Spaces:
Running
Running
File size: 60,005 Bytes
18d9825 1b7b230 18d9825 129b8c8 b6a4aaa 930eab6 18d9825 b6a4aaa 18d9825 1994f45 18d9825 c2da6e7 38b854e b6a4aaa 38b854e c2da6e7 18d9825 3cce66f b6a4aaa 1107215 b6a4aaa 1107215 b6a4aaa 1107215 b6a4aaa 1107215 b6a4aaa 1107215 b6a4aaa 1107215 b6a4aaa 7b58e6c 4891f4b 434e621 4891f4b 434e621 b6a4aaa 3597c83 4891f4b 3597c83 b6a4aaa 434e621 b6a4aaa 3597c83 434e621 b6a4aaa cf4fef9 6f6b853 cf4fef9 6f6b853 cf4fef9 6f6b853 cf4fef9 6f6b853 51cc5d7 6f6b853 cf4fef9 6f6b853 51cc5d7 cf4fef9 51cc5d7 6f6b853 0cb518a 6f6b853 cf4fef9 6f6b853 0cb518a 6f6b853 cf4fef9 6f6b853 0cb518a cf4fef9 6f6b853 cf4fef9 0cb518a cf4fef9 6f6b853 4891f4b 3597c83 b6a4aaa 3597c83 a57f55b 3597c83 1b7b230 3597c83 4891f4b 3597c83 b6a4aaa 3597c83 b6a4aaa 3597c83 b6a4aaa 3597c83 a57f55b 1107215 3597c83 b6a4aaa 1107215 3597c83 b6a4aaa 434e621 3597c83 b6a4aaa 3597c83 b6a4aaa 3597c83 b6a4aaa 3597c83 0cb518a b6a4aaa 609ffa3 0cb518a 3597c83 0cb518a 3597c83 0cb518a 3597c83 0cb518a b6a4aaa 1b7b230 b6a4aaa 3597c83 b6a4aaa 0cb518a 609ffa3 b6a4aaa 609ffa3 0cb518a b6a4aaa 434e621 0cb518a 434e621 1b7b230 434e621 f5b376a 0cb518a 1b7b230 434e621 609ffa3 b6a4aaa 95ea26b 18d9825 b6a4aaa 1994f45 b6a4aaa 3cce66f 1994f45 b6a4aaa 3cce66f b6a4aaa da4d66e 0cb518a da4d66e 0cb518a 3cce66f b6a4aaa 3cce66f b6a4aaa 1994f45 18d9825 1994f45 c2da6e7 1994f45 b6a4aaa c2da6e7 b6a4aaa 3cce66f 1994f45 b6a4aaa 1994f45 6b232af 1994f45 c2da6e7 1994f45 c2da6e7 b6a4aaa c2da6e7 18d9825 434e621 129b8c8 0cb518a 6c55b36 3597c83 6c55b36 1994f45 4891f4b 1994f45 129b8c8 18d9825 1b7b230 1994f45 434e621 1994f45 1107215 cb6803b 1107215 b6a4aaa 1b7b230 38b854e c2da6e7 1b7b230 c2da6e7 1b7b230 9fd52bf 1b7b230 9fd52bf 1b7b230 9fd52bf 1b7b230 c2da6e7 9fd52bf 1b7b230 9fd52bf c2da6e7 38b854e 297322f 38b854e 9fd52bf 38b854e 9fd52bf 1b7b230 297322f 1b7b230 9fd52bf c2da6e7 9fd52bf c2da6e7 9fd52bf c2da6e7 38b854e 297322f 38b854e 297322f 38b854e 1b7b230 9fd52bf c2da6e7 670b8c2 3b63829 2ea60b1 1107215 670b8c2 296e62a 670b8c2 296e62a 670b8c2 296e62a 670b8c2 296e62a 790090c 296e62a 790090c 296e62a 670b8c2 296e62a 670b8c2 296e62a 670b8c2 296e62a 4b0c37d 670b8c2 4b0c37d 670b8c2 c3435ec 670b8c2 4b0c37d 670b8c2 296e62a 670b8c2 930eab6 670b8c2 c3435ec 670b8c2 c3435ec 670b8c2 c3435ec 670b8c2 c3435ec 670b8c2 296e62a 670b8c2 930eab6 670b8c2 214e98e 670b8c2 930eab6 670b8c2 c3435ec 670b8c2 930eab6 670b8c2 930eab6 670b8c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 |
import streamlit as st
import json
import ee
import os
import pandas as pd
import geopandas as gpd
from datetime import datetime
import leafmap.foliumap as leafmap
import re
from shapely.geometry import base
from xml.etree import ElementTree as XET
from concurrent.futures import ThreadPoolExecutor, as_completed
import time
import matplotlib.pyplot as plt
import plotly.express as px
# Set up the page layout
st.set_page_config(layout="wide")
# Custom button styling
m = st.markdown(
"""
<style>
div.stButton > button:first-child {
background-color: #006400;
color:#ffffff;
}
</style>""",
unsafe_allow_html=True,
)
# Logo and Title
st.write(
f"""
<div style="display: flex; justify-content: space-between; align-items: center;">
<img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/ISRO_Logo.png" style="width: 20%; margin-right: auto;">
<img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/SAC_Logo.png" style="width: 20%; margin-left: auto;">
</div>
""",
unsafe_allow_html=True,
)
st.markdown(
f"""
<div style="display: flex; flex-direction: column; align-items: center;">
<img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/SATRANG.png" style="width: 30%;">
<h3 style="text-align: center; margin: 0;">( Spatial and Temporal Aggregation for Remote-sensing Analysis of GEE Data )</h3>
</div>
<hr>
""",
unsafe_allow_html=True,
)
# Authenticate and initialize Earth Engine
earthengine_credentials = os.environ.get("EE_Authentication")
os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
f.write(earthengine_credentials)
ee.Initialize(project='ee-yashsacisro24')
# Helper function to get reducer
def get_reducer(reducer_name):
reducers = {
'mean': ee.Reducer.mean(),
'sum': ee.Reducer.sum(),
'median': ee.Reducer.median(),
'min': ee.Reducer.min(),
'max': ee.Reducer.max(),
'count': ee.Reducer.count(),
}
return reducers.get(reducer_name.lower(), ee.Reducer.mean())
# Function to convert geometry to Earth Engine format
def convert_to_ee_geometry(geometry):
if isinstance(geometry, base.BaseGeometry):
if geometry.is_valid:
geojson = geometry.__geo_interface__
return ee.Geometry(geojson)
else:
raise ValueError("Invalid geometry: The polygon geometry is not valid.")
