set('error', str(e))

# Aggregation functions
def aggregate_data_custom(collection):
    collection = collection.map(lambda image: image.set('day', ee.Date(image.get('system:time_start')).format('YYYY-MM-dd')))
    grouped_by_day = collection.aggregate_array('day').distinct()
    def calculate_daily_mean(day):
        daily_collection = collection.filter(ee.Filter.eq('day', day))
        daily_mean = daily_collection.mean()
        return daily_mean.set('day', day)
    daily_images = ee.List(grouped_by_day.map(calculate_daily_mean))
    return ee.ImageCollection(daily_images)

def aggregate_data_daily(collection):
    def set_day_start(image):
        date = ee.Date(image.get('system:time_start'))
        day_start = date.format('YYYY-MM-dd')
        return image.set('day_start', day_start)
    collection = collection.map(set_day_start)
    grouped_by_day = collection.aggregate_array('day_start').distinct()
    def calculate_daily_mean(day_start):
        daily_collection = collection.filter(ee.Filter.eq('day_start', day_start))
        daily_mean = daily_collection.mean()
        return daily_mean.set('day_start', day_start)
    daily_images = ee.List(grouped_by_day.map(calculate_daily_mean))
    return ee.ImageCollection(daily_images)

def aggregate_data_weekly(collection, start_date_str, end_date_str):
    start_date = ee.Date(start_date_str)
    end_date = ee.Date(end_date_str)
    days_diff = end_date.difference(start_date, 'day')
    num_weeks = days_diff.divide(7).ceil().getInfo()
    weekly_images = []
    for week in range(num_weeks):
        week_start = start_date.advance(week * 7, 'day')
        week_end = week_start.advance(7, 'day')
        weekly_collection = collection.filterDate(week_start, week_end)
        if weekly_collection.size().getInfo() > 0:
            weekly_mean = weekly_collection.mean()
            weekly_mean = weekly_mean.set('week_start', week_start.format('YYYY-MM-dd'))
            weekly_images.append(weekly_mean)
    return ee.ImageCollection.fromImages(weekly_images)

def aggregate_data_monthly(collection, start_date, end_date):
    collection = collection.filterDate(start_date, end_date)
    collection = collection.map(lambda image: image.set('month', ee.Date(image.get('system:time_start')).format('YYYY-MM')))
    grouped_by_month = collection.aggregate_array('month').distinct()
    def calculate_monthly_mean(month):
        monthly_collection = collection.filter(ee.Filter.eq('month', month))
        monthly_mean = monthly_collection.mean()
        return monthly_mean.set('month', month)
    monthly_images = ee.List(grouped_by_month.map(calculate_monthly_mean))
    return ee.ImageCollection(monthly_images)

def aggregate_data_yearly(collection):
    collection = collection.map(lambda image: image.set('year', ee.Date(image.get('system:time_start')).format('YYYY')))
    grouped_by_year = collection.aggregate_array('year').distinct()
    def calculate_yearly_mean(year):
        yearly_collection = collection.filter(ee.Filter.eq('year', year))
        yearly_mean = yearly_collection.mean()
        return yearly_mean.set('year', year)
    yearly_images = ee.List(grouped_by_year.map(calculate_yearly_mean))
    return ee.ImageCollection(yearly_images)

def preprocess_collection(collection, tile_cloud_threshold, pixel_cloud_threshold):
    def filter_tile(image):
        cloud_percentage = calculate_cloud_percentage(image, cloud_band='QA60')
        return image.set('cloud_percentage', cloud_percentage).updateMask(cloud_percentage.lt(tile_cloud_threshold))
    def mask_cloudy_pixels(image):
        qa60 = image.select('QA60')
        opaque_clouds = qa60.bitwiseAnd(1 << 10)
        cirrus_clouds = qa60.bitwiseAnd(1 << 11)
        cloud_mask = opaque_clouds.Or(cirrus_clouds)
        clear_pixels = cloud_mask.Not()
        return image.updateMask(clear_pixels)
    filtered_collection = collection.map(filter_tile)
    masked_collection = filtered_collection.map(mask_cloudy_pixels)
    return masked_collection

