Spaces:
Running
Running
update app.py
Browse files
app.py
CHANGED
@@ -1,739 +1,739 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import json
|
3 |
-
import ee
|
4 |
-
import os
|
5 |
-
import pandas as pd
|
6 |
-
import geopandas as gpd
|
7 |
-
from datetime import datetime
|
8 |
-
import leafmap.foliumap as leafmap
|
9 |
-
import re
|
10 |
-
from shapely.geometry import base
|
11 |
-
from xml.etree import ElementTree as XET
|
12 |
-
from concurrent.futures import ThreadPoolExecutor, as_completed
|
13 |
-
import time
|
14 |
-
import matplotlib.pyplot as plt
|
15 |
-
import plotly.express as px
|
16 |
-
|
17 |
-
# Set up the page layout
|
18 |
-
st.set_page_config(layout="wide")
|
19 |
-
|
20 |
-
# Custom button styling
|
21 |
-
m = st.markdown(
|
22 |
-
"""
|
23 |
-
<style>
|
24 |
-
div.stButton > button:first-child {
|
25 |
-
background-color: #006400;
|
26 |
-
color:#ffffff;
|
27 |
-
}
|
28 |
-
</style>""",
|
29 |
-
unsafe_allow_html=True,
|
30 |
-
)
|
31 |
-
|
32 |
-
# Logo and Title
|
33 |
-
st.write(
|
34 |
-
f"""
|
35 |
-
<div style="display: flex; justify-content: space-between; align-items: center;">
|
36 |
-
<img src="https://huggingface.co/spaces/YashMK89/
|
37 |
-
<img src="https://huggingface.co/spaces/YashMK89/
|
38 |
-
</div>
|
39 |
-
""",
|
40 |
-
unsafe_allow_html=True,
|
41 |
-
)
|
42 |
-
st.markdown(
|
43 |
-
f"""
|
44 |
-
<div style="display: flex; flex-direction: column; align-items: center;">
|
45 |
-
<img src="https://huggingface.co/spaces/YashMK89/
|
46 |
-
<h3 style="text-align: center; margin: 0;">( Spatial and Temporal Aggregation for Remote-sensing Analysis of GEE Data )</h3>
|
47 |
-
</div>
|
48 |
-
<hr>
|
49 |
-
""",
|
50 |
-
unsafe_allow_html=True,
|
51 |
-
)
|
52 |
-
|
53 |
-
# Authenticate and initialize Earth Engine
|
54 |
-
earthengine_credentials = os.environ.get("EE_Authentication")
|
55 |
-
os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
|
56 |
-
with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
|
57 |
-
f.write(earthengine_credentials)
|
58 |
-
ee.Initialize(project='ee-yashsacisro24')
|
59 |
-
|
60 |
-
# Helper function to get reducer
|
61 |
-
def get_reducer(reducer_name):
|
62 |
-
reducers = {
|
63 |
-
'mean': ee.Reducer.mean(),
|
64 |
-
'sum': ee.Reducer.sum(),
|
65 |
-
'median': ee.Reducer.median(),
|
66 |
-
'min': ee.Reducer.min(),
|
67 |
-
'max': ee.Reducer.max(),
|
68 |
-
'count': ee.Reducer.count(),
|
69 |
-
}
|
70 |
-
return reducers.get(reducer_name.lower(), ee.Reducer.mean())
|
71 |
-
|
72 |
-
# Function to convert geometry to Earth Engine format
|
73 |
-
def convert_to_ee_geometry(geometry):
|
74 |
-
if isinstance(geometry, base.BaseGeometry):
|
75 |
-
if geometry.is_valid:
|
76 |
-
geojson = geometry.__geo_interface__
|
77 |
-
return ee.Geometry(geojson)
|
78 |
-
else:
|
79 |
-
raise ValueError("Invalid geometry: The polygon geometry is not valid.")
|
80 |
-
elif isinstance(geometry, dict) or isinstance(geometry, str):
|
81 |
-
try:
|
82 |
-
if isinstance(geometry, str):
|
83 |
-
geometry = json.loads(geometry)
|
84 |
-
if 'type' in geometry and 'coordinates' in geometry:
|
85 |
-
return ee.Geometry(geometry)
|
86 |
-
else:
|
87 |
-
raise ValueError("GeoJSON format is invalid.")
|
88 |
-
except Exception as e:
|
89 |
-
raise ValueError(f"Error parsing GeoJSON: {e}")
|
90 |
-
elif isinstance(geometry, str) and geometry.lower().endswith(".kml"):
|
91 |
-
try:
|
92 |
-
tree = XET.parse(geometry)
|
93 |
-
kml_root = tree.getroot()
|
94 |
-
kml_namespace = {'kml': 'http://www.opengis.net/kml/2.2'}
|
95 |
-
coordinates = kml_root.findall(".//kml:coordinates", kml_namespace)
|
96 |
-
if coordinates:
|
97 |
-
coords_text = coordinates[0].text.strip()
|
98 |
-
coords = coords_text.split()
|
99 |
-
coords = [tuple(map(float, coord.split(','))) for coord in coords]
|
100 |
-
geojson = {"type": "Polygon", "coordinates": [coords]}
|
101 |
-
return ee.Geometry(geojson)
|
102 |
-
else:
|
103 |
-
raise ValueError("KML does not contain valid coordinates.")
|
104 |
-
except Exception as e:
|
105 |
-
raise ValueError(f"Error parsing KML: {e}")
|
106 |
-
else:
|
107 |
-
raise ValueError("Unsupported geometry input type. Supported types are Shapely, GeoJSON, and KML.")
|
108 |
-
|
109 |
-
# Function to calculate custom formula
|
110 |
-
def calculate_custom_formula(image, geometry, selected_bands, custom_formula, reducer_choice, dataset_id, user_scale=None):
|
111 |
-
try:
|
112 |
-
# Determine the scale: Use user-defined scale if provided, otherwise use dataset's native resolution
|
113 |
-
default_scale = ee.ImageCollection(dataset_id).first().select(0).projection().nominalScale().getInfo()
|
114 |
-
scale = user_scale if user_scale is not None else default_scale
|
115 |
-
band_values = {}
|
116 |
-
band_names = image.bandNames().getInfo()
|
117 |
-
for band in selected_bands:
|
118 |
-
if band not in band_names:
|
119 |
-
raise ValueError(f"Band '{band}' not found in the dataset.")
|
120 |
-
band_values[band] = image.select(band)
|
121 |
-
reducer = get_reducer(reducer_choice)
|
122 |
-
reduced_values = {}
|
123 |
-
for band in selected_bands:
|
124 |
-
value = band_values[band].reduceRegion(
|
125 |
-
reducer=reducer,
|
126 |
-
geometry=geometry,
|
127 |
-
scale=scale
|
128 |
-
).get(band).getInfo()
|
129 |
-
reduced_values[band] = float(value if value is not None else 0)
|
130 |
-
formula = custom_formula
|
131 |
-
for band in selected_bands:
|
132 |
-
formula = formula.replace(band, str(reduced_values[band]))
|
133 |
-
result = eval(formula, {"__builtins__": {}}, reduced_values)
|
134 |
-
if not isinstance(result, (int, float)):
|
135 |
-
raise ValueError("Formula did not result in a numeric value.")
|
136 |
-
return ee.Image.constant(result).rename('custom_result')
|
137 |
-
except ZeroDivisionError:
|
138 |
-
st.error("Error: Division by zero in the formula.")
|
139 |
-
return ee.Image(0).rename('custom_result').set('error', 'Division by zero')
|
140 |
-
except SyntaxError:
|
141 |
-
st.error(f"Error: Invalid syntax in formula '{custom_formula}'.")