elif isinstance(geometry, dict) or isinstance(geometry, str):
try:
if isinstance(geometry, str):
geometry = json.loads(geometry)
if 'type' in geometry and 'coordinates' in geometry:
return ee.Geometry(geometry)
else:
raise ValueError("GeoJSON format is invalid.")
except Exception as e:
raise ValueError(f"Error parsing GeoJSON: {e}")
elif isinstance(geometry, str) and geometry.lower().endswith(".kml"):
try:
tree = XET.parse(geometry)
kml_root = tree.getroot()
kml_namespace = {'kml': 'http://www.opengis.net/kml/2.2'}
coordinates = kml_root.findall(".//kml:coordinates", kml_namespace)
if coordinates:
coords_text = coordinates[0].text.strip()
coords = coords_text.split()
coords = [tuple(map(float, coord.split(','))) for coord in coords]
geojson = {"type": "Polygon", "coordinates": [coords]}
return ee.Geometry(geojson)
else:
raise ValueError("KML does not contain valid coordinates.")
except Exception as e:
raise ValueError(f"Error parsing KML: {e}")
else:
raise ValueError("Unsupported geometry input type. Supported types are Shapely, GeoJSON, and KML.")
# # Function to calculate custom formula
# def calculate_custom_formula(image, geometry, selected_bands, custom_formula, reducer_choice, scale=30):
# try:
# band_values = {}
# band_names = image.bandNames().getInfo()
# for band in selected_bands:
# if band not in band_names:
# raise ValueError(f"Band '{band}' not found in the dataset.")
# band_values[band] = image.select(band)
# reducer = get_reducer(reducer_choice)
# reduced_values = {}
# for band in selected_bands:
# value = band_values[band].reduceRegion(
# reducer=reducer,
# geometry=geometry,
# scale=scale
# ).get(band).getInfo()
# reduced_values[band] = float(value if value is not None else 0)
# formula = custom_formula
# for band in selected_bands:
# formula = formula.replace(band, str(reduced_values[band]))
# result = eval(formula, {"__builtins__": {}}, reduced_values)
# if not isinstance(result, (int, float)):
# raise ValueError("Formula did not result in a numeric value.")
# return ee.Image.constant(result).rename('custom_result')
# except ZeroDivisionError:
# st.error("Error: Division by zero in the formula.")
# return ee.Image(0).rename('custom_result').set('error', 'Division by zero')
# except SyntaxError:
# st.error(f"Error: Invalid syntax in formula '{custom_formula}'.")
# return ee.Image(0).rename('custom_result').set('error', 'Invalid syntax')
# except ValueError as e:
# st.error(f"Error: {str(e)}")
# return ee.Image(0).rename('custom_result').set('error', str(e))
# except Exception as e:
# st.error(f"Unexpected error: {e}")
# return ee.Image(0).rename('custom_result').set('error', str(e))
# Function to calculate custom formula with dynamic scale handling
def calculate_custom_formula(image, geometry, selected_bands, custom_formula, reducer_choice, dataset_id, user_scale=None):
try:
# Determine the scale: Use user-defined scale if provided, otherwise use dataset's native resolution
default_scale = ee.ImageCollection(dataset_id).first().select(0).projection().nominalScale().getInfo()
scale = user_scale if user_scale is not None else default_scale
band_values = {}
band_names = image.bandNames().getInfo()
for band in selected_bands:
if band not in band_names:
raise ValueError(f"Band '{band}' not found in the dataset.")
band_values[band] = image.select(band)
reducer = get_reducer(reducer_choice)
reduced_values = {}
for band in selected_bands:
value = band_values[band].reduceRegion(
reducer=reducer,
geometry=geometry,
scale=scale # Use the determined scale here
).get(band).getInfo()
reduced_values[band] = float(value if value is not None else 0)
formula = custom_formula
for band in selected_bands:
formula = formula.replace(band, str(reduced_values[band]))
result = eval(formula, {"__builtins__": {}}, reduced_values)
if not isinstance(result, (int, float)):
raise ValueError("Formula did not result in a numeric value.")
return ee.Image.constant(result).rename('custom_result')
except ZeroDivisionError:
st.error("Error: Division by zero in the formula.")
return ee.Image(0).rename('custom_result').set('error', 'Division by zero')
except SyntaxError:
st.error(f"Error: Invalid syntax in formula '{custom_formula}'.")
return ee.Image(0).rename('custom_result').set('error', 'Invalid syntax')
except ValueError as e:
st.error(f"Error: {str(e)}")
return ee.Image(0).rename('custom_result').set('error', str(e))
except Exception as e:
st.error(f"Unexpected error: {e}")
return ee.Image(0).rename('custom_result').set('error', str(e))
# Aggregation functions
def aggregate_data_custom(collection):
collection = collection.map(lambda image: image.set('day', ee.Date(image.get('system:time_start')).format('YYYY-MM-dd')))
grouped_by_day = collection.aggregate_array('day').distinct()
def calculate_daily_mean(day):
daily_collection = collection.filter(ee.Filter.eq('day', day))
daily_mean = daily_collection.mean()
return daily_mean.set('day', day)
daily_images = ee.List(grouped_by_day.map(calculate_daily_mean))
return ee.ImageCollection(daily_images)
def aggregate_data_daily(collection):
"""
Aggregates data on a daily basis.
"""
def set_day_start(image):
date = ee.Date(image.get('system:time_start'))
day_start = date.format('YYYY-MM-dd')
return image.set('day_start', day_start)
collection = collection.map(set_day_start)
grouped_by_day = collection.aggregate_array('day_start').distinct()
def calculate_daily_mean(day_start):
daily_collection = collection.filter(ee.Filter.eq('day_start', day_start))
daily_mean = daily_collection.mean()
return daily_mean.set('day_start', day_start)
daily_images = ee.List(grouped_by_day.map(calculate_daily_mean))
return ee.ImageCollection(daily_images)
def aggregate_data_weekly(collection, start_date_str, end_date_str):
"""
Aggregates data on a weekly basis, starting from the exact start date provided by the user.