def process_single_geometry(row, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, custom_formula, original_lat_col, original_lon_col, kernel_size=None, include_boundary=None, user_scale=None):
    if shape_type.lower() == "point":
        latitude = row.get('latitude')
        longitude = row.get('longitude')
        if pd.isna(latitude) or pd.isna(longitude):
            return None
        location_name = row.get('name', f"Location_{row.name}")
        if kernel_size == "3x3 Kernel":
            buffer_size = 45
            roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds()
        elif kernel_size == "5x5 Kernel":
            buffer_size = 75
            roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds()
        else:
            roi = ee.Geometry.Point([longitude, latitude])
    elif shape_type.lower() == "polygon":
        polygon_geometry = row.get('geometry')
        location_name = row.get('name', f"Polygon_{row.name}")
        try:
            roi = convert_to_ee_geometry(polygon_geometry)
            if not include_boundary:
                roi = roi.buffer(-30).bounds()
        except ValueError:
            return None
    collection = ee.ImageCollection(dataset_id) \
        .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
        .filterBounds(roi)
    if aggregation_period.lower() == 'custom (start date to end date)':
        collection = aggregate_data_custom(collection)
    elif aggregation_period.lower() == 'daily':
        collection = aggregate_data_daily(collection)
    elif aggregation_period.lower() == 'weekly':
        collection = aggregate_data_weekly(collection, start_date_str, end_date_str)
    elif aggregation_period.lower() == 'monthly':
        collection = aggregate_data_monthly(collection, start_date_str, end_date_str)
    elif aggregation_period.lower() == 'yearly':
        collection = aggregate_data_yearly(collection)
    image_list = collection.toList(collection.size())
    processed_weeks = set()
    aggregated_results = []
    for i in range(image_list.size().getInfo()):
        image = ee.Image(image_list.get(i))
        if aggregation_period.lower() == 'custom (start date to end date)':
            timestamp = image.get('day')
            period_label = 'Date'
            date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo()
        elif aggregation_period.lower() == 'daily':
            timestamp = image.get('day_start')
            period_label = 'Date'
            date = ee.String(timestamp).getInfo()
        elif aggregation_period.lower() == 'weekly':
            timestamp = image.get('week_start')
            period_label = 'Week'
            date = ee.String(timestamp).getInfo()
            if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or 
                pd.to_datetime(date) > pd.to_datetime(end_date_str) or 
                date in processed_weeks):
                continue
            processed_weeks.add(date)
        elif aggregation_period.lower() == 'monthly':
            timestamp = image.get('month')
            period_label = 'Month'
            date = ee.Date(timestamp).format('YYYY-MM').getInfo()
        elif aggregation_period.lower() == 'yearly':
            timestamp = image.get('year')
            period_label = 'Year'
            date = ee.Date(timestamp).format('YYYY').getInfo()
        index_image = calculate_custom_formula(image, roi, selected_bands, custom_formula, reducer_choice, dataset_id, user_scale=user_scale)
        try:
            index_value = index_image.reduceRegion(
                reducer=get_reducer(reducer_choice),
                geometry=roi,
                scale=user_scale
            ).get('custom_result')
            calculated_value = index_value.getInfo()
            if isinstance(calculated_value, (int, float)):
                result = {
                    'Location Name': location_name,
                    period_label: date,
                    'Start Date': start_date_str,
                    'End Date': end_date_str,
                    'Calculated Value': calculated_value
                }
                if shape_type.lower() == 'point':
                    result[original_lat_col] = latitude
                    result[original_lon_col] = longitude
                aggregated_results.append(result)
        except Exception as e:
            st.error(f"Error retrieving value for {location_name}: {e}")
    return aggregated_results