|
142 |
-
return ee.Image(0).rename('custom_result').set('error', 'Invalid syntax')
|
143 |
-
except ValueError as e:
|
144 |
-
st.error(f"Error: {str(e)}")
|
145 |
-
return ee.Image(0).rename('custom_result').set('error', str(e))
|
146 |
-
except Exception as e:
|
147 |
-
st.error(f"Unexpected error: {e}")
|
148 |
-
return ee.Image(0).rename('custom_result').set('error', str(e))
|
149 |
-
|
150 |
-
# Aggregation functions
|
151 |
-
def aggregate_data_custom(collection):
|
152 |
-
collection = collection.map(lambda image: image.set('day', ee.Date(image.get('system:time_start')).format('YYYY-MM-dd')))
|
153 |
-
grouped_by_day = collection.aggregate_array('day').distinct()
|
154 |
-
def calculate_daily_mean(day):
|
155 |
-
daily_collection = collection.filter(ee.Filter.eq('day', day))
|
156 |
-
daily_mean = daily_collection.mean()
|
157 |
-
return daily_mean.set('day', day)
|
158 |
-
daily_images = ee.List(grouped_by_day.map(calculate_daily_mean))
|
159 |
-
return ee.ImageCollection(daily_images)
|
160 |
-
|
161 |
-
def aggregate_data_daily(collection):
|
162 |
-
def set_day_start(image):
|
163 |
-
date = ee.Date(image.get('system:time_start'))
|
164 |
-
day_start = date.format('YYYY-MM-dd')
|
165 |
-
return image.set('day_start', day_start)
|
166 |
-
collection = collection.map(set_day_start)
|
167 |
-
grouped_by_day = collection.aggregate_array('day_start').distinct()
|
168 |
-
def calculate_daily_mean(day_start):
|
169 |
-
daily_collection = collection.filter(ee.Filter.eq('day_start', day_start))
|
170 |
-
daily_mean = daily_collection.mean()
|
171 |
-
return daily_mean.set('day_start', day_start)
|
172 |
-
daily_images = ee.List(grouped_by_day.map(calculate_daily_mean))
|
173 |
-
return ee.ImageCollection(daily_images)
|
174 |
-
|
175 |
-
def aggregate_data_weekly(collection, start_date_str, end_date_str):
|
176 |
-
start_date = ee.Date(start_date_str)
|
177 |
-
end_date = ee.Date(end_date_str)
|
178 |
-
days_diff = end_date.difference(start_date, 'day')
|
179 |
-
num_weeks = days_diff.divide(7).ceil().getInfo()
|
180 |
-
weekly_images = []
|
181 |
-
for week in range(num_weeks):
|
182 |
-
week_start = start_date.advance(week * 7, 'day')
|
183 |
-
week_end = week_start.advance(7, 'day')
|
184 |
-
weekly_collection = collection.filterDate(week_start, week_end)
|
185 |
-
if weekly_collection.size().getInfo() > 0:
|
186 |
-
weekly_mean = weekly_collection.mean()
|
187 |
-
weekly_mean = weekly_mean.set('week_start', week_start.format('YYYY-MM-dd'))
|
188 |
-
weekly_images.append(weekly_mean)
|
189 |
-
return ee.ImageCollection.fromImages(weekly_images)
|
190 |
-
|
191 |
-
def aggregate_data_monthly(collection, start_date, end_date):
|
192 |
-
collection = collection.filterDate(start_date, end_date)
|
193 |
-
collection = collection.map(lambda image: image.set('month', ee.Date(image.get('system:time_start')).format('YYYY-MM')))
|
194 |
-
grouped_by_month = collection.aggregate_array('month').distinct()
|
195 |
-
def calculate_monthly_mean(month):
|
196 |
-
monthly_collection = collection.filter(ee.Filter.eq('month', month))
|
197 |
-
monthly_mean = monthly_collection.mean()
|
198 |
-
return monthly_mean.set('month', month)
|
199 |
-
monthly_images = ee.List(grouped_by_month.map(calculate_monthly_mean))
|
200 |
-
return ee.ImageCollection(monthly_images)
|
201 |
-
|
202 |
-
def aggregate_data_yearly(collection):
|
203 |
-
collection = collection.map(lambda image: image.set('year', ee.Date(image.get('system:time_start')).format('YYYY')))
|
204 |
-
grouped_by_year = collection.aggregate_array('year').distinct()
|
205 |
-
def calculate_yearly_mean(year):
|
206 |
-
yearly_collection = collection.filter(ee.Filter.eq('year', year))
|
207 |
-
yearly_mean = yearly_collection.mean()
|
208 |
-
return yearly_mean.set('year', year)
|
209 |
-
yearly_images = ee.List(grouped_by_year.map(calculate_yearly_mean))
|
210 |
-
return ee.ImageCollection(yearly_images)
|
211 |
-
|
212 |
-
def preprocess_collection(collection, tile_cloud_threshold, pixel_cloud_threshold):
|
213 |
-
def filter_tile(image):
|
214 |
-
cloud_percentage = calculate_cloud_percentage(image, cloud_band='QA60')
|
215 |
-
return image.set('cloud_percentage', cloud_percentage).updateMask(cloud_percentage.lt(tile_cloud_threshold))
|
216 |
-
def mask_cloudy_pixels(image):
|
217 |
-
qa60 = image.select('QA60')
|
218 |
-
opaque_clouds = qa60.bitwiseAnd(1 << 10)
|
219 |
-
cirrus_clouds = qa60.bitwiseAnd(1 << 11)
|
220 |
-
cloud_mask = opaque_clouds.Or(cirrus_clouds)
|
221 |
-
clear_pixels = cloud_mask.Not()
|
222 |
-
return image.updateMask(clear_pixels)
|
223 |
-
filtered_collection = collection.map(filter_tile)
|
224 |
-
masked_collection = filtered_collection.map(mask_cloudy_pixels)
|
225 |
-
return masked_collection
|
226 |
-
|
227 |
-
def process_single_geometry(row, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, custom_formula, original_lat_col, original_lon_col, kernel_size=None, include_boundary=None, user_scale=None):
|
228 |
-
if shape_type.lower() == "point":
|
229 |
-
latitude = row.get('latitude')
|
230 |
-
longitude = row.get('longitude')
|
231 |
-
if pd.isna(latitude) or pd.isna(longitude):
|
232 |
-
return None
|
233 |
-
location_name = row.get('name', f"Location_{row.name}")
|
234 |
-
if kernel_size == "3x3 Kernel":
|
235 |
-
buffer_size = 45
|
236 |
-
roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds()
|
237 |
-
elif kernel_size == "5x5 Kernel":
|
238 |
-
buffer_size = 75
|
239 |
-
roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds()
|
240 |
-
else:
|
241 |
-
roi = ee.Geometry.Point([longitude, latitude])
|
242 |
-
elif shape_type.lower() == "polygon":
|
243 |
-
polygon_geometry = row.get('geometry')
|
244 |
-
location_name = row.get('name', f"Polygon_{row.name}")
|
245 |
-
try:
|
246 |
-
roi = convert_to_ee_geometry(polygon_geometry)
|
247 |
-
if not include_boundary:
|
248 |
-
roi = roi.buffer(-30).bounds()
|
249 |
-
except ValueError:
|
250 |
-
return None
|
251 |
-
collection = ee.ImageCollection(dataset_id) \
|
252 |
-
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
|
253 |
-
.filterBounds(roi)
|
254 |
-
if aggregation_period.lower() == 'custom (start date to end date)':
|
255 |
-
collection = aggregate_data_custom(collection)
|
256 |
-
elif aggregation_period.lower() == 'daily':
|
257 |
-
collection = aggregate_data_daily(collection)
|
258 |
-
elif aggregation_period.lower() == 'weekly':
|
259 |
-
collection = aggregate_data_weekly(collection, start_date_str, end_date_str)
|
260 |
-
elif aggregation_period.lower() == 'monthly':
|
261 |
-
collection = aggregate_data_monthly(collection, start_date_str, end_date_str)
|
262 |
-
elif aggregation_period.lower() == 'yearly':
|
263 |
-
collection = aggregate_data_yearly(collection)
|
264 |
-
image_list = collection.toList(collection.size())
|
265 |
-
processed_weeks = set()
|
266 |
-
aggregated_results = []
|
267 |
-
for i in range(image_list.size().getInfo()):
|
268 |
-
image = ee.Image(image_list.get(i))
|
269 |
-
if aggregation_period.lower() == 'custom (start date to end date)':
|
270 |
-
timestamp = image.get('day')
|
271 |
-
period_label = 'Date'
|
272 |
-
date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo()
|
273 |
-
elif aggregation_period.lower() == 'daily':
|
274 |
-
timestamp = image.get('day_start')
|
275 |
-
period_label = 'Date'
|
276 |
-
date = ee.String(timestamp).getInfo()
|
277 |
-
elif aggregation_period.lower() == 'weekly':
|
278 |
-
timestamp = image.get('week_start')
|
279 |
-
period_label = 'Week'
|
280 |
-
date = ee.String(timestamp).getInfo()
|
281 |
-
if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or
|
282 |
-
pd.to_datetime(date) > pd.to_datetime(end_date_str) or
|
283 |
-
date in processed_weeks):
|
284 |
-
continue
|
285 |
-
processed_weeks.add(date)
|
286 |
-
elif aggregation_period.lower() == 'monthly':
|
287 |
-
timestamp = image.get('month')
|
288 |
-
period_label = 'Month'
|
289 |
-
date = ee.Date(timestamp).format('YYYY-MM').getInfo()
|
290 |
-
elif aggregation_period.lower() == 'yearly':
|
291 |
-
timestamp = image.get('year')
|
292 |
-
period_label = 'Year'
|
293 |
-
date = ee.Date(timestamp).format('YYYY').getInfo()
|
294 |
-
index_image = calculate_custom_formula(image, roi, selected_bands, custom_formula, reducer_choice, dataset_id, user_scale=user_scale)
|
295 |
-
try:
|
296 |
-
index_value = index_image.reduceRegion(
|
297 |
-
reducer=get_reducer(reducer_choice),
|
298 |
-
geometry=roi,
|
299 |
-
scale=user_scale
|
300 |
-
).get('custom_result')
|
301 |
-
calculated_value = index_value.getInfo()
|
302 |
-
if isinstance(calculated_value, (int, float)):
|
303 |
-
result = {
|
304 |
-
'Location Name': location_name,
|
305 |
-
period_label: date,
|
306 |
-
'Start Date': start_date_str,
|
307 |
-
'End Date': end_date_str,
|
308 |
-
'Calculated Value': calculated_value
|
309 |
-
}
|
310 |
-
if shape_type.lower() == 'point':
|
311 |
-
result[original_lat_col] = latitude
|
312 |
-
result[original_lon_col] = longitude
|
313 |
-
aggregated_results.append(result)
|
314 |
-
except Exception as e:
|
315 |
-
st.error(f"Error retrieving value for {location_name}: {e}")
|
316 |
-
return aggregated_results
|
317 |
-
|
318 |
-
def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, original_lat_col, original_lon_col, custom_formula="", kernel_size=None, include_boundary=None, tile_cloud_threshold=0, pixel_cloud_threshold=0, user_scale=None):
|
319 |
-
aggregated_results = []
|
320 |
-
total_steps = len(locations_df)
|
321 |
-
progress_bar = st.progress(0)
|
322 |
-
progress_text = st.empty()
|
323 |
-
start_time = time.time()
|
324 |
-
raw_collection = ee.ImageCollection(dataset_id) \
|
325 |
-
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str))
|
326 |
-
st.write(f"Original Collection Size: {raw_collection.size().getInfo()}")
|
327 |
-
if tile_cloud_threshold > 0 or pixel_cloud_threshold > 0:
|
328 |
-
raw_collection = preprocess_collection(raw_collection, tile_cloud_threshold, pixel_cloud_threshold)
|
329 |
-
st.write(f"Preprocessed Collection Size: {raw_collection.size().getInfo()}")
|
330 |
-
with ThreadPoolExecutor(max_workers=10) as executor:
|
331 |
-
futures = []
|
332 |
-
for idx, row in locations_df.iterrows():
|
333 |
-
future = executor.submit(
|
334 |
-
process_single_geometry,
|
335 |
-
row,
|
336 |
-
start_date_str,
|
337 |
-
end_date_str,
|
338 |
-
dataset_id,
|
339 |
-
selected_bands,
|
340 |
-
reducer_choice,
|
341 |
-
shape_type,
|
342 |
-
aggregation_period,
|
343 |
-
custom_formula,
|
344 |
-
original_lat_col,
|
345 |
-
original_lon_col,
|
346 |
-
kernel_size,
|
347 |
-
include_boundary,
|
348 |
-
user_scale=user_scale
|
349 |
-
)
|
350 |
-
futures.append(future)
|
351 |
-
completed = 0
|
352 |
-
for future in as_completed(futures):
|
353 |
-
result = future.result()
|
354 |
-
if result:
|
355 |
-
aggregated_results.extend(result)
|
356 |
-
completed += 1
|
357 |
-
progress_percentage = completed / total_steps
|
358 |
-
progress_bar.progress(progress_percentage)
|
359 |
-
progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
|
360 |
-
end_time = time.time()
|
361 |
-
processing_time = end_time - start_time
|
362 |
-
if aggregated_results:
|
363 |
-
result_df = pd.DataFrame(aggregated_results)
|
364 |
-
if aggregation_period.lower() == 'custom (start date to end date)':
|
365 |
-
agg_dict = {
|
366 |
-
'Start Date': 'first',
|
367 |
-
'End Date': 'first',
|
368 |
-
'Calculated Value': 'mean'
|
369 |
-
}
|
370 |
-
if shape_type.lower() == 'point':
|
371 |
-
agg_dict[original_lat_col] = 'first'
|
372 |
-
agg_dict[original_lon_col] = 'first'
|
373 |
-
aggregated_output = result_df.groupby('Location Name').agg(agg_dict).reset_index()
|
374 |
-
aggregated_output['Date Range'] = aggregated_output['Start Date'] + " to " + aggregated_output['End Date']
|
375 |
-
aggregated_output.rename(columns={'Calculated Value': 'Aggregated Value'}, inplace=True)
|
376 |
-
return aggregated_output.to_dict(orient='records'), processing_time
|
377 |
-
else:
|
378 |
-
return result_df.to_dict(orient='records'), processing_time
|
379 |
-
return [], processing_time
|
380 |
-
|
381 |
-
# Streamlit App Logic
|
382 |
-
st.markdown("<h5>Image Collection</h5>", unsafe_allow_html=True)
|
383 |
-
imagery_base = st.selectbox("Select Imagery Base", ["Sentinel", "Landsat", "MODIS", "VIIRS", "Custom Input"], index=0)
|
384 |
-
data = {}
|
385 |
-
if imagery_base == "Sentinel":
|
386 |
-
dataset_file = "sentinel_datasets.json"
|
387 |
-
try:
|
388 |
-
with open(dataset_file) as f:
|
389 |
-
data = json.load(f)
|
390 |
-
except FileNotFoundError:
|
391 |
-
st.error(f"Dataset file '{dataset_file}' not found.")