"""
start_date = ee.Date(start_date_str)
end_date = ee.Date(end_date_str)
# Calculate the number of weeks between the start and end dates
days_diff = end_date.difference(start_date, 'day')
num_weeks = days_diff.divide(7).ceil().getInfo() # Total number of weeks
weekly_images = []
for week in range(num_weeks):
week_start = start_date.advance(week * 7, 'day') # Start of the week
week_end = week_start.advance(7, 'day') # End of the week
weekly_collection = collection.filterDate(week_start, week_end)
if weekly_collection.size().getInfo() > 0:
weekly_mean = weekly_collection.mean()
weekly_mean = weekly_mean.set('week_start', week_start.format('YYYY-MM-dd'))
weekly_images.append(weekly_mean)
return ee.ImageCollection.fromImages(weekly_images)
def aggregate_data_monthly(collection, start_date, end_date):
collection = collection.filterDate(start_date, end_date)
collection = collection.map(lambda image: image.set('month', ee.Date(image.get('system:time_start')).format('YYYY-MM')))
grouped_by_month = collection.aggregate_array('month').distinct()
def calculate_monthly_mean(month):
monthly_collection = collection.filter(ee.Filter.eq('month', month))
monthly_mean = monthly_collection.mean()
return monthly_mean.set('month', month)
monthly_images = ee.List(grouped_by_month.map(calculate_monthly_mean))
return ee.ImageCollection(monthly_images)
def aggregate_data_yearly(collection):
collection = collection.map(lambda image: image.set('year', ee.Date(image.get('system:time_start')).format('YYYY')))
grouped_by_year = collection.aggregate_array('year').distinct()
def calculate_yearly_mean(year):
yearly_collection = collection.filter(ee.Filter.eq('year', year))
yearly_mean = yearly_collection.mean()
return yearly_mean.set('year', year)
yearly_images = ee.List(grouped_by_year.map(calculate_yearly_mean))
return ee.ImageCollection(yearly_images)
def calculate_cloud_percentage(image, cloud_band='QA60'):
"""
Calculate the percentage of cloud-covered pixels in an image using the QA60 bitmask.
Assumes the presence of the QA60 cloud mask band.
"""
# Decode the QA60 bitmask
qa60 = image.select(cloud_band)
opaque_clouds = qa60.bitwiseAnd(1 << 10) # Bit 10: Opaque clouds
cirrus_clouds = qa60.bitwiseAnd(1 << 11) # Bit 11: Cirrus clouds
# Combine both cloud types into a single cloud mask
cloud_mask = opaque_clouds.Or(cirrus_clouds)
# Count total pixels and cloudy pixels
total_pixels = qa60.reduceRegion(
reducer=ee.Reducer.count(),
geometry=image.geometry(),
scale=60, # QA60 resolution is 60 meters
maxPixels=1e13
).get(cloud_band)
cloudy_pixels = cloud_mask.reduceRegion(
reducer=ee.Reducer.sum(),
geometry=image.geometry(),
scale=60, # QA60 resolution is 60 meters
maxPixels=1e13
).get(cloud_band)
# Calculate cloud percentage
if total_pixels == 0:
return 0 # Avoid division by zero
return ee.Number(cloudy_pixels).divide(ee.Number(total_pixels)).multiply(100)
# # Preprocessing function with cloud filtering
# def preprocess_collection(collection, cloud_threshold):
# """
# Apply cloud filtering to the image collection using the QA60 bitmask.
# - Tile-based filtering: Exclude tiles with cloud coverage exceeding the selected threshold.
# - Pixel-based filtering: Mask out individual cloudy pixels.
# """
# def filter_tile(image):
# # Calculate cloud percentage for the tile
# cloud_percentage = calculate_cloud_percentage(image, cloud_band='QA60')
# # Keep the tile only if cloud percentage is below the threshold
# return image.set('cloud_percentage', cloud_percentage).updateMask(cloud_percentage.lt(cloud_threshold))
# def mask_cloudy_pixels(image):
# # Decode the QA60 bitmask
# qa60 = image.select('QA60')
# opaque_clouds = qa60.bitwiseAnd(1 << 10) # Bit 10: Opaque clouds
# cirrus_clouds = qa60.bitwiseAnd(1 << 11) # Bit 11: Cirrus clouds
# # Combine both cloud types into a single cloud mask
# cloud_mask = opaque_clouds.Or(cirrus_clouds)
# # Mask out cloudy pixels
# clear_pixels = cloud_mask.Not() # Invert the mask to keep clear pixels
# return image.updateMask(clear_pixels)
# # Step 1: Apply tile-based filtering
# filtered_collection = collection.map(filter_tile)
# # Step 2: Apply pixel-based filtering
# masked_collection = filtered_collection.map(mask_cloudy_pixels)
# return masked_collection
# Preprocessing function with separate tile-based and pixel-based cloud filtering
def preprocess_collection(collection, tile_cloud_threshold, pixel_cloud_threshold):
"""
Apply cloud filtering to the image collection using the QA60 bitmask.
- Tile-based filtering: Exclude tiles with cloud coverage exceeding the selected threshold.
- Pixel-based filtering: Mask out individual cloudy pixels exceeding the selected threshold.