def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, original_lat_col, original_lon_col, custom_formula="", kernel_size=None, include_boundary=None, tile_cloud_threshold=0, pixel_cloud_threshold=0, user_scale=None):
    aggregated_results = []
    total_steps = len(locations_df)
    progress_bar = st.progress(0)
    progress_text = st.empty()
    start_time = time.time()
    raw_collection = ee.ImageCollection(dataset_id) \
        .filterDate(ee.Date(start_date_str), ee.Date(end_date_str))
    st.write(f"Original Collection Size: {raw_collection.size().getInfo()}")
    if tile_cloud_threshold > 0 or pixel_cloud_threshold > 0:
        raw_collection = preprocess_collection(raw_collection, tile_cloud_threshold, pixel_cloud_threshold)
        st.write(f"Preprocessed Collection Size: {raw_collection.size().getInfo()}")
    with ThreadPoolExecutor(max_workers=10) as executor:
        futures = []
        for idx, row in locations_df.iterrows():
            future = executor.submit(
                process_single_geometry,
                row,
                start_date_str,
                end_date_str,
                dataset_id,
                selected_bands,
                reducer_choice,
                shape_type,
                aggregation_period,
                custom_formula,
                original_lat_col,
                original_lon_col,
                kernel_size,
                include_boundary,
                user_scale=user_scale
            )
            futures.append(future)
        completed = 0
        for future in as_completed(futures):
            result = future.result()
            if result:
                aggregated_results.extend(result)
            completed += 1
            progress_percentage = completed / total_steps
            progress_bar.progress(progress_percentage)
            progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
    end_time = time.time()
    processing_time = end_time - start_time
    if aggregated_results:
        result_df = pd.DataFrame(aggregated_results)
        if aggregation_period.lower() == 'custom (start date to end date)':
            agg_dict = {
                'Start Date': 'first',
                'End Date': 'first',
                'Calculated Value': 'mean'
            }
            if shape_type.lower() == 'point':
                agg_dict[original_lat_col] = 'first'
                agg_dict[original_lon_col] = 'first'
            aggregated_output = result_df.groupby('Location Name').agg(agg_dict).reset_index()
            aggregated_output['Date Range'] = aggregated_output['Start Date'] + " to " + aggregated_output['End Date']
            aggregated_output.rename(columns={'Calculated Value': 'Aggregated Value'}, inplace=True)
            return aggregated_output.to_dict(orient='records'), processing_time
        else:
            return result_df.to_dict(orient='records'), processing_time 
    return [], processing_time  

# Streamlit App Logic
st.markdown("<h5>Image Collection</h5>", unsafe_allow_html=True)
imagery_base = st.selectbox("Select Imagery Base", ["Sentinel", "Landsat", "MODIS", "VIIRS", "Custom Input"], index=0)
data = {}
if imagery_base == "Sentinel":
    dataset_file = "sentinel_datasets.json"
    try:
        with open(dataset_file) as f:
            data = json.load(f)
    except FileNotFoundError:
        st.error(f"Dataset file '{dataset_file}' not found.")
        data = {}
elif imagery_base == "Landsat":
    dataset_file = "landsat_datasets.json"
    try:
        with open(dataset_file) as f:
            data = json.load(f)
    except FileNotFoundError:
        st.error(f"Dataset file '{dataset_file}' not found.")
        data = {}
elif imagery_base == "MODIS":
    dataset_file = "modis_datasets.json"
    try:
        with open(dataset_file) as f:
            data = json.load(f)
    except FileNotFoundError:
        st.error(f"Dataset file '{dataset_file}' not found.")
        data = {}
elif imagery_base == "VIIRS":
    dataset_file = "viirs_datasets.json"
    try:
        with open(dataset_file) as f:
            data = json.load(f)
    except FileNotFoundError:
        st.error(f"Dataset file '{dataset_file}' not found.")
        data = {}
elif imagery_base == "Custom Input":
    custom_dataset_id = st.text_input("Enter Custom Earth Engine Dataset ID (e.g., AHN/AHN4)", value="")
    if custom_dataset_id:
        try:
            if custom_dataset_id.startswith("ee.ImageCollection("):
                custom_dataset_id = custom_dataset_id.replace("ee.ImageCollection('", "").replace("')", "")
            collection = ee.ImageCollection(custom_dataset_id)
            band_names = collection.first().bandNames().getInfo()
            data = {
                f"Custom Dataset: {custom_dataset_id}": {
                    "sub_options": {custom_dataset_id: f"Custom Dataset ({custom_dataset_id})"},
                    "bands": {custom_dataset_id: band_names}
                }
            }
            st.write(f"Fetched bands for {custom_dataset_id}: {', '.join(band_names)}")
        except Exception as e:
            st.error(f"Error fetching dataset: {str(e)}. Please check the dataset ID and ensure it's valid in Google Earth Engine.")
            data = {}
    else:
        st.warning("Please enter a custom dataset ID to proceed.")
        data = {}
if not data:
    st.error("No valid dataset available. Please check your inputs.")
    st.stop()

st.markdown("<hr><h5><b>{}</b></h5>".format(imagery_base), unsafe_allow_html=True)
main_selection = st.selectbox(f"Select {imagery_base} Dataset Category", list(data.keys()))
sub_selection = None
dataset_id = None
if main_selection:
    sub_options = data[main_selection]["sub_options"]
    sub_selection = st.selectbox(f"Select Specific {imagery_base} Dataset ID", list(sub_options.keys()))
    if sub_selection:
        st.write(f"You selected: {main_selection} -> {sub_options[sub_selection]}")
        st.write(f"Dataset ID: {sub_selection}")
        dataset_id = sub_selection