|
392 |
-
data = {}
|
393 |
-
elif imagery_base == "Landsat":
|
394 |
-
dataset_file = "landsat_datasets.json"
|
395 |
-
try:
|
396 |
-
with open(dataset_file) as f:
|
397 |
-
data = json.load(f)
|
398 |
-
except FileNotFoundError:
|
399 |
-
st.error(f"Dataset file '{dataset_file}' not found.")
|
400 |
-
data = {}
|
401 |
-
elif imagery_base == "MODIS":
|
402 |
-
dataset_file = "modis_datasets.json"
|
403 |
-
try:
|
404 |
-
with open(dataset_file) as f:
|
405 |
-
data = json.load(f)
|
406 |
-
except FileNotFoundError:
|
407 |
-
st.error(f"Dataset file '{dataset_file}' not found.")
|
408 |
-
data = {}
|
409 |
-
elif imagery_base == "VIIRS":
|
410 |
-
dataset_file = "viirs_datasets.json"
|
411 |
-
try:
|
412 |
-
with open(dataset_file) as f:
|
413 |
-
data = json.load(f)
|
414 |
-
except FileNotFoundError:
|
415 |
-
st.error(f"Dataset file '{dataset_file}' not found.")
|
416 |
-
data = {}
|
417 |
-
elif imagery_base == "Custom Input":
|
418 |
-
custom_dataset_id = st.text_input("Enter Custom Earth Engine Dataset ID (e.g., AHN/AHN4)", value="")
|
419 |
-
if custom_dataset_id:
|
420 |
-
try:
|
421 |
-
if custom_dataset_id.startswith("ee.ImageCollection("):
|
422 |
-
custom_dataset_id = custom_dataset_id.replace("ee.ImageCollection('", "").replace("')", "")
|
423 |
-
collection = ee.ImageCollection(custom_dataset_id)
|
424 |
-
band_names = collection.first().bandNames().getInfo()
|
425 |
-
data = {
|
426 |
-
f"Custom Dataset: {custom_dataset_id}": {
|
427 |
-
"sub_options": {custom_dataset_id: f"Custom Dataset ({custom_dataset_id})"},
|
428 |
-
"bands": {custom_dataset_id: band_names}
|
429 |
-
}
|
430 |
-
}
|
431 |
-
st.write(f"Fetched bands for {custom_dataset_id}: {', '.join(band_names)}")
|
432 |
-
except Exception as e:
|
433 |
-
st.error(f"Error fetching dataset: {str(e)}. Please check the dataset ID and ensure it's valid in Google Earth Engine.")
|
434 |
-
data = {}
|
435 |
-
else:
|
436 |
-
st.warning("Please enter a custom dataset ID to proceed.")
|
437 |
-
data = {}
|
438 |
-
if not data:
|
439 |
-
st.error("No valid dataset available. Please check your inputs.")
|
440 |
-
st.stop()
|
441 |
-
|
442 |
-
st.markdown("<hr><h5><b>{}</b></h5>".format(imagery_base), unsafe_allow_html=True)
|
443 |
-
main_selection = st.selectbox(f"Select {imagery_base} Dataset Category", list(data.keys()))
|
444 |
-
sub_selection = None
|
445 |
-
dataset_id = None
|
446 |
-
if main_selection:
|
447 |
-
sub_options = data[main_selection]["sub_options"]
|
448 |
-
sub_selection = st.selectbox(f"Select Specific {imagery_base} Dataset ID", list(sub_options.keys()))
|
449 |
-
if sub_selection:
|
450 |
-
st.write(f"You selected: {main_selection} -> {sub_options[sub_selection]}")
|
451 |
-
st.write(f"Dataset ID: {sub_selection}")
|
452 |
-
dataset_id = sub_selection
|
453 |
-
|
454 |
-
st.markdown("<hr><h5><b>Earth Engine Index Calculator</b></h5>", unsafe_allow_html=True)
|
455 |
-
if main_selection and sub_selection:
|
456 |
-
dataset_bands = data[main_selection]["bands"].get(sub_selection, [])
|
457 |
-
st.write(f"Available Bands for {sub_options[sub_selection]}: {', '.join(dataset_bands)}")
|
458 |
-
selected_bands = st.multiselect(
|
459 |
-
"Select 1 or 2 Bands for Calculation",
|
460 |
-
options=dataset_bands,
|
461 |
-
default=[dataset_bands[0]] if dataset_bands else [],
|
462 |
-
help=f"Select 1 or 2 bands from: {', '.join(dataset_bands)}"
|
463 |
-
)
|
464 |
-
if len(selected_bands) < 1:
|
465 |
-
st.warning("Please select at least one band.")
|
466 |
-
st.stop()
|
467 |
-
if selected_bands:
|
468 |
-
if len(selected_bands) == 1:
|
469 |
-
default_formula = f"{selected_bands[0]}"
|
470 |
-
example = f"'{selected_bands[0]} * 2' or '{selected_bands[0]} + 1'"
|
471 |
-
else:
|
472 |
-
default_formula = f"({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})"
|
473 |
-
example = f"'{selected_bands[0]} * {selected_bands[1]} / 2' or '({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})'"
|
474 |
-
custom_formula = st.text_input(
|
475 |
-
"Enter Custom Formula (e.g (B8 - B4) / (B8 + B4) , B4*B3/2)",
|
476 |
-
value=default_formula,
|
477 |
-
help=f"Use only these bands: {', '.join(selected_bands)}. Examples: {example}"
|
478 |
-
)
|
479 |
-
def validate_formula(formula, selected_bands):
|
480 |
-
allowed_chars = set(" +-*/()0123456789.")
|
481 |
-
terms = re.findall(r'[a-zA-Z][a-zA-Z0-9_]*', formula)
|
482 |
-
invalid_terms = [term for term in terms if term not in selected_bands]
|
483 |
-
if invalid_terms:
|
484 |
-
return False, f"Invalid terms in formula: {', '.join(invalid_terms)}. Use only {', '.join(selected_bands)}."
|
485 |
-
if not all(char in allowed_chars or char in ''.join(selected_bands) for char in formula):
|
486 |
-
return False, "Formula contains invalid characters. Use only bands, numbers, and operators (+, -, *, /, ())"
|
487 |
-
return True, ""
|
488 |
-
is_valid, error_message = validate_formula(custom_formula, selected_bands)
|
489 |
-
if not is_valid:
|
490 |
-
st.error(error_message)
|
491 |
-
st.stop()
|
492 |
-
elif not custom_formula:
|
493 |
-
st.warning("Please enter a custom formula to proceed.")
|
494 |
-
st.stop()
|
495 |
-
st.write(f"Custom Formula: {custom_formula}")
|
496 |
-
|
497 |
-
reducer_choice = st.selectbox(
|
498 |
-
"Select Reducer (e.g, mean , sum , median , min , max , count)",
|
499 |
-
['mean', 'sum', 'median', 'min', 'max', 'count'],
|
500 |
-
index=0
|
501 |
-
)
|
502 |
-
start_date = st.date_input("Start Date", value=pd.to_datetime('2024-11-01'))
|
503 |
-
end_date = st.date_input("End Date", value=pd.to_datetime('2024-12-01'))
|
504 |
-
start_date_str = start_date.strftime('%Y-%m-%d')
|
505 |
-
end_date_str = end_date.strftime('%Y-%m-%d')
|
506 |
-
|
507 |
-
if imagery_base == "Sentinel" and "Sentinel-2" in sub_options[sub_selection]:
|
508 |
-
st.markdown("<h5>Cloud Filtering</h5>", unsafe_allow_html=True)
|
509 |
-
tile_cloud_threshold = st.slider(
|
510 |
-
"Select Maximum Tile-Based Cloud Coverage Threshold (%)",
|
511 |
-
min_value=0,
|
512 |
-
max_value=100,
|
513 |
-
value=20,
|
514 |
-
step=5,
|
515 |
-
help="Tiles with cloud coverage exceeding this threshold will be excluded."
|
516 |
-
)
|
517 |
-
pixel_cloud_threshold = st.slider(
|
518 |
-
"Select Maximum Pixel-Based Cloud Coverage Threshold (%)",
|
519 |
-
min_value=0,
|
520 |
-
max_value=100,
|
521 |
-
value=10,
|
522 |
-
step=5,
|
523 |
-
help="Individual pixels with cloud coverage exceeding this threshold will be masked."
|
524 |
-
)
|
525 |
-
|
526 |
-
aggregation_period = st.selectbox(
|
527 |
-
"Select Aggregation Period (e.g, Custom(Start Date to End Date) , Daily , Weekly , Monthly , Yearly)",
|
528 |
-
["Custom (Start Date to End Date)", "Daily", "Weekly", "Monthly", "Yearly"],
|
529 |
-
index=0
|
530 |
-
)
|
531 |
-
shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"])
|
532 |
-
kernel_size = None
|
533 |
-
include_boundary = None
|
534 |
-
if shape_type.lower() == "point":
|
535 |
-
kernel_size = st.selectbox(
|
536 |
-
"Select Calculation Area(e.g, Point , 3x3 Kernel , 5x5 Kernel)",
|
537 |
-
["Point", "3x3 Kernel", "5x5 Kernel"],
|
538 |
-
index=0,
|
539 |
-
help="Choose 'Point' for exact point calculation, or a kernel size for area averaging."