"""
def filter_tile(image):
# Calculate cloud percentage for the tile
cloud_percentage = calculate_cloud_percentage(image, cloud_band='QA60')
# Keep the tile only if cloud percentage is below the threshold
return image.set('cloud_percentage', cloud_percentage).updateMask(cloud_percentage.lt(tile_cloud_threshold))
def mask_cloudy_pixels(image):
# Decode the QA60 bitmask
qa60 = image.select('QA60')
opaque_clouds = qa60.bitwiseAnd(1 << 10) # Bit 10: Opaque clouds
cirrus_clouds = qa60.bitwiseAnd(1 << 11) # Bit 11: Cirrus clouds
# Combine both cloud types into a single cloud mask
cloud_mask = opaque_clouds.Or(cirrus_clouds)
# Mask out cloudy pixels based on pixel threshold
clear_pixels = cloud_mask.Not() # Invert the mask to keep clear pixels
return image.updateMask(clear_pixels)
# Step 1: Apply tile-based filtering
filtered_collection = collection.map(filter_tile)
# Step 2: Apply pixel-based filtering
masked_collection = filtered_collection.map(mask_cloudy_pixels)
return masked_collection
# Worker function for processing a single geometry
def process_single_geometry(row, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, custom_formula, original_lat_col, original_lon_col, kernel_size=None, include_boundary=None):
if shape_type.lower() == "point":
latitude = row.get('latitude')
longitude = row.get('longitude')
if pd.isna(latitude) or pd.isna(longitude):
return None # Skip invalid points
location_name = row.get('name', f"Location_{row.name}")
if kernel_size == "3x3 Kernel":
buffer_size = 45 # 90m x 90m
roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds()
elif kernel_size == "5x5 Kernel":
buffer_size = 75 # 150m x 150m
roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds()
else: # Point
roi = ee.Geometry.Point([longitude, latitude])
elif shape_type.lower() == "polygon":
polygon_geometry = row.get('geometry')
location_name = row.get('name', f"Polygon_{row.name}")
try:
roi = convert_to_ee_geometry(polygon_geometry)
if not include_boundary:
roi = roi.buffer(-30).bounds()
except ValueError:
return None # Skip invalid polygons
# Filter and aggregate the image collection
collection = ee.ImageCollection(dataset_id) \
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
.filterBounds(roi)
if aggregation_period.lower() == 'custom (start date to end date)':
collection = aggregate_data_custom(collection)
elif aggregation_period.lower() == 'daily':
collection = aggregate_data_daily(collection)
elif aggregation_period.lower() == 'weekly':
collection = aggregate_data_weekly(collection, start_date_str, end_date_str)
elif aggregation_period.lower() == 'monthly':
collection = aggregate_data_monthly(collection, start_date_str, end_date_str)
elif aggregation_period.lower() == 'yearly':
collection = aggregate_data_yearly(collection)
# Process each image in the collection
image_list = collection.toList(collection.size())
processed_weeks = set()
aggregated_results = []
for i in range(image_list.size().getInfo()):
image = ee.Image(image_list.get(i))
if aggregation_period.lower() == 'custom (start date to end date)':
timestamp = image.get('day')
period_label = 'Date'
date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo()
elif aggregation_period.lower() == 'daily':
timestamp = image.get('day_start')
period_label = 'Date'
date = ee.String(timestamp).getInfo()
elif aggregation_period.lower() == 'weekly':
timestamp = image.get('week_start')
period_label = 'Week'
date = ee.String(timestamp).getInfo()
if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or
pd.to_datetime(date) > pd.to_datetime(end_date_str) or
date in processed_weeks):
continue
processed_weeks.add(date)
elif aggregation_period.lower() == 'monthly':
timestamp = image.get('month')
period_label = 'Month'
date = ee.Date(timestamp).format('YYYY-MM').getInfo()
elif aggregation_period.lower() == 'yearly':
timestamp = image.get('year')
period_label = 'Year'
date = ee.Date(timestamp).format('YYYY').getInfo()
index_image = calculate_custom_formula(image, roi, selected_bands, custom_formula, reducer_choice, scale=scale)
try:
index_value = index_image.reduceRegion(
reducer=get_reducer(reducer_choice),
geometry=roi,
scale=scale
).get('custom_result')
calculated_value = index_value.getInfo()
if isinstance(calculated_value, (int, float)):
result = {
'Location Name': location_name,
period_label: date,
'Start Date': start_date_str,
'End Date': end_date_str,
'Calculated Value': calculated_value
}
if shape_type.lower() == 'point':
result[original_lat_col] = latitude # Use original column name
result[original_lon_col] = longitude # Use original column name
aggregated_results.append(result)
except Exception as e:
st.error(f"Error retrieving value for {location_name}: {e}")
return aggregated_results
# # Main processing function
# def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, original_lat_col, original_lon_col, custom_formula="", kernel_size=None, include_boundary=None, cloud_threshold=0):
# aggregated_results = []
# total_steps = len(locations_df)
# progress_bar = st.progress(0)
# progress_text = st.empty()
# start_time = time.time() # Start timing the process
# # Preprocess the image collection with cloud filtering
# raw_collection = ee.ImageCollection(dataset_id) \
# .filterDate(ee.Date(start_date_str), ee.Date(end_date_str))
# # Print the size of the original collection
# st.write(f"Original Collection Size: {raw_collection.size().getInfo()}")
# # Apply cloud filtering if threshold > 0
# if cloud_threshold > 0:
# raw_collection = preprocess_collection(raw_collection, cloud_threshold)
# # Print the size of the preprocessed collection
# st.write(f"Preprocessed Collection Size: {raw_collection.size().getInfo()}")
# with ThreadPoolExecutor(max_workers=10) as executor:
# futures = []
# for idx, row in locations_df.iterrows():
# future = executor.submit(
# process_single_geometry,
# row,
# start_date_str,
# end_date_str,
# dataset_id,
# selected_bands,
# reducer_choice,
# shape_type,
# aggregation_period,
# custom_formula,
# original_lat_col,
# original_lon_col,
# kernel_size,
# include_boundary
# )
# futures.append(future)
# completed = 0
# for future in as_completed(futures):
# result = future.result()
# if result:
# aggregated_results.extend(result)
# completed += 1
# progress_percentage = completed / total_steps
# progress_bar.progress(progress_percentage)
# progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
# # End timing the process
# end_time = time.time()
# processing_time = end_time - start_time # Calculate total processing time
# if aggregated_results:
# result_df = pd.DataFrame(aggregated_results)
# if aggregation_period.lower() == 'custom (start date to end date)':
# agg_dict = {
# 'Start Date': 'first',
# 'End Date': 'first',
# 'Calculated Value': 'mean'
# }
# if shape_type.lower() == 'point':
# agg_dict[original_lat_col] = 'first'
# agg_dict[original_lon_col] = 'first'
# aggregated_output = result_df.groupby('Location Name').agg(agg_dict).reset_index()
# aggregated_output['Date Range'] = aggregated_output['Start Date'] + " to " + aggregated_output['End Date']
# aggregated_output.rename(columns={'Calculated Value': 'Aggregated Value'}, inplace=True)
# return aggregated_output.to_dict(orient='records'), processing_time
# else:
# return result_df.to_dict(orient='records'), processing_time
# return [], processing_time
# Aggregation logic for custom date range
def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, original_lat_col, original_lon_col, custom_formula="", kernel_size=None, include_boundary=None, tile_cloud_threshold=0, pixel_cloud_threshold=0):