st.markdown("<hr><h5><b>Earth Engine Index Calculator</b></h5>", unsafe_allow_html=True)
if main_selection and sub_selection:
    dataset_bands = data[main_selection]["bands"].get(sub_selection, [])
    st.write(f"Available Bands for {sub_options[sub_selection]}: {', '.join(dataset_bands)}")
    selected_bands = st.multiselect(
        "Select 1 or 2 Bands for Calculation",
        options=dataset_bands,
        default=[dataset_bands[0]] if dataset_bands else [],
        help=f"Select 1 or 2 bands from: {', '.join(dataset_bands)}"
    )
    if len(selected_bands) < 1:
        st.warning("Please select at least one band.")
        st.stop()
    if selected_bands:
        if len(selected_bands) == 1:
            default_formula = f"{selected_bands[0]}"
            example = f"'{selected_bands[0]} * 2' or '{selected_bands[0]} + 1'"
        else:
            default_formula = f"({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})"
            example = f"'{selected_bands[0]} * {selected_bands[1]} / 2' or '({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})'"
        custom_formula = st.text_input(
            "Enter Custom Formula (e.g (B8 - B4) / (B8 + B4) , B4*B3/2)",
            value=default_formula,
            help=f"Use only these bands: {', '.join(selected_bands)}. Examples: {example}"
        )
        def validate_formula(formula, selected_bands):
            allowed_chars = set(" +-*/()0123456789.")
            terms = re.findall(r'[a-zA-Z][a-zA-Z0-9_]*', formula)
            invalid_terms = [term for term in terms if term not in selected_bands]
            if invalid_terms:
                return False, f"Invalid terms in formula: {', '.join(invalid_terms)}. Use only {', '.join(selected_bands)}."
            if not all(char in allowed_chars or char in ''.join(selected_bands) for char in formula):
                return False, "Formula contains invalid characters. Use only bands, numbers, and operators (+, -, *, /, ())"
            return True, ""
        is_valid, error_message = validate_formula(custom_formula, selected_bands)
        if not is_valid:
            st.error(error_message)
            st.stop()
        elif not custom_formula:
            st.warning("Please enter a custom formula to proceed.")
            st.stop()
        st.write(f"Custom Formula: {custom_formula}")

reducer_choice = st.selectbox(
    "Select Reducer (e.g, mean , sum , median , min , max , count)",
    ['mean', 'sum', 'median', 'min', 'max', 'count'],
    index=0
)
start_date = st.date_input("Start Date", value=pd.to_datetime('2024-11-01'))
end_date = st.date_input("End Date", value=pd.to_datetime('2024-12-01'))
start_date_str = start_date.strftime('%Y-%m-%d')
end_date_str = end_date.strftime('%Y-%m-%d')

if imagery_base == "Sentinel" and "Sentinel-2" in sub_options[sub_selection]:
    st.markdown("<h5>Cloud Filtering</h5>", unsafe_allow_html=True)
    tile_cloud_threshold = st.slider(
        "Select Maximum Tile-Based Cloud Coverage Threshold (%)",
        min_value=0,
        max_value=100,
        value=20,
        step=5,
        help="Tiles with cloud coverage exceeding this threshold will be excluded."
    )
    pixel_cloud_threshold = st.slider(
        "Select Maximum Pixel-Based Cloud Coverage Threshold (%)",
        min_value=0,
        max_value=100,
        value=10,
        step=5,
        help="Individual pixels with cloud coverage exceeding this threshold will be masked."
    )

aggregation_period = st.selectbox(
    "Select Aggregation Period (e.g, Custom(Start Date to End Date) , Daily , Weekly , Monthly , Yearly)",
    ["Custom (Start Date to End Date)", "Daily", "Weekly", "Monthly", "Yearly"],
    index=0
)
shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"])
kernel_size = None
include_boundary = None
if shape_type.lower() == "point":
    kernel_size = st.selectbox(
        "Select Calculation Area(e.g, Point , 3x3 Kernel , 5x5 Kernel)",
        ["Point", "3x3 Kernel", "5x5 Kernel"],
        index=0,
        help="Choose 'Point' for exact point calculation, or a kernel size for area averaging."
    )
elif shape_type.lower() == "polygon":
    include_boundary = st.checkbox(
        "Include Boundary Pixels",
        value=True,
        help="Check to include pixels on the polygon boundary; uncheck to exclude them."
    )