|
540 |
-
)
|
541 |
-
elif shape_type.lower() == "polygon":
|
542 |
-
include_boundary = st.checkbox(
|
543 |
-
"Include Boundary Pixels",
|
544 |
-
value=True,
|
545 |
-
help="Check to include pixels on the polygon boundary; uncheck to exclude them."
|
546 |
-
)
|
547 |
-
|
548 |
-
st.markdown("<h5>Calculation Scale</h5>", unsafe_allow_html=True)
|
549 |
-
default_scale = ee.ImageCollection(dataset_id).first().select(0).projection().nominalScale().getInfo()
|
550 |
-
user_scale = st.number_input(
|
551 |
-
"Enter Calculation Scale (meters) [Leave blank to use dataset's default scale]",
|
552 |
-
min_value=1.0,
|
553 |
-
value=float(default_scale),
|
554 |
-
help=f"Default scale for this dataset is {default_scale} meters. Adjust if needed."
|
555 |
-
)
|
556 |
-
|
557 |
-
file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
|
558 |
-
locations_df = pd.DataFrame()
|
559 |
-
original_lat_col = None
|
560 |
-
original_lon_col = None
|
561 |
-
if file_upload is not None:
|
562 |
-
if shape_type.lower() == "point":
|
563 |
-
if file_upload.name.endswith('.csv'):
|
564 |
-
locations_df = pd.read_csv(file_upload)
|
565 |
-
st.write("Preview of your uploaded data (first 5 rows):")
|
566 |
-
st.dataframe(locations_df.head())
|
567 |
-
all_columns = locations_df.columns.tolist()
|
568 |
-
col1, col2 = st.columns(2)
|
569 |
-
with col1:
|
570 |
-
original_lat_col = st.selectbox(
|
571 |
-
"Select Latitude Column",
|
572 |
-
options=all_columns,
|
573 |
-
index=all_columns.index('latitude') if 'latitude' in all_columns else 0,
|
574 |
-
help="Select the column containing latitude values"
|
575 |
-
)
|
576 |
-
with col2:
|
577 |
-
original_lon_col = st.selectbox(
|
578 |
-
"Select Longitude Column",
|
579 |
-
options=all_columns,
|
580 |
-
index=all_columns.index('longitude') if 'longitude' in all_columns else 0,
|
581 |
-
help="Select the column containing longitude values"
|
582 |
-
)
|
583 |
-
if not pd.api.types.is_numeric_dtype(locations_df[original_lat_col]) or not pd.api.types.is_numeric_dtype(locations_df[original_lon_col]):
|
584 |
-
st.error("Error: Selected Latitude and Longitude columns must contain numeric values")
|
585 |
-
st.stop()
|
586 |
-
locations_df = locations_df.rename(columns={
|
587 |
-
original_lat_col: 'latitude',
|
588 |
-
original_lon_col: 'longitude'
|
589 |
-
})
|
590 |
-
elif file_upload.name.endswith('.geojson'):
|
591 |
-
locations_df = gpd.read_file(file_upload)
|
592 |
-
if 'geometry' in locations_df.columns:
|
593 |
-
locations_df['latitude'] = locations_df['geometry'].y
|
594 |
-
locations_df['longitude'] = locations_df['geometry'].x
|
595 |
-
original_lat_col = 'latitude'
|
596 |
-
original_lon_col = 'longitude'
|
597 |
-
else:
|
598 |
-
st.error("GeoJSON file doesn't contain geometry column")
|
599 |
-
st.stop()
|
600 |
-
elif file_upload.name.endswith('.kml'):
|
601 |
-
kml_string = file_upload.read().decode('utf-8')
|
602 |
-
try:
|
603 |
-
root = XET.fromstring(kml_string)
|
604 |
-
ns = {'kml': 'http://www.opengis.net/kml/2.2'}
|
605 |
-
points = []
|
606 |
-
for placemark in root.findall('.//kml:Placemark', ns):
|
607 |
-
name = placemark.findtext('kml:name', default=f"Point_{len(points)}", namespaces=ns)
|
608 |
-
coords_elem = placemark.find('.//kml:Point/kml:coordinates', ns)
|
609 |
-
if coords_elem is not None:
|
610 |
-
coords_text = coords_elem.text.strip()
|
611 |
-
coords = [c.strip() for c in coords_text.split(',')]
|
612 |
-
if len(coords) >= 2:
|
613 |
-
lon, lat = float(coords[0]), float(coords[1])
|
614 |
-
points.append({'name': name, 'geometry': f"POINT ({lon} {lat})"})
|
615 |
-
if not points:
|
616 |
-
st.error("No valid Point data found in the KML file.")
|
617 |
-
else:
|
618 |
-
locations_df = gpd.GeoDataFrame(points, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in points]), crs="EPSG:4326")
|
619 |
-
locations_df['latitude'] = locations_df['geometry'].y
|
620 |
-
locations_df['longitude'] = locations_df['geometry'].x
|
621 |
-
original_lat_col = 'latitude'
|
622 |
-
original_lon_col = 'longitude'
|
623 |
-
except Exception as e:
|
624 |
-
st.error(f"Error parsing KML file: {str(e)}")
|
625 |
-
if not locations_df.empty and 'latitude' in locations_df.columns and 'longitude' in locations_df.columns:
|
626 |
-
m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
|
627 |
-
for _, row in locations_df.iterrows():
|
628 |
-
latitude = row['latitude']
|
629 |
-
longitude = row['longitude']
|
630 |
-
if pd.isna(latitude) or pd.isna(longitude):
|
631 |
-
continue
|
632 |
-
m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
|
633 |
-
st.write("Map of Uploaded Points:")
|
634 |
-
m.to_streamlit()
|
635 |
-
elif shape_type.lower() == "polygon":
|
636 |
-
if file_upload.name.endswith('.csv'):
|
637 |
-
st.error("CSV upload not supported for polygons. Please upload a GeoJSON or KML file.")
|
638 |
-
elif file_upload.name.endswith('.geojson'):
|
639 |
-
locations_df = gpd.read_file(file_upload)
|
640 |
-
if 'geometry' not in locations_df.columns:
|
641 |
-
st.error("GeoJSON file doesn't contain geometry column")
|
642 |
-
st.stop()
|
643 |
-
elif file_upload.name.endswith('.kml'):
|
644 |
-
kml_string = file_upload.read().decode('utf-8')
|
645 |
-
try:
|
646 |
-
root = XET.fromstring(kml_string)
|
647 |
-
ns = {'kml': 'http://www.opengis.net/kml/2.2'}
|
648 |
-
polygons = []
|
649 |
-
for placemark in root.findall('.//kml:Placemark', ns):
|
650 |
-
name = placemark.findtext('kml:name', default=f"Polygon_{len(polygons)}", namespaces=ns)
|
651 |
-
coords_elem = placemark.find('.//kml:Polygon//kml:coordinates', ns)
|
652 |
-
if coords_elem is not None:
|
653 |
-
coords_text = ' '.join(coords_elem.text.split())
|
654 |
-
coord_pairs = [pair.split(',')[:2] for pair in coords_text.split() if pair]
|
655 |
-
if len(coord_pairs) >= 4:
|
656 |
-
coords_str = " ".join([f"{float(lon)} {float(lat)}" for lon, lat in coord_pairs])
|
657 |
-
polygons.append({'name': name, 'geometry': f"POLYGON (({coords_str}))"})
|
658 |
-
if not polygons:
|
659 |
-
st.error("No valid Polygon data found in the KML file.")
|
660 |
-
else:
|
661 |
-
locations_df = gpd.GeoDataFrame(polygons, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in polygons]), crs="EPSG:4326")
|
662 |
-
except Exception as e:
|
663 |
-
st.error(f"Error parsing KML file: {str(e)}")
|
664 |
-
if not locations_df.empty and 'geometry' in locations_df.columns:
|
665 |
-
centroid_lat = locations_df.geometry.centroid.y.mean()
|
666 |
-
centroid_lon = locations_df.geometry.centroid.x.mean()
|
667 |
-
m = leafmap.Map(center=[centroid_lat, centroid_lon], zoom=10)
|
668 |
-
for _, row in locations_df.iterrows():
|
669 |
-
polygon = row['geometry']
|
670 |
-
if polygon.is_valid:
|
671 |
-
gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=locations_df.crs)
|
672 |
-
m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
|
673 |
-
st.write("Map of Uploaded Polygons:")
|
674 |
-
m.to_streamlit()
|
675 |
-
|
676 |
-
if st.button(f"Calculate {custom_formula}"):
|
677 |
-
if not locations_df.empty:
|
678 |
-
with st.spinner("Processing Data..."):
|
679 |
-
try:
|
680 |
-
results, processing_time = process_aggregation(
|
681 |
-
locations_df,
|
682 |
-
start_date_str,
|
683 |
-
end_date_str,
|
684 |
-
dataset_id,
|
685 |
-
selected_bands,
|
686 |
-
reducer_choice,
|
687 |
-
shape_type,
|
688 |
-
aggregation_period,
|
689 |
-
original_lat_col,
|
690 |
-
original_lon_col,
|
691 |
-
custom_formula,
|
692 |
-
kernel_size,
|
693 |
-
include_boundary,
|
694 |
-
tile_cloud_threshold=tile_cloud_threshold if "tile_cloud_threshold" in locals() else 0,
|
695 |
-
pixel_cloud_threshold=pixel_cloud_threshold if "pixel_cloud_threshold" in locals() else 0,
|
696 |
-
user_scale=user_scale
|
697 |
-
)
|
698 |
-
if results:
|
699 |
-
result_df = pd.DataFrame(results)
|
700 |
-
st.write(f"Processed Results Table ({aggregation_period}) for Formula: {custom_formula}")
|
701 |
-
st.dataframe(result_df)
|
702 |
-
filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y%m%d')}_{end_date.strftime('%Y%m%d')}_{aggregation_period.lower()}.csv"
|
703 |
-
st.download_button(
|
704 |
-
label="Download results as CSV",
|
705 |
-
data=result_df.to_csv(index=False).encode('utf-8'),
|
706 |
-
file_name=filename,
|
707 |
-
mime='text/csv'
|
708 |
-
)
|
709 |
-
st.success(f"Processing complete! Total processing time: {processing_time:.2f} seconds.")