aggregated_results = []
total_steps = len(locations_df)
progress_bar = st.progress(0)
progress_text = st.empty()
start_time = time.time() # Start timing the process
# Preprocess the image collection with cloud filtering
raw_collection = ee.ImageCollection(dataset_id) \
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str))
# Print the size of the original collection
st.write(f"Original Collection Size: {raw_collection.size().getInfo()}")
# Apply cloud filtering if thresholds > 0
if tile_cloud_threshold > 0 or pixel_cloud_threshold > 0:
raw_collection = preprocess_collection(raw_collection, tile_cloud_threshold, pixel_cloud_threshold)
# Print the size of the preprocessed collection
st.write(f"Preprocessed Collection Size: {raw_collection.size().getInfo()}")
with ThreadPoolExecutor(max_workers=10) as executor:
futures = []
for idx, row in locations_df.iterrows():
future = executor.submit(
process_single_geometry,
row,
start_date_str,
end_date_str,
dataset_id,
selected_bands,
reducer_choice,
shape_type,
aggregation_period,
custom_formula,
original_lat_col,
original_lon_col,
kernel_size,
include_boundary
)
futures.append(future)
completed = 0
for future in as_completed(futures):
result = future.result()
if result:
aggregated_results.extend(result)
completed += 1
progress_percentage = completed / total_steps
progress_bar.progress(progress_percentage)
progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
# End timing the process
end_time = time.time()
processing_time = end_time - start_time # Calculate total processing time
if aggregated_results:
result_df = pd.DataFrame(aggregated_results)
if aggregation_period.lower() == 'custom (start date to end date)':
agg_dict = {
'Start Date': 'first',
'End Date': 'first',
'Calculated Value': 'mean' # Fixed column name to "Calculated Value"
}
if shape_type.lower() == 'point':
agg_dict[original_lat_col] = 'first'
agg_dict[original_lon_col] = 'first'
aggregated_output = result_df.groupby('Location Name').agg(agg_dict).reset_index()
aggregated_output['Date Range'] = aggregated_output['Start Date'] + " to " + aggregated_output['End Date']
aggregated_output.rename(columns={'Calculated Value': 'Calculated Value'}, inplace=True) # Ensure correct naming
return aggregated_output.to_dict(orient='records'), processing_time
else:
return result_df.to_dict(orient='records'), processing_time
return [], processing_time
# Streamlit App Logic
st.markdown("<h5>Image Collection</h5>", unsafe_allow_html=True)
imagery_base = st.selectbox("Select Imagery Base", ["Sentinel", "Landsat", "MODIS", "VIIRS", "Custom Input"], index=0)
# Initialize data as an empty dictionary
data = {}
if imagery_base == "Sentinel":
dataset_file = "sentinel_datasets.json"
try:
with open(dataset_file) as f:
data = json.load(f)
except FileNotFoundError:
st.error(f"Dataset file '{dataset_file}' not found.")
data = {}
elif imagery_base == "Landsat":
dataset_file = "landsat_datasets.json"
try:
with open(dataset_file) as f:
data = json.load(f)
except FileNotFoundError:
st.error(f"Dataset file '{dataset_file}' not found.")
data = {}
elif imagery_base == "MODIS":
dataset_file = "modis_datasets.json"
try:
with open(dataset_file) as f:
data = json.load(f)
except FileNotFoundError:
st.error(f"Dataset file '{dataset_file}' not found.")
data = {}
elif imagery_base == "VIIRS": # New VIIRS Option
dataset_file = "viirs_datasets.json"
try:
with open(dataset_file) as f:
data = json.load(f)
except FileNotFoundError:
st.error(f"Dataset file '{dataset_file}' not found.")
data = {}
elif imagery_base == "Custom Input":
custom_dataset_id = st.text_input("Enter Custom Earth Engine Dataset ID (e.g., AHN/AHN4)", value="")
if custom_dataset_id:
try:
if custom_dataset_id.startswith("ee.ImageCollection("):
custom_dataset_id = custom_dataset_id.replace("ee.ImageCollection('", "").replace("')", "")
collection = ee.ImageCollection(custom_dataset_id)
band_names = collection.first().bandNames().getInfo()
data = {
f"Custom Dataset: {custom_dataset_id}": {
"sub_options": {custom_dataset_id: f"Custom Dataset ({custom_dataset_id})"},
"bands": {custom_dataset_id: band_names}
}
}
st.write(f"Fetched bands for {custom_dataset_id}: {', '.join(band_names)}")
except Exception as e:
st.error(f"Error fetching dataset: {str(e)}. Please check the dataset ID and ensure it's valid in Google Earth Engine.")
data = {}
else:
st.warning("Please enter a custom dataset ID to proceed.")
data = {}
if not data:
st.error("No valid dataset available. Please check your inputs.")
st.stop()
st.markdown("<hr><h5><b>{}</b></h5>".format(imagery_base), unsafe_allow_html=True)
main_selection = st.selectbox(f"Select {imagery_base} Dataset Category", list(data.keys()))
sub_selection = None
dataset_id = None
if main_selection:
sub_options = data[main_selection]["sub_options"]
sub_selection = st.selectbox(f"Select Specific {imagery_base} Dataset ID", list(sub_options.keys()))
if sub_selection:
st.write(f"You selected: {main_selection} -> {sub_options[sub_selection]}")
st.write(f"Dataset ID: {sub_selection}")
dataset_id = sub_selection
st.markdown("<hr><h5><b>Earth Engine Index Calculator</b></h5>", unsafe_allow_html=True)
if main_selection and sub_selection:
dataset_bands = data[main_selection]["bands"].get(sub_selection, [])
st.write(f"Available Bands for {sub_options[sub_selection]}: {', '.join(dataset_bands)}")
selected_bands = st.multiselect(
"Select 1 or 2 Bands for Calculation",
options=dataset_bands,
default=[dataset_bands[0]] if dataset_bands else [],
help=f"Select 1 or 2 bands from: {', '.join(dataset_bands)}"
)
if len(selected_bands) < 1:
st.warning("Please select at least one band.")
st.stop()
if selected_bands:
if len(selected_bands) == 1:
default_formula = f"{selected_bands[0]}"
example = f"'{selected_bands[0]} * 2' or '{selected_bands[0]} + 1'"
else:
default_formula = f"({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})"
example = f"'{selected_bands[0]} * {selected_bands[1]} / 2' or '({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})'"
custom_formula = st.text_input(
"Enter Custom Formula (e.g (B8 - B4) / (B8 + B4) , B4*B3/2)",
value=default_formula,
help=f"Use only these bands: {', '.join(selected_bands)}. Examples: {example}"
)
def validate_formula(formula, selected_bands):
allowed_chars = set(" +-*/()0123456789.")
terms = re.findall(r'[a-zA-Z][a-zA-Z0-9_]*', formula)
invalid_terms = [term for term in terms if term not in selected_bands]
if invalid_terms:
return False, f"Invalid terms in formula: {', '.join(invalid_terms)}. Use only {', '.join(selected_bands)}."