st.markdown("<h5>Calculation Scale</h5>", unsafe_allow_html=True)
default_scale = ee.ImageCollection(dataset_id).first().select(0).projection().nominalScale().getInfo()
user_scale = st.number_input(
    "Enter Calculation Scale (meters) [Leave blank to use dataset's default scale]",
    min_value=1.0,
    value=float(default_scale),
    help=f"Default scale for this dataset is {default_scale} meters. Adjust if needed."
)

file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
locations_df = pd.DataFrame()
original_lat_col = None
original_lon_col = None
if file_upload is not None:
    if shape_type.lower() == "point":
        if file_upload.name.endswith('.csv'):
            locations_df = pd.read_csv(file_upload)
            st.write("Preview of your uploaded data (first 5 rows):")
            st.dataframe(locations_df.head())
            all_columns = locations_df.columns.tolist()
            col1, col2 = st.columns(2)
            with col1:
                original_lat_col = st.selectbox(
                    "Select Latitude Column",
                    options=all_columns,
                    index=all_columns.index('latitude') if 'latitude' in all_columns else 0,
                    help="Select the column containing latitude values"
                )
            with col2:
                original_lon_col = st.selectbox(
                    "Select Longitude Column",
                    options=all_columns,
                    index=all_columns.index('longitude') if 'longitude' in all_columns else 0,
                    help="Select the column containing longitude values"
                )
            if not pd.api.types.is_numeric_dtype(locations_df[original_lat_col]) or not pd.api.types.is_numeric_dtype(locations_df[original_lon_col]):
                st.error("Error: Selected Latitude and Longitude columns must contain numeric values")
                st.stop()
            locations_df = locations_df.rename(columns={
                original_lat_col: 'latitude',
                original_lon_col: 'longitude'
            })
        elif file_upload.name.endswith('.geojson'):
            locations_df = gpd.read_file(file_upload)
            if 'geometry' in locations_df.columns:
                locations_df['latitude'] = locations_df['geometry'].y
                locations_df['longitude'] = locations_df['geometry'].x
                original_lat_col = 'latitude'
                original_lon_col = 'longitude'
            else:
                st.error("GeoJSON file doesn't contain geometry column")
                st.stop()
        elif file_upload.name.endswith('.kml'):
            kml_string = file_upload.read().decode('utf-8')
            try:
                root = XET.fromstring(kml_string)
                ns = {'kml': 'http://www.opengis.net/kml/2.2'}
                points = []
                for placemark in root.findall('.//kml:Placemark', ns):
                    name = placemark.findtext('kml:name', default=f"Point_{len(points)}", namespaces=ns)
                    coords_elem = placemark.find('.//kml:Point/kml:coordinates', ns)
                    if coords_elem is not None:
                        coords_text = coords_elem.text.strip()
                        coords = [c.strip() for c in coords_text.split(',')]
                        if len(coords) >= 2:
                            lon, lat = float(coords[0]), float(coords[1])
                            points.append({'name': name, 'geometry': f"POINT ({lon} {lat})"})
                if not points:
                    st.error("No valid Point data found in the KML file.")
                else:
                    locations_df = gpd.GeoDataFrame(points, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in points]), crs="EPSG:4326")
                    locations_df['latitude'] = locations_df['geometry'].y
                    locations_df['longitude'] = locations_df['geometry'].x
                    original_lat_col = 'latitude'
                    original_lon_col = 'longitude'
            except Exception as e:
                st.error(f"Error parsing KML file: {str(e)}")
        if not locations_df.empty and 'latitude' in locations_df.columns and 'longitude' in locations_df.columns:
            m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
            for _, row in locations_df.iterrows():
                latitude = row['latitude']
                longitude = row['longitude']
                if pd.isna(latitude) or pd.isna(longitude):
                    continue
                m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
            st.write("Map of Uploaded Points:")
            m.to_streamlit()
    elif shape_type.lower() == "polygon":
        if file_upload.name.endswith('.csv'):
            st.error("CSV upload not supported for polygons. Please upload a GeoJSON or KML file.")
        elif file_upload.name.endswith('.geojson'):
            locations_df = gpd.read_file(file_upload)
            if 'geometry' not in locations_df.columns:
                st.error("GeoJSON file doesn't contain geometry column")
                st.stop()
        elif file_upload.name.endswith('.kml'):
            kml_string = file_upload.read().decode('utf-8')
            try:
                root = XET.fromstring(kml_string)
                ns = {'kml': 'http://www.opengis.net/kml/2.2'}
                polygons = []
                for placemark in root.findall('.//kml:Placemark', ns):
                    name = placemark.findtext('kml:name', default=f"Polygon_{len(polygons)}", namespaces=ns)
                    coords_elem = placemark.find('.//kml:Polygon//kml:coordinates', ns)
                    if coords_elem is not None:
                        coords_text = ' '.join(coords_elem.text.split())
                        coord_pairs = [pair.split(',')[:2] for pair in coords_text.split() if pair]
                        if len(coord_pairs) >= 4:
                            coords_str = " ".join([f"{float(lon)} {float(lat)}" for lon, lat in coord_pairs])
                            polygons.append({'name': name, 'geometry': f"POLYGON (({coords_str}))"})
                if not polygons:
                    st.error("No valid Polygon data found in the KML file.")
                else:
                    locations_df = gpd.GeoDataFrame(polygons, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in polygons]), crs="EPSG:4326")
            except Exception as e:
                st.error(f"Error parsing KML file: {str(e)}")
        if not locations_df.empty and 'geometry' in locations_df.columns:
            centroid_lat = locations_df.geometry.centroid.y.mean()
            centroid_lon = locations_df.geometry.centroid.x.mean()
            m = leafmap.Map(center=[centroid_lat, centroid_lon], zoom=10)
            for _, row in locations_df.iterrows():
                polygon = row['geometry']
                if polygon.is_valid:
                    gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=locations_df.crs)
                    m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
            st.write("Map of Uploaded Polygons:")
            m.to_streamlit()