|
710 |
-
st.markdown("<h5>Graph Visualization</h5>", unsafe_allow_html=True)
|
711 |
-
if aggregation_period.lower() == 'custom (start date to end date)':
|
712 |
-
x_column = 'Date Range'
|
713 |
-
elif 'Date' in result_df.columns:
|
714 |
-
x_column = 'Date'
|
715 |
-
elif 'Week' in result_df.columns:
|
716 |
-
x_column = 'Week'
|
717 |
-
elif 'Month' in result_df.columns:
|
718 |
-
x_column = 'Month'
|
719 |
-
elif 'Year' in result_df.columns:
|
720 |
-
x_column = 'Year'
|
721 |
-
else:
|
722 |
-
st.warning("No valid time column found for plotting.")
|
723 |
-
st.stop()
|
724 |
-
y_column = 'Calculated Value'
|
725 |
-
fig = px.line(
|
726 |
-
result_df,
|
727 |
-
x=x_column,
|
728 |
-
y=y_column,
|
729 |
-
color='Location Name',
|
730 |
-
title=f"{custom_formula} Over Time"
|
731 |
-
)
|
732 |
-
st.plotly_chart(fig)
|
733 |
-
else:
|
734 |
-
st.warning("No results were generated. Check your inputs or formula.")
|
735 |
-
st.info(f"Total processing time: {processing_time:.2f} seconds.")
|
736 |
-
except Exception as e:
|
737 |
-
st.error(f"An error occurred during processing: {str(e)}")
|
738 |
-
else:
|
739 |
st.warning("Please upload a valid file to proceed.")
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import json
|
3 |
+
import ee
|
4 |
+
import os
|
5 |
+
import pandas as pd
|
6 |
+
import geopandas as gpd
|
7 |
+
from datetime import datetime
|
8 |
+
import leafmap.foliumap as leafmap
|
9 |
+
import re
|
10 |
+
from shapely.geometry import base
|
11 |
+
from xml.etree import ElementTree as XET
|
12 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
13 |
+
import time
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
import plotly.express as px
|
16 |
+
|
17 |
+
# Set up the page layout
|
18 |
+
st.set_page_config(layout="wide")
|
19 |
+
|
20 |
+
# Custom button styling
|
21 |
+
m = st.markdown(
|
22 |
+
"""
|
23 |
+
<style>
|
24 |
+
div.stButton > button:first-child {
|
25 |
+
background-color: #006400;
|
26 |
+
color:#ffffff;
|
27 |
+
}
|
28 |
+
</style>""",
|
29 |
+
unsafe_allow_html=True,
|
30 |
+
)
|
31 |
+
|
32 |
+
# Logo and Title
|
33 |
+
st.write(
|
34 |
+
f"""
|
35 |
+
<div style="display: flex; justify-content: space-between; align-items: center;">
|
36 |
+
<img src="https://huggingface.co/spaces/YashMK89/SATRANG/resolve/main/ISRO_Logo.png" style="width: 20%; margin-right: auto;">
|
37 |
+
<img src="https://huggingface.co/spaces/YashMK89/SATRANG/resolve/main/SAC_Logo.png" style="width: 20%; margin-left: auto;">
|
38 |
+
</div>
|
39 |
+
""",
|
40 |
+
unsafe_allow_html=True,
|
41 |
+
)
|
42 |
+
st.markdown(
|
43 |
+
f"""
|
44 |
+
<div style="display: flex; flex-direction: column; align-items: center;">
|
45 |
+
<img src="https://huggingface.co/spaces/YashMK89/SATRANG/resolve/main/SATRANG.png" style="width: 30%;">
|
46 |
+
<h3 style="text-align: center; margin: 0;">( Spatial and Temporal Aggregation for Remote-sensing Analysis of GEE Data )</h3>
|
47 |
+
</div>
|
48 |
+
<hr>
|
49 |
+
""",
|
50 |
+
unsafe_allow_html=True,
|
51 |
+
)
|
52 |
+
|
53 |
+
# Authenticate and initialize Earth Engine
|
54 |
+
earthengine_credentials = os.environ.get("EE_Authentication")
|
55 |
+
os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
|
56 |
+
with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
|
57 |
+
f.write(earthengine_credentials)
|
58 |
+
ee.Initialize(project='ee-yashsacisro24')
|
59 |
+
|
60 |
+
# Helper function to get reducer
|
61 |
+
def get_reducer(reducer_name):
|
62 |
+
reducers = {
|
63 |
+
'mean': ee.Reducer.mean(),
|
64 |
+
'sum': ee.Reducer.sum(),
|
65 |
+
'median': ee.Reducer.median(),
|
66 |
+
'min': ee.Reducer.min(),
|
67 |
+
'max': ee.Reducer.max(),
|
68 |
+
'count': ee.Reducer.count(),
|
69 |
+
}
|
70 |
+
return reducers.get(reducer_name.lower(), ee.Reducer.mean())
|
71 |
+
|
72 |
+
# Function to convert geometry to Earth Engine format
|
73 |
+
def convert_to_ee_geometry(geometry):
|
74 |
+
if isinstance(geometry, base.BaseGeometry):
|
75 |
+
if geometry.is_valid:
|
76 |
+
geojson = geometry.__geo_interface__
|
77 |
+
return ee.Geometry(geojson)
|
78 |
+
else:
|
79 |
+
raise ValueError("Invalid geometry: The polygon geometry is not valid.")
|
80 |
+
elif isinstance(geometry, dict) or isinstance(geometry, str):
|
81 |
+
try:
|
82 |
+
if isinstance(geometry, str):
|
83 |
+
geometry = json.loads(geometry)
|
84 |
+
if 'type' in geometry and 'coordinates' in geometry:
|
85 |
+
return ee.Geometry(geometry)
|
86 |
+
else:
|
87 |
+
raise ValueError("GeoJSON format is invalid.")
|
88 |
+
except Exception as e:
|
89 |
+
raise ValueError(f"Error parsing GeoJSON: {e}")
|
90 |
+
elif isinstance(geometry, str) and geometry.lower().endswith(".kml"):
|
91 |
+
try:
|
92 |
+
tree = XET.parse(geometry)
|
93 |
+
kml_root = tree.getroot()
|
94 |
+
kml_namespace = {'kml': 'http://www.opengis.net/kml/2.2'}
|
95 |
+
coordinates = kml_root.findall(".//kml:coordinates", kml_namespace)
|
96 |
+
if coordinates:
|
97 |
+
coords_text = coordinates[0].text.strip()
|
98 |
+
coords = coords_text.split()
|
99 |
+
coords = [tuple(map(float, coord.split(','))) for coord in coords]
|
100 |
+
geojson = {"type": "Polygon", "coordinates": [coords]}
|
101 |
+
return ee.Geometry(geojson)
|
102 |
+
else:
|
103 |
+
raise ValueError("KML does not contain valid coordinates.")
|
104 |
+
except Exception as e:
|
105 |
+
raise ValueError(f"Error parsing KML: {e}")
|
106 |
+
else:
|
107 |
+
raise ValueError("Unsupported geometry input type. Supported types are Shapely, GeoJSON, and KML.")
|
108 |
+
|
109 |
+
# Function to calculate custom formula
|
110 |
+
def calculate_custom_formula(image, geometry, selected_bands, custom_formula, reducer_choice, dataset_id, user_scale=None):
|
111 |
+
try:
|
112 |
+
# Determine the scale: Use user-defined scale if provided, otherwise use dataset's native resolution
|
113 |
+
default_scale = ee.ImageCollection(dataset_id).first().select(0).projection().nominalScale().getInfo()
|
114 |
+
scale = user_scale if user_scale is not None else default_scale
|
115 |
+
band_values = {}
|
116 |
+
band_names = image.bandNames().getInfo()
|
117 |
+
for band in selected_bands:
|
118 |
+
if band not in band_names:
|
119 |
+
raise ValueError(f"Band '{band}' not found in the dataset.")
|
120 |
+
band_values[band] = image.select(band)
|
121 |
+
reducer = get_reducer(reducer_choice)
|
122 |
+
reduced_values = {}
|
123 |
+
for band in selected_bands:
|
124 |
+
value = band_values[band].reduceRegion(
|
125 |
+
reducer=reducer,
|
126 |
+
geometry=geometry,
|
127 |
+
scale=scale
|
128 |
+
).get(band).getInfo()
|
129 |
+
reduced_values[band] = float(value if value is not None else 0)
|
130 |
+
formula = custom_formula
|
131 |
+
for band in selected_bands:
|
132 |
+
formula = formula.replace(band, str(reduced_values[band]))
|
133 |
+
result = eval(formula, {"__builtins__": {}}, reduced_values)
|
134 |
+
if not isinstance(result, (int, float)):
|
135 |
+
raise ValueError("Formula did not result in a numeric value.")
|
136 |
+
return ee.Image.constant(result).rename('custom_result')
|
137 |
+
except ZeroDivisionError:
|
138 |
+
st.error("Error: Division by zero in the formula.")
|
139 |
+
return ee.Image(0).rename('custom_result').set('error', 'Division by zero')
|
140 |
+
except SyntaxError:
|
141 |
+
st.error(f"Error: Invalid syntax in formula '{custom_formula}'.")