if not all(char in allowed_chars or char in ''.join(selected_bands) for char in formula):
return False, "Formula contains invalid characters. Use only bands, numbers, and operators (+, -, *, /, ())"
return True, ""
is_valid, error_message = validate_formula(custom_formula, selected_bands)
if not is_valid:
st.error(error_message)
st.stop()
elif not custom_formula:
st.warning("Please enter a custom formula to proceed.")
st.stop()
st.write(f"Custom Formula: {custom_formula}")
reducer_choice = st.selectbox(
"Select Reducer (e.g, mean , sum , median , min , max , count)",
['mean', 'sum', 'median', 'min', 'max', 'count'],
index=0
)
start_date = st.date_input("Start Date", value=pd.to_datetime('2024-11-01'))
end_date = st.date_input("End Date", value=pd.to_datetime('2024-12-01'))
start_date_str = start_date.strftime('%Y-%m-%d')
end_date_str = end_date.strftime('%Y-%m-%d')
# st.markdown("<h5>Cloud Filtering</h5>", unsafe_allow_html=True)
# cloud_threshold = st.slider(
# "Select Maximum Cloud Coverage Threshold (%)",
# min_value=0,
# max_value=50,
# value=20,
# step=5,
# help="Tiles with cloud coverage exceeding this threshold will be excluded. Individual cloudy pixels will also be masked."
# )
# Cloud Filtering Section
if imagery_base == "Sentinel" and "Sentinel-2" in sub_options[sub_selection]:
st.markdown("<h5>Cloud Filtering</h5>", unsafe_allow_html=True)
# Separate thresholds for tile-based and pixel-based cloud filtering
tile_cloud_threshold = st.slider(
"Select Maximum Tile-Based Cloud Coverage Threshold (%)",
min_value=0,
max_value=100,
value=20,
step=5,
help="Tiles with cloud coverage exceeding this threshold will be excluded."
)
pixel_cloud_threshold = st.slider(
"Select Maximum Pixel-Based Cloud Coverage Threshold (%)",
min_value=0,
max_value=100,
value=10,
step=5,
help="Individual pixels with cloud coverage exceeding this threshold will be masked."
)
aggregation_period = st.selectbox(
"Select Aggregation Period (e.g, Custom(Start Date to End Date) , Daily , Weekly , Monthly , Yearly)",
["Custom (Start Date to End Date)", "Daily", "Weekly", "Monthly", "Yearly"],
index=0
)
shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"])
kernel_size = None
include_boundary = None
if shape_type.lower() == "point":
kernel_size = st.selectbox(
"Select Calculation Area(e.g, Point , 3x3 Kernel , 5x5 Kernel)",
["Point", "3x3 Kernel", "5x5 Kernel"],
index=0,
help="Choose 'Point' for exact point calculation, or a kernel size for area averaging."
)
elif shape_type.lower() == "polygon":
include_boundary = st.checkbox(
"Include Boundary Pixels",
value=True,
help="Check to include pixels on the polygon boundary; uncheck to exclude them."
)
# Add Scale Input
st.markdown("<h5>Calculation Scale</h5>", unsafe_allow_html=True)
default_scale = ee.ImageCollection(dataset_id).first().select(0).projection().nominalScale().getInfo()
user_scale = st.number_input(
"Enter Calculation Scale (meters) [Leave blank to use dataset's default scale]",
min_value=1,
value=default_scale,
help=f"Default scale for this dataset is {default_scale} meters. Adjust if needed."
)
file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
locations_df = pd.DataFrame()
original_lat_col = None
original_lon_col = None
if file_upload is not None:
if shape_type.lower() == "point":
if file_upload.name.endswith('.csv'):
# Read the CSV file
locations_df = pd.read_csv(file_upload)
# Show the first few rows to help user identify columns
st.write("Preview of your uploaded data (first 5 rows):")
st.dataframe(locations_df.head())
# Get all column names from the uploaded file
all_columns = locations_df.columns.tolist()
# Let user select latitude and longitude columns from dropdown
col1, col2 = st.columns(2)
with col1:
original_lat_col = st.selectbox(
"Select Latitude Column",
options=all_columns,
index=all_columns.index('latitude') if 'latitude' in all_columns else 0,
help="Select the column containing latitude values"
)
with col2:
original_lon_col = st.selectbox(
"Select Longitude Column",
options=all_columns,
index=all_columns.index('longitude') if 'longitude' in all_columns else 0,
help="Select the column containing longitude values"
)
# Validate the selected columns contain numeric data
if not pd.api.types.is_numeric_dtype(locations_df[original_lat_col]) or not pd.api.types.is_numeric_dtype(locations_df[original_lon_col]):
st.error("Error: Selected Latitude and Longitude columns must contain numeric values")
st.stop()
# Rename the selected columns to standard names for processing
locations_df = locations_df.rename(columns={
original_lat_col: 'latitude',
original_lon_col: 'longitude'
})
elif file_upload.name.endswith('.geojson'):
locations_df = gpd.read_file(file_upload)
if 'geometry' in locations_df.columns:
locations_df['latitude'] = locations_df['geometry'].y
locations_df['longitude'] = locations_df['geometry'].x
original_lat_col = 'latitude'
original_lon_col = 'longitude'
else:
st.error("GeoJSON file doesn't contain geometry column")
st.stop()
elif file_upload.name.endswith('.kml'):
kml_string = file_upload.read().decode('utf-8')
try:
root = XET.fromstring(kml_string)
ns = {'kml': 'http://www.opengis.net/kml/2.2'}
points = []
for placemark in root.findall('.//kml:Placemark', ns):
name = placemark.findtext('kml:name', default=f"Point_{len(points)}", namespaces=ns)
coords_elem = placemark.find('.//kml:Point/kml:coordinates', ns)
if coords_elem is not None:
coords_text = coords_elem.text.strip()
coords = [c.strip() for c in coords_text.split(',')]
if len(coords) >= 2:
lon, lat = float(coords[0]), float(coords[1])
points.append({'name': name, 'geometry': f"POINT ({lon} {lat})"})
if not points:
st.error("No valid Point data found in the KML file.")