if st.button(f"Calculate {custom_formula}"):
    if not locations_df.empty:
        with st.spinner("Processing Data..."):
            try:
                results, processing_time = process_aggregation(
                    locations_df,
                    start_date_str,
                    end_date_str,
                    dataset_id,
                    selected_bands,
                    reducer_choice,
                    shape_type,
                    aggregation_period,
                    original_lat_col,
                    original_lon_col,
                    custom_formula,
                    kernel_size,
                    include_boundary,
                    tile_cloud_threshold=tile_cloud_threshold if "tile_cloud_threshold" in locals() else 0,
                    pixel_cloud_threshold=pixel_cloud_threshold if "pixel_cloud_threshold" in locals() else 0,
                    user_scale=user_scale
                )
                if results:
                    result_df = pd.DataFrame(results)
                    st.write(f"Processed Results Table ({aggregation_period}) for Formula: {custom_formula}")
                    st.dataframe(result_df)
                    filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y%m%d')}_{end_date.strftime('%Y%m%d')}_{aggregation_period.lower()}.csv"
                    st.download_button(
                        label="Download results as CSV",
                        data=result_df.to_csv(index=False).encode('utf-8'),
                        file_name=filename,
                        mime='text/csv'
                    )
                    st.success(f"Processing complete! Total processing time: {processing_time:.2f} seconds.")
                    st.markdown("<h5>Graph Visualization</h5>", unsafe_allow_html=True)
                    if aggregation_period.lower() == 'custom (start date to end date)':
                        x_column = 'Date Range'  
                    elif 'Date' in result_df.columns:
                        x_column = 'Date'
                    elif 'Week' in result_df.columns:
                        x_column = 'Week'
                    elif 'Month' in result_df.columns:
                        x_column = 'Month'
                    elif 'Year' in result_df.columns:
                        x_column = 'Year'
                    else:
                        st.warning("No valid time column found for plotting.")
                        st.stop()
                    y_column = 'Calculated Value'
                    fig = px.line(
                        result_df,
                        x=x_column,
                        y=y_column,
                        color='Location Name',
                        title=f"{custom_formula} Over Time"
                    )
                    st.plotly_chart(fig)
                else:
                    st.warning("No results were generated. Check your inputs or formula.")
                    st.info(f"Total processing time: {processing_time:.2f} seconds.")
            except Exception as e:
                st.error(f"An error occurred during processing: {str(e)}")
    else:
        st.warning("Please upload a valid file to proceed.")