|
142 |
+
return ee.Image(0).rename('custom_result').set('error', 'Invalid syntax')
|
143 |
+
except ValueError as e:
|
144 |
+
st.error(f"Error: {str(e)}")
|
145 |
+
return ee.Image(0).rename('custom_result').set('error', str(e))
|
146 |
+
except Exception as e:
|
147 |
+
st.error(f"Unexpected error: {e}")
|
148 |
+
return ee.Image(0).rename('custom_result').set('error', str(e))
|
149 |
+
|
150 |
+
# Aggregation functions
|
151 |
+
def aggregate_data_custom(collection):
|
152 |
+
collection = collection.map(lambda image: image.set('day', ee.Date(image.get('system:time_start')).format('YYYY-MM-dd')))
|
153 |
+
grouped_by_day = collection.aggregate_array('day').distinct()
|
154 |
+
def calculate_daily_mean(day):
|
155 |
+
daily_collection = collection.filter(ee.Filter.eq('day', day))
|
156 |
+
daily_mean = daily_collection.mean()
|
157 |
+
return daily_mean.set('day', day)
|
158 |
+
daily_images = ee.List(grouped_by_day.map(calculate_daily_mean))
|
159 |
+
return ee.ImageCollection(daily_images)
|
160 |
+
|
161 |
+
def aggregate_data_daily(collection):
|
162 |
+
def set_day_start(image):
|
163 |
+
date = ee.Date(image.get('system:time_start'))
|
164 |
+
day_start = date.format('YYYY-MM-dd')
|
165 |
+
return image.set('day_start', day_start)
|
166 |
+
collection = collection.map(set_day_start)
|
167 |
+
grouped_by_day = collection.aggregate_array('day_start').distinct()
|
168 |
+
def calculate_daily_mean(day_start):
|
169 |
+
daily_collection = collection.filter(ee.Filter.eq('day_start', day_start))
|
170 |
+
daily_mean = daily_collection.mean()
|
171 |
+
return daily_mean.set('day_start', day_start)
|
172 |
+
daily_images = ee.List(grouped_by_day.map(calculate_daily_mean))
|
173 |
+
return ee.ImageCollection(daily_images)
|
174 |
+
|
175 |
+
def aggregate_data_weekly(collection, start_date_str, end_date_str):
|
176 |
+
start_date = ee.Date(start_date_str)
|
177 |
+
end_date = ee.Date(end_date_str)
|
178 |
+
days_diff = end_date.difference(start_date, 'day')
|
179 |
+
num_weeks = days_diff.divide(7).ceil().getInfo()
|
180 |
+
weekly_images = []
|
181 |
+
for week in range(num_weeks):
|
182 |
+
week_start = start_date.advance(week * 7, 'day')
|
183 |
+
week_end = week_start.advance(7, 'day')
|
184 |
+
weekly_collection = collection.filterDate(week_start, week_end)
|
185 |
+
if weekly_collection.size().getInfo() > 0:
|
186 |
+
weekly_mean = weekly_collection.mean()
|
187 |
+
weekly_mean = weekly_mean.set('week_start', week_start.format('YYYY-MM-dd'))
|
188 |
+
weekly_images.append(weekly_mean)
|
189 |
+
return ee.ImageCollection.fromImages(weekly_images)
|
190 |
+
|
191 |
+
def aggregate_data_monthly(collection, start_date, end_date):
|
192 |
+
collection = collection.filterDate(start_date, end_date)
|
193 |
+
collection = collection.map(lambda image: image.set('month', ee.Date(image.get('system:time_start')).format('YYYY-MM')))
|
194 |
+
grouped_by_month = collection.aggregate_array('month').distinct()
|
195 |
+
def calculate_monthly_mean(month):
|
196 |
+
monthly_collection = collection.filter(ee.Filter.eq('month', month))
|
197 |
+
monthly_mean = monthly_collection.mean()
|
198 |
+
return monthly_mean.set('month', month)
|
199 |
+
monthly_images = ee.List(grouped_by_month.map(calculate_monthly_mean))
|
200 |
+
return ee.ImageCollection(monthly_images)
|
201 |
+
|
202 |
+
def aggregate_data_yearly(collection):
|
203 |
+
collection = collection.map(lambda image: image.set('year', ee.Date(image.get('system:time_start')).format('YYYY')))
|
204 |
+
grouped_by_year = collection.aggregate_array('year').distinct()
|
205 |
+
def calculate_yearly_mean(year):
|
206 |
+
yearly_collection = collection.filter(ee.Filter.eq('year', year))
|
207 |
+
yearly_mean = yearly_collection.mean()
|
208 |
+
return yearly_mean.set('year', year)
|
209 |
+
yearly_images = ee.List(grouped_by_year.map(calculate_yearly_mean))
|
210 |
+
return ee.ImageCollection(yearly_images)
|
211 |
+
|
212 |
+
def preprocess_collection(collection, tile_cloud_threshold, pixel_cloud_threshold):
|
213 |
+
def filter_tile(image):
|
214 |
+
cloud_percentage = calculate_cloud_percentage(image, cloud_band='QA60')
|
215 |
+
return image.set('cloud_percentage', cloud_percentage).updateMask(cloud_percentage.lt(tile_cloud_threshold))
|
216 |
+
def mask_cloudy_pixels(image):
|
217 |
+
qa60 = image.select('QA60')
|
218 |
+
opaque_clouds = qa60.bitwiseAnd(1 << 10)
|
219 |
+
cirrus_clouds = qa60.bitwiseAnd(1 << 11)
|
220 |
+
cloud_mask = opaque_clouds.Or(cirrus_clouds)
|
221 |
+
clear_pixels = cloud_mask.Not()
|
222 |
+
return image.updateMask(clear_pixels)
|
223 |
+
filtered_collection = collection.map(filter_tile)
|
224 |
+
masked_collection = filtered_collection.map(mask_cloudy_pixels)
|
225 |
+
return masked_collection
|
226 |
+
|
227 |
+
def process_single_geometry(row, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, custom_formula, original_lat_col, original_lon_col, kernel_size=None, include_boundary=None, user_scale=None):
|
228 |
+
if shape_type.lower() == "point":
|
229 |
+
latitude = row.get('latitude')
|
230 |
+
longitude = row.get('longitude')
|
231 |
+
if pd.isna(latitude) or pd.isna(longitude):
|
232 |
+
return None
|
233 |
+
location_name = row.get('name', f"Location_{row.name}")
|
234 |
+
if kernel_size == "3x3 Kernel":
|
235 |
+
buffer_size = 45
|
236 |
+
roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds()
|
237 |
+
elif kernel_size == "5x5 Kernel":
|
238 |
+
buffer_size = 75
|
239 |
+
roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds()
|
240 |
+
else:
|
241 |
+
roi = ee.Geometry.Point([longitude, latitude])
|
242 |
+
elif shape_type.lower() == "polygon":
|
243 |
+
polygon_geometry = row.get('geometry')
|
244 |
+
location_name = row.get('name', f"Polygon_{row.name}")
|
245 |
+
try:
|
246 |
+
roi = convert_to_ee_geometry(polygon_geometry)
|
247 |
+
if not include_boundary:
|
248 |
+
roi = roi.buffer(-30).bounds()
|
249 |
+
except ValueError:
|
250 |
+
return None
|
251 |
+
collection = ee.ImageCollection(dataset_id) \
|
252 |
+
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
|
253 |
+
.filterBounds(roi)
|
254 |
+
if aggregation_period.lower() == 'custom (start date to end date)':
|
255 |
+
collection = aggregate_data_custom(collection)
|
256 |
+
elif aggregation_period.lower() == 'daily':
|
257 |
+
collection = aggregate_data_daily(collection)
|
258 |
+
elif aggregation_period.lower() == 'weekly':
|
259 |
+
collection = aggregate_data_weekly(collection, start_date_str, end_date_str)
|
260 |
+
elif aggregation_period.lower() == 'monthly':
|
261 |
+
collection = aggregate_data_monthly(collection, start_date_str, end_date_str)
|
262 |
+
elif aggregation_period.lower() == 'yearly':
|
263 |
+
collection = aggregate_data_yearly(collection)
|
264 |
+
image_list = collection.toList(collection.size())
|
265 |
+
processed_weeks = set()
|
266 |
+
aggregated_results = []
|
267 |
+
for i in range(image_list.size().getInfo()):
|
268 |
+
image = ee.Image(image_list.get(i))
|
269 |
+
if aggregation_period.lower() == 'custom (start date to end date)':
|
270 |
+
timestamp = image.get('day')
|
271 |
+
period_label = 'Date'
|
272 |
+
date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo()
|
273 |
+
elif aggregation_period.lower() == 'daily':
|
274 |
+
timestamp = image.get('day_start')
|
275 |
+
period_label = 'Date'
|
276 |
+
date = ee.String(timestamp).getInfo()
|
277 |
+
elif aggregation_period.lower() == 'weekly':
|
278 |
+
timestamp = image.get('week_start')
|
279 |
+
period_label = 'Week'
|
280 |
+
date = ee.String(timestamp).getInfo()
|
281 |
+
if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or
|
282 |
+
pd.to_datetime(date) > pd.to_datetime(end_date_str) or
|
283 |
+
date in processed_weeks):
|
284 |
+
continue
|
285 |
+
processed_weeks.add(date)
|
286 |
+
elif aggregation_period.lower() == 'monthly':
|
287 |
+
timestamp = image.get('month')
|
288 |
+
period_label = 'Month'
|
289 |
+
date = ee.Date(timestamp).format('YYYY-MM').getInfo()
|
290 |
+
elif aggregation_period.lower() == 'yearly':
|
291 |
+
timestamp = image.get('year')
|
292 |
+
period_label = 'Year'
|
293 |
+
date = ee.Date(timestamp).format('YYYY').getInfo()
|
294 |
+
index_image = calculate_custom_formula(image, roi, selected_bands, custom_formula, reducer_choice, dataset_id, user_scale=user_scale)
|
295 |
+
try:
|
296 |
+
index_value = index_image.reduceRegion(
|
297 |
+
reducer=get_reducer(reducer_choice),
|
298 |
+
geometry=roi,
|
299 |
+
scale=user_scale
|
300 |
+
).get('custom_result')
|
301 |
+
calculated_value = index_value.getInfo()
|
302 |
+
if isinstance(calculated_value, (int, float)):
|
303 |
+
result = {
|
304 |
+
'Location Name': location_name,
|
305 |
+
period_label: date,
|
306 |
+
'Start Date': start_date_str,
|
307 |
+
'End Date': end_date_str,
|
308 |
+
'Calculated Value': calculated_value
|
309 |
+
}
|
310 |
+
if shape_type.lower() == 'point':
|
311 |
+
result[original_lat_col] = latitude
|
312 |
+
result[original_lon_col] = longitude
|
313 |
+
aggregated_results.append(result)
|
314 |
+
except Exception as e:
|
315 |
+
st.error(f"Error retrieving value for {location_name}: {e}")
|
316 |
+
return aggregated_results
|
317 |
+
|
318 |
+
def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, original_lat_col, original_lon_col, custom_formula="", kernel_size=None, include_boundary=None, tile_cloud_threshold=0, pixel_cloud_threshold=0, user_scale=None):