else:
locations_df = gpd.GeoDataFrame(points, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in points]), crs="EPSG:4326")
locations_df['latitude'] = locations_df['geometry'].y
locations_df['longitude'] = locations_df['geometry'].x
original_lat_col = 'latitude'
original_lon_col = 'longitude'
except Exception as e:
st.error(f"Error parsing KML file: {str(e)}")
# Display map for points if we have valid data
if not locations_df.empty and 'latitude' in locations_df.columns and 'longitude' in locations_df.columns:
m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
for _, row in locations_df.iterrows():
latitude = row['latitude']
longitude = row['longitude']
if pd.isna(latitude) or pd.isna(longitude):
continue
m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
st.write("Map of Uploaded Points:")
m.to_streamlit()
elif shape_type.lower() == "polygon":
if file_upload.name.endswith('.csv'):
st.error("CSV upload not supported for polygons. Please upload a GeoJSON or KML file.")
elif file_upload.name.endswith('.geojson'):
locations_df = gpd.read_file(file_upload)
if 'geometry' not in locations_df.columns:
st.error("GeoJSON file doesn't contain geometry column")
st.stop()
elif file_upload.name.endswith('.kml'):
kml_string = file_upload.read().decode('utf-8')
try:
root = XET.fromstring(kml_string)
ns = {'kml': 'http://www.opengis.net/kml/2.2'}
polygons = []
for placemark in root.findall('.//kml:Placemark', ns):
name = placemark.findtext('kml:name', default=f"Polygon_{len(polygons)}", namespaces=ns)
coords_elem = placemark.find('.//kml:Polygon//kml:coordinates', ns)
if coords_elem is not None:
coords_text = ' '.join(coords_elem.text.split())
coord_pairs = [pair.split(',')[:2] for pair in coords_text.split() if pair]
if len(coord_pairs) >= 4:
coords_str = " ".join([f"{float(lon)} {float(lat)}" for lon, lat in coord_pairs])
polygons.append({'name': name, 'geometry': f"POLYGON (({coords_str}))"})
if not polygons:
st.error("No valid Polygon data found in the KML file.")
else:
locations_df = gpd.GeoDataFrame(polygons, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in polygons]), crs="EPSG:4326")
except Exception as e:
st.error(f"Error parsing KML file: {str(e)}")
# Display map for polygons if we have valid data
if not locations_df.empty and 'geometry' in locations_df.columns:
centroid_lat = locations_df.geometry.centroid.y.mean()
centroid_lon = locations_df.geometry.centroid.x.mean()
m = leafmap.Map(center=[centroid_lat, centroid_lon], zoom=10)
for _, row in locations_df.iterrows():
polygon = row['geometry']
if polygon.is_valid:
gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=locations_df.crs)
m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
st.write("Map of Uploaded Polygons:")
m.to_streamlit()
if st.button(f"Calculate {custom_formula}"):
if not locations_df.empty:
with st.spinner("Processing Data..."):
try:
results, processing_time = process_aggregation(
locations_df,
start_date_str,
end_date_str,
dataset_id,
selected_bands,
reducer_choice,
shape_type,
aggregation_period,
original_lat_col,
original_lon_col,
custom_formula,
kernel_size,
include_boundary,
tile_cloud_threshold=tile_cloud_threshold if "tile_cloud_threshold" in locals() else 0,
pixel_cloud_threshold=pixel_cloud_threshold if "pixel_cloud_threshold" in locals() else 0,
user_scale=user_scale
)
if results:
result_df = pd.DataFrame(results)
st.write(f"Processed Results Table ({aggregation_period}) for Formula: {custom_formula}")
st.dataframe(result_df)
filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y%m%d')}_{end_date.strftime('%Y%m%d')}_{aggregation_period.lower()}.csv"
st.download_button(
label="Download results as CSV",
data=result_df.to_csv(index=False).encode('utf-8'),
file_name=filename,
mime='text/csv'
)
st.success(f"Processing complete! Total processing time: {processing_time:.2f} seconds.")
# Graph Visualization Section
st.markdown("<h5>Graph Visualization</h5>", unsafe_allow_html=True)
# Dynamically identify the time column
if aggregation_period.lower() == 'custom (start date to end date)':
x_column = 'Date Range'
elif 'Date' in result_df.columns:
x_column = 'Date'
elif 'Week' in result_df.columns:
x_column = 'Week'
elif 'Month' in result_df.columns:
x_column = 'Month'
elif 'Year' in result_df.columns:
x_column = 'Year'
else:
st.warning("No valid time column found for plotting.")
st.stop()
y_column = 'Calculated Value'
# # Line Chart
# st.subheader("Line Chart")
# st.line_chart(result_df.set_index(x_column)[y_column])
# # Bar Chart
# st.subheader("Bar Chart")
# st.bar_chart(result_df.set_index(x_column)[y_column])
# Advanced Plot (Plotly)
st.subheader("Advanced Interactive Plot (Plotly)")
fig = px.line(
result_df,
x=x_column,
y=y_column,
color='Location Name',
title=f"{custom_formula} Over Time"
)
st.plotly_chart(fig)
else:
st.warning("No results were generated. Check your inputs or formula.")
st.info(f"Total processing time: {processing_time:.2f} seconds.")
except Exception as e:
st.error(f"An error occurred during processing: {str(e)}")
else:
st.warning("Please upload a valid file to proceed.")
# if st.button(f"Calculate {custom_formula}"):
# if not locations_df.empty:
# with st.spinner("Processing Data..."):
# try:
# results, processing_time = process_aggregation(
# locations_df,
# start_date_str,
# end_date_str,
# dataset_id,
# selected_bands,
# reducer_choice,
# shape_type,
# aggregation_period,
# original_lat_col,
# original_lon_col,
# custom_formula,
# kernel_size,
# include_boundary,
# cloud_threshold=cloud_threshold
# )
# if results:
# result_df = pd.DataFrame(results)
# st.write(f"Processed Results Table ({aggregation_period}) for Formula: {custom_formula}")
# st.dataframe(result_df)
# # Debug: Print column names to verify
# st.write("Available columns in results:", result_df.columns.tolist())
# filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y%m%d')}_{end_date.strftime('%Y%m%d')}_{aggregation_period.lower()}.csv"