|
319 |
+
aggregated_results = []
|
320 |
+
total_steps = len(locations_df)
|
321 |
+
progress_bar = st.progress(0)
|
322 |
+
progress_text = st.empty()
|
323 |
+
start_time = time.time()
|
324 |
+
raw_collection = ee.ImageCollection(dataset_id) \
|
325 |
+
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str))
|
326 |
+
st.write(f"Original Collection Size: {raw_collection.size().getInfo()}")
|
327 |
+
if tile_cloud_threshold > 0 or pixel_cloud_threshold > 0:
|
328 |
+
raw_collection = preprocess_collection(raw_collection, tile_cloud_threshold, pixel_cloud_threshold)
|
329 |
+
st.write(f"Preprocessed Collection Size: {raw_collection.size().getInfo()}")
|
330 |
+
with ThreadPoolExecutor(max_workers=10) as executor:
|
331 |
+
futures = []
|
332 |
+
for idx, row in locations_df.iterrows():
|
333 |
+
future = executor.submit(
|
334 |
+
process_single_geometry,
|
335 |
+
row,
|
336 |
+
start_date_str,
|
337 |
+
end_date_str,
|
338 |
+
dataset_id,
|
339 |
+
selected_bands,
|
340 |
+
reducer_choice,
|
341 |
+
shape_type,
|
342 |
+
aggregation_period,
|
343 |
+
custom_formula,
|
344 |
+
original_lat_col,
|
345 |
+
original_lon_col,
|
346 |
+
kernel_size,
|
347 |
+
include_boundary,
|
348 |
+
user_scale=user_scale
|
349 |
+
)
|
350 |
+
futures.append(future)
|
351 |
+
completed = 0
|
352 |
+
for future in as_completed(futures):
|
353 |
+
result = future.result()
|
354 |
+
if result:
|
355 |
+
aggregated_results.extend(result)
|
356 |
+
completed += 1
|
357 |
+
progress_percentage = completed / total_steps
|
358 |
+
progress_bar.progress(progress_percentage)
|
359 |
+
progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
|
360 |
+
end_time = time.time()
|
361 |
+
processing_time = end_time - start_time
|
362 |
+
if aggregated_results:
|
363 |
+
result_df = pd.DataFrame(aggregated_results)
|
364 |
+
if aggregation_period.lower() == 'custom (start date to end date)':
|
365 |
+
agg_dict = {
|
366 |
+
'Start Date': 'first',
|
367 |
+
'End Date': 'first',
|
368 |
+
'Calculated Value': 'mean'
|
369 |
+
}
|
370 |
+
if shape_type.lower() == 'point':
|
371 |
+
agg_dict[original_lat_col] = 'first'
|
372 |
+
agg_dict[original_lon_col] = 'first'
|
373 |
+
aggregated_output = result_df.groupby('Location Name').agg(agg_dict).reset_index()
|
374 |
+
aggregated_output['Date Range'] = aggregated_output['Start Date'] + " to " + aggregated_output['End Date']
|
375 |
+
aggregated_output.rename(columns={'Calculated Value': 'Aggregated Value'}, inplace=True)
|
376 |
+
return aggregated_output.to_dict(orient='records'), processing_time
|
377 |
+
else:
|
378 |
+
return result_df.to_dict(orient='records'), processing_time
|
379 |
+
return [], processing_time
|
380 |
+
|
381 |
+
# Streamlit App Logic
|
382 |
+
st.markdown("<h5>Image Collection</h5>", unsafe_allow_html=True)
|
383 |
+
imagery_base = st.selectbox("Select Imagery Base", ["Sentinel", "Landsat", "MODIS", "VIIRS", "Custom Input"], index=0)
|
384 |
+
data = {}
|
385 |
+
if imagery_base == "Sentinel":
|
386 |
+
dataset_file = "sentinel_datasets.json"
|
387 |
+
try:
|
388 |
+
with open(dataset_file) as f:
|
389 |
+
data = json.load(f)
|
390 |
+
except FileNotFoundError:
|
391 |
+
st.error(f"Dataset file '{dataset_file}' not found.")
|
392 |
+
data = {}
|
393 |
+
elif imagery_base == "Landsat":
|
394 |
+
dataset_file = "landsat_datasets.json"
|
395 |
+
try:
|
396 |
+
with open(dataset_file) as f:
|
397 |
+
data = json.load(f)
|
398 |
+
except FileNotFoundError:
|
399 |
+
st.error(f"Dataset file '{dataset_file}' not found.")
|
400 |
+
data = {}
|
401 |
+
elif imagery_base == "MODIS":
|
402 |
+
dataset_file = "modis_datasets.json"
|
403 |
+
try:
|
404 |
+
with open(dataset_file) as f:
|
405 |
+
data = json.load(f)
|
406 |
+
except FileNotFoundError:
|
407 |
+
st.error(f"Dataset file '{dataset_file}' not found.")
|
408 |
+
data = {}
|
409 |
+
elif imagery_base == "VIIRS":
|
410 |
+
dataset_file = "viirs_datasets.json"
|
411 |
+
try:
|
412 |
+
with open(dataset_file) as f:
|
413 |
+
data = json.load(f)
|
414 |
+
except FileNotFoundError:
|
415 |
+
st.error(f"Dataset file '{dataset_file}' not found.")
|
416 |
+
data = {}
|
417 |
+
elif imagery_base == "Custom Input":
|
418 |
+
custom_dataset_id = st.text_input("Enter Custom Earth Engine Dataset ID (e.g., AHN/AHN4)", value="")
|
419 |
+
if custom_dataset_id:
|
420 |
+
try:
|
421 |
+
if custom_dataset_id.startswith("ee.ImageCollection("):
|
422 |
+
custom_dataset_id = custom_dataset_id.replace("ee.ImageCollection('", "").replace("')", "")
|
423 |
+
collection = ee.ImageCollection(custom_dataset_id)
|
424 |
+
band_names = collection.first().bandNames().getInfo()
|
425 |
+
data = {
|
426 |
+
f"Custom Dataset: {custom_dataset_id}": {
|
427 |
+
"sub_options": {custom_dataset_id: f"Custom Dataset ({custom_dataset_id})"},
|
428 |
+
"bands": {custom_dataset_id: band_names}
|
429 |
+
}
|
430 |
+
}
|
431 |
+
st.write(f"Fetched bands for {custom_dataset_id}: {', '.join(band_names)}")
|
432 |
+
except Exception as e:
|
433 |
+
st.error(f"Error fetching dataset: {str(e)}. Please check the dataset ID and ensure it's valid in Google Earth Engine.")
|
434 |
+
data = {}
|
435 |
+
else:
|
436 |
+
st.warning("Please enter a custom dataset ID to proceed.")
|
437 |
+
data = {}
|
438 |
+
if not data:
|
439 |
+
st.error("No valid dataset available. Please check your inputs.")
|
440 |
+
st.stop()
|
441 |
+
|
442 |
+
st.markdown("<hr><h5><b>{}</b></h5>".format(imagery_base), unsafe_allow_html=True)
|
443 |
+
main_selection = st.selectbox(f"Select {imagery_base} Dataset Category", list(data.keys()))
|
444 |
+
sub_selection = None
|
445 |
+
dataset_id = None
|
446 |
+
if main_selection:
|
447 |
+
sub_options = data[main_selection]["sub_options"]
|
448 |
+
sub_selection = st.selectbox(f"Select Specific {imagery_base} Dataset ID", list(sub_options.keys()))
|
449 |
+
if sub_selection:
|
450 |
+
st.write(f"You selected: {main_selection} -> {sub_options[sub_selection]}")
|
451 |
+
st.write(f"Dataset ID: {sub_selection}")
|
452 |
+
dataset_id = sub_selection
|
453 |
+
|
454 |
+
st.markdown("<hr><h5><b>Earth Engine Index Calculator</b></h5>", unsafe_allow_html=True)
|
455 |
+
if main_selection and sub_selection:
|
456 |
+
dataset_bands = data[main_selection]["bands"].get(sub_selection, [])
|
457 |
+
st.write(f"Available Bands for {sub_options[sub_selection]}: {', '.join(dataset_bands)}")
|
458 |
+
selected_bands = st.multiselect(
|
459 |
+
"Select 1 or 2 Bands for Calculation",
|
460 |
+
options=dataset_bands,
|
461 |
+
default=[dataset_bands[0]] if dataset_bands else [],
|
462 |
+
help=f"Select 1 or 2 bands from: {', '.join(dataset_bands)}"
|
463 |
+
)
|
464 |
+
if len(selected_bands) < 1:
|
465 |
+
st.warning("Please select at least one band.")
|
466 |
+
st.stop()
|
467 |
+
if selected_bands:
|
468 |
+
if len(selected_bands) == 1:
|
469 |
+
default_formula = f"{selected_bands[0]}"
|
470 |
+
example = f"'{selected_bands[0]} * 2' or '{selected_bands[0]} + 1'"
|
471 |
+
else:
|
472 |
+
default_formula = f"({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})"
|
473 |
+
example = f"'{selected_bands[0]} * {selected_bands[1]} / 2' or '({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})'"
|
474 |
+
custom_formula = st.text_input(
|
475 |
+
"Enter Custom Formula (e.g (B8 - B4) / (B8 + B4) , B4*B3/2)",
|
476 |
+
value=default_formula,
|
477 |
+
help=f"Use only these bands: {', '.join(selected_bands)}. Examples: {example}"
|
478 |
+
)
|
479 |
+
def validate_formula(formula, selected_bands):
|
480 |
+
allowed_chars = set(" +-*/()0123456789.")
|
481 |
+
terms = re.findall(r'[a-zA-Z][a-zA-Z0-9_]*', formula)
|
482 |
+
invalid_terms = [term for term in terms if term not in selected_bands]
|
483 |
+
if invalid_terms:
|
484 |
+
return False, f"Invalid terms in formula: {', '.join(invalid_terms)}. Use only {', '.join(selected_bands)}."
|
485 |
+
if not all(char in allowed_chars or char in ''.join(selected_bands) for char in formula):
|
486 |
+
return False, "Formula contains invalid characters. Use only bands, numbers, and operators (+, -, *, /, ())"
|
487 |
+
return True, ""
|
488 |
+
is_valid, error_message = validate_formula(custom_formula, selected_bands)
|
489 |
+
if not is_valid:
|
490 |
+
st.error(error_message)
|
491 |
+
st.stop()
|
492 |
+
elif not custom_formula:
|
493 |
+
st.warning("Please enter a custom formula to proceed.")
|
494 |
+
st.stop()
|
495 |
+
st.write(f"Custom Formula: {custom_formula}")
|
496 |
+
|
497 |
+
reducer_choice = st.selectbox(
|
498 |
+
"Select Reducer (e.g, mean , sum , median , min , max , count)",
|
499 |
+
['mean', 'sum', 'median', 'min', 'max', 'count'],
|
500 |
+
index=0
|
501 |
+
)
|
502 |
+
start_date = st.date_input("Start Date", value=pd.to_datetime('2024-11-01'))
|
503 |
+
end_date = st.date_input("End Date", value=pd.to_datetime('2024-12-01'))
|
504 |
+
start_date_str = start_date.strftime('%Y-%m-%d')
|
505 |
+
end_date_str = end_date.strftime('%Y-%m-%d')
|
506 |
+
|
507 |
+
if imagery_base == "Sentinel" and "Sentinel-2" in sub_options[sub_selection]:
|
508 |
+
st.markdown("<h5>Cloud Filtering</h5>", unsafe_allow_html=True)
|
509 |
+
tile_cloud_threshold = st.slider(
|
510 |
+
"Select Maximum Tile-Based Cloud Coverage Threshold (%)",
|
511 |
+
min_value=0,
|
512 |
+
max_value=100,
|
513 |
+
value=20,
|
514 |
+
step=5,
|
515 |
+
help="Tiles with cloud coverage exceeding this threshold will be excluded."