# st.download_button(
# label="Download results as CSV",
# data=result_df.to_csv(index=False).encode('utf-8'),
# file_name=filename,
# mime='text/csv'
# )
# st.success(f"Processing complete! Total processing time: {processing_time:.2f} seconds.")
# # Graph Visualization Section
# st.markdown("<h5>Graph Visualization</h5>", unsafe_allow_html=True)
# # Dynamically identify the value column (handle both 'Calculated Value' and 'Aggregated Value')
# value_column = None
# if 'Calculated Value' in result_df.columns:
# value_column = 'Calculated Value'
# elif 'Aggregated Value' in result_df.columns:
# value_column = 'Aggregated Value'
# else:
# st.warning("No value column found for plotting. Available columns: " + ", ".join(result_df.columns))
# st.stop()
# # Dynamically identify the time column
# if aggregation_period.lower() == 'custom (start date to end date)':
# x_column = 'Date Range'
# elif 'Date' in result_df.columns:
# x_column = 'Date'
# elif 'Week' in result_df.columns:
# x_column = 'Week'
# elif 'Month' in result_df.columns:
# x_column = 'Month'
# elif 'Year' in result_df.columns:
# x_column = 'Year'
# else:
# st.warning("No valid time column found for plotting. Available columns: " + ", ".join(result_df.columns))
# st.stop()
# # Ensure we have valid data to plot
# if result_df.empty:
# st.warning("No data available for plotting.")
# st.stop()
# # Line Chart
# try:
# st.subheader("Line Chart")
# st.line_chart(result_df.set_index(x_column)[value_column])
# except Exception as e:
# st.error(f"Error creating line chart: {str(e)}")
# # Bar Chart
# try:
# st.subheader("Bar Chart")
# st.bar_chart(result_df.set_index(x_column)[value_column])
# except Exception as e:
# st.error(f"Error creating bar chart: {str(e)}")
# # Advanced Plot (Plotly)
# try:
# st.subheader("Advanced Interactive Plot (Plotly)")
# fig = px.line(
# result_df,
# x=x_column,
# y=value_column,
# color='Location Name' if 'Location Name' in result_df.columns else None,
# title=f"{custom_formula} Over Time"
# )
# st.plotly_chart(fig)
# except Exception as e:
# st.error(f"Error creating interactive plot: {str(e)}")
# else:
# st.warning("No results were generated. Check your inputs or formula.")
# st.info(f"Total processing time: {processing_time:.2f} seconds.")
# except Exception as e:
# st.error(f"An error occurred during processing: {str(e)}")
# else:
# st.warning("Please upload a valid file to proceed.")
# if st.button(f"Calculate {custom_formula}"):
# if not locations_df.empty:
# with st.spinner("Processing Data..."):
# try:
# results, processing_time = process_aggregation(
# locations_df,
# start_date_str,
# end_date_str,
# dataset_id,
# selected_bands,
# reducer_choice,
# shape_type,
# aggregation_period,
# original_lat_col,
# original_lon_col,
# custom_formula,
# kernel_size,
# include_boundary,
# cloud_threshold=cloud_threshold
# )
# if results:
# result_df = pd.DataFrame(results)
# # Reorder and rename columns
# column_mapping = {
# 'Location Name': 'Location Name',
# 'Start Date': 'Start Date',
# 'End Date': 'End Date',
# 'Date Range': 'Date Range',
# original_lat_col: 'Latitude',
# original_lon_col: 'Longitude',
# 'Aggregated Value': 'Calculated Value',
# 'Calculated Value': 'Calculated Value'
# }
# # Keep only columns that exist in the results
# available_columns = [col for col in column_mapping.keys() if col in result_df.columns]
# result_df = result_df[available_columns]
# result_df = result_df.rename(columns={k:v for k,v in column_mapping.items() if k in available_columns})
# st.write(f"Processed Results Table ({aggregation_period}) for Formula: {custom_formula}")
# st.dataframe(result_df)
# # Graph Visualization Section
# st.markdown("<h5>Graph Visualization</h5>", unsafe_allow_html=True)
# # Determine time column based on aggregation period
# time_column_map = {
# 'custom (start date to end date)': 'Date Range',
# 'daily': 'Date',
# 'weekly': 'Week',
# 'monthly': 'Month',
# 'yearly': 'Year'
# }
# x_column = time_column_map.get(aggregation_period.lower())
# if x_column not in result_df.columns:
# # Try to find any time-related column
# time_columns = ['Date Range', 'Date', 'Week', 'Month', 'Year', 'day', 'month', 'year']
# x_column = next((col for col in time_columns if col in result_df.columns), None)
# if x_column is None:
# st.warning("No time column found for plotting. Showing data without time axis.")
# x_column = 'Location Name'
# value_column = 'Calculated Value'
# if value_column not in result_df.columns:
# st.error("No calculated values found for plotting.")
# st.stop()
# # Line Chart
# try:
# st.subheader("Line Chart")
# if x_column == 'Location Name':
# st.line_chart(result_df.set_index(x_column)[value_column])
# else:
# # Convert to datetime for better sorting
# result_df[x_column] = pd.to_datetime(result_df[x_column], errors='ignore')
# result_df = result_df.sort_values(x_column)
# st.line_chart(result_df.set_index(x_column)[value_column])
# except Exception as e:
# st.error(f"Error creating line chart: {str(e)}")
# # Bar Chart
# try:
# st.subheader("Bar Chart")
# if x_column == 'Location Name':
# st.bar_chart(result_df.set_index(x_column)[value_column])
# else:
# result_df[x_column] = pd.to_datetime(result_df[x_column], errors='ignore')
# result_df = result_df.sort_values(x_column)
# st.bar_chart(result_df.set_index(x_column)[value_column])
# except Exception as e:
# st.error(f"Error creating bar chart: {str(e)}")
# # Advanced Plot (Plotly)
# try:
# st.subheader("Advanced Interactive Plot (Plotly)")
# if x_column == 'Location Name':
# fig = px.bar(
# result_df,
# x=x_column,
# y=value_column,
# color='Location Name',
# title=f"{custom_formula} by Location"
# )
# else:
# fig = px.line(
# result_df,
# x=x_column,
# y=value_column,
# color='Location Name',
# title=f"{custom_formula} Over Time"
# )
# st.plotly_chart(fig)
# except Exception as e:
# st.error(f"Error creating interactive plot: {str(e)}")
# # Download button
# filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y%m%d')}_{end_date.strftime('%Y%m%d')}_{aggregation_period.lower()}.csv"
# st.download_button(
# label="Download results as CSV",
# data=result_df.to_csv(index=False).encode('utf-8'),
# file_name=filename,
# mime='text/csv'
# )
# st.success(f"Processing complete! Total processing time: {processing_time:.2f} seconds.")
# else:
# st.warning("No results were generated. Check your inputs or formula.")
# st.info(f"Total processing time: {processing_time:.2f} seconds.")
# except Exception as e:
# st.error(f"An error occurred during processing: {str(e)}")
# else:
# st.warning("Please upload a valid file to proceed.") |