|
516 |
+
)
|
517 |
+
pixel_cloud_threshold = st.slider(
|
518 |
+
"Select Maximum Pixel-Based Cloud Coverage Threshold (%)",
|
519 |
+
min_value=0,
|
520 |
+
max_value=100,
|
521 |
+
value=10,
|
522 |
+
step=5,
|
523 |
+
help="Individual pixels with cloud coverage exceeding this threshold will be masked."
|
524 |
+
)
|
525 |
+
|
526 |
+
aggregation_period = st.selectbox(
|
527 |
+
"Select Aggregation Period (e.g, Custom(Start Date to End Date) , Daily , Weekly , Monthly , Yearly)",
|
528 |
+
["Custom (Start Date to End Date)", "Daily", "Weekly", "Monthly", "Yearly"],
|
529 |
+
index=0
|
530 |
+
)
|
531 |
+
shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"])
|
532 |
+
kernel_size = None
|
533 |
+
include_boundary = None
|
534 |
+
if shape_type.lower() == "point":
|
535 |
+
kernel_size = st.selectbox(
|
536 |
+
"Select Calculation Area(e.g, Point , 3x3 Kernel , 5x5 Kernel)",
|
537 |
+
["Point", "3x3 Kernel", "5x5 Kernel"],
|
538 |
+
index=0,
|
539 |
+
help="Choose 'Point' for exact point calculation, or a kernel size for area averaging."
|
540 |
+
)
|
541 |
+
elif shape_type.lower() == "polygon":
|
542 |
+
include_boundary = st.checkbox(
|
543 |
+
"Include Boundary Pixels",
|
544 |
+
value=True,
|
545 |
+
help="Check to include pixels on the polygon boundary; uncheck to exclude them."
|
546 |
+
)
|
547 |
+
|
548 |
+
st.markdown("<h5>Calculation Scale</h5>", unsafe_allow_html=True)
|
549 |
+
default_scale = ee.ImageCollection(dataset_id).first().select(0).projection().nominalScale().getInfo()
|
550 |
+
user_scale = st.number_input(
|
551 |
+
"Enter Calculation Scale (meters) [Leave blank to use dataset's default scale]",
|
552 |
+
min_value=1.0,
|
553 |
+
value=float(default_scale),
|
554 |
+
help=f"Default scale for this dataset is {default_scale} meters. Adjust if needed."
|
555 |
+
)
|
556 |
+
|
557 |
+
file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
|
558 |
+
locations_df = pd.DataFrame()
|
559 |
+
original_lat_col = None
|
560 |
+
original_lon_col = None
|
561 |
+
if file_upload is not None:
|
562 |
+
if shape_type.lower() == "point":
|
563 |
+
if file_upload.name.endswith('.csv'):
|
564 |
+
locations_df = pd.read_csv(file_upload)
|
565 |
+
st.write("Preview of your uploaded data (first 5 rows):")
|
566 |
+
st.dataframe(locations_df.head())
|
567 |
+
all_columns = locations_df.columns.tolist()
|
568 |
+
col1, col2 = st.columns(2)
|
569 |
+
with col1:
|
570 |
+
original_lat_col = st.selectbox(
|
571 |
+
"Select Latitude Column",
|
572 |
+
options=all_columns,
|
573 |
+
index=all_columns.index('latitude') if 'latitude' in all_columns else 0,
|
574 |
+
help="Select the column containing latitude values"
|
575 |
+
)
|
576 |
+
with col2:
|
577 |
+
original_lon_col = st.selectbox(
|
578 |
+
"Select Longitude Column",
|
579 |
+
options=all_columns,
|
580 |
+
index=all_columns.index('longitude') if 'longitude' in all_columns else 0,
|
581 |
+
help="Select the column containing longitude values"
|
582 |
+
)
|
583 |
+
if not pd.api.types.is_numeric_dtype(locations_df[original_lat_col]) or not pd.api.types.is_numeric_dtype(locations_df[original_lon_col]):
|
584 |
+
st.error("Error: Selected Latitude and Longitude columns must contain numeric values")
|
585 |
+
st.stop()
|
586 |
+
locations_df = locations_df.rename(columns={
|
587 |
+
original_lat_col: 'latitude',
|
588 |
+
original_lon_col: 'longitude'
|
589 |
+
})
|
590 |
+
elif file_upload.name.endswith('.geojson'):
|
591 |
+
locations_df = gpd.read_file(file_upload)
|
592 |
+
if 'geometry' in locations_df.columns:
|
593 |
+
locations_df['latitude'] = locations_df['geometry'].y
|
594 |
+
locations_df['longitude'] = locations_df['geometry'].x
|
595 |
+
original_lat_col = 'latitude'
|
596 |
+
original_lon_col = 'longitude'
|
597 |
+
else:
|
598 |
+
st.error("GeoJSON file doesn't contain geometry column")
|
599 |
+
st.stop()
|
600 |
+
elif file_upload.name.endswith('.kml'):
|
601 |
+
kml_string = file_upload.read().decode('utf-8')
|
602 |
+
try:
|
603 |
+
root = XET.fromstring(kml_string)
|
604 |
+
ns = {'kml': 'http://www.opengis.net/kml/2.2'}
|
605 |
+
points = []
|
606 |
+
for placemark in root.findall('.//kml:Placemark', ns):
|
607 |
+
name = placemark.findtext('kml:name', default=f"Point_{len(points)}", namespaces=ns)
|
608 |
+
coords_elem = placemark.find('.//kml:Point/kml:coordinates', ns)
|
609 |
+
if coords_elem is not None:
|
610 |
+
coords_text = coords_elem.text.strip()
|
611 |
+
coords = [c.strip() for c in coords_text.split(',')]
|
612 |
+
if len(coords) >= 2:
|
613 |
+
lon, lat = float(coords[0]), float(coords[1])
|
614 |
+
points.append({'name': name, 'geometry': f"POINT ({lon} {lat})"})
|
615 |
+
if not points:
|
616 |
+
st.error("No valid Point data found in the KML file.")
|
617 |
+
else:
|
618 |
+
locations_df = gpd.GeoDataFrame(points, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in points]), crs="EPSG:4326")
|
619 |
+
locations_df['latitude'] = locations_df['geometry'].y
|
620 |
+
locations_df['longitude'] = locations_df['geometry'].x
|
621 |
+
original_lat_col = 'latitude'
|
622 |
+
original_lon_col = 'longitude'
|
623 |
+
except Exception as e:
|
624 |
+
st.error(f"Error parsing KML file: {str(e)}")
|
625 |
+
if not locations_df.empty and 'latitude' in locations_df.columns and 'longitude' in locations_df.columns:
|
626 |
+
m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
|
627 |
+
for _, row in locations_df.iterrows():
|
628 |
+
latitude = row['latitude']
|
629 |
+
longitude = row['longitude']
|
630 |
+
if pd.isna(latitude) or pd.isna(longitude):
|
631 |
+
continue
|
632 |
+
m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
|
633 |
+
st.write("Map of Uploaded Points:")
|
634 |
+
m.to_streamlit()
|
635 |
+
elif shape_type.lower() == "polygon":
|
636 |
+
if file_upload.name.endswith('.csv'):
|
637 |
+
st.error("CSV upload not supported for polygons. Please upload a GeoJSON or KML file.")
|
638 |
+
elif file_upload.name.endswith('.geojson'):
|
639 |
+
locations_df = gpd.read_file(file_upload)
|
640 |
+
if 'geometry' not in locations_df.columns:
|
641 |
+
st.error("GeoJSON file doesn't contain geometry column")
|
642 |
+
st.stop()
|
643 |
+
elif file_upload.name.endswith('.kml'):
|
644 |
+
kml_string = file_upload.read().decode('utf-8')
|
645 |
+
try:
|
646 |
+
root = XET.fromstring(kml_string)
|
647 |
+
ns = {'kml': 'http://www.opengis.net/kml/2.2'}
|
648 |
+
polygons = []
|
649 |
+
for placemark in root.findall('.//kml:Placemark', ns):
|
650 |
+
name = placemark.findtext('kml:name', default=f"Polygon_{len(polygons)}", namespaces=ns)
|
651 |
+
coords_elem = placemark.find('.//kml:Polygon//kml:coordinates', ns)
|
652 |
+
if coords_elem is not None:
|
653 |
+
coords_text = ' '.join(coords_elem.text.split())
|
654 |
+
coord_pairs = [pair.split(',')[:2] for pair in coords_text.split() if pair]
|
655 |
+
if len(coord_pairs) >= 4:
|
656 |
+
coords_str = " ".join([f"{float(lon)} {float(lat)}" for lon, lat in coord_pairs])
|
657 |
+
polygons.append({'name': name, 'geometry': f"POLYGON (({coords_str}))"})
|
658 |
+
if not polygons:
|
659 |
+
st.error("No valid Polygon data found in the KML file.")
|
660 |
+
else:
|
661 |
+
locations_df = gpd.GeoDataFrame(polygons, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in polygons]), crs="EPSG:4326")
|
662 |
+
except Exception as e:
|
663 |
+
st.error(f"Error parsing KML file: {str(e)}")
|
664 |
+
if not locations_df.empty and 'geometry' in locations_df.columns:
|
665 |
+
centroid_lat = locations_df.geometry.centroid.y.mean()
|
666 |
+
centroid_lon = locations_df.geometry.centroid.x.mean()
|
667 |
+
m = leafmap.Map(center=[centroid_lat, centroid_lon], zoom=10)
|
668 |
+
for _, row in locations_df.iterrows():
|
669 |
+
polygon = row['geometry']
|
670 |
+
if polygon.is_valid:
|
671 |
+
gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=locations_df.crs)
|
672 |
+
m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
|
673 |
+
st.write("Map of Uploaded Polygons:")
|
674 |
+
m.to_streamlit()
|
675 |
+
|
676 |
+
if st.button(f"Calculate {custom_formula}"):
|
677 |
+
if not locations_df.empty:
|
678 |
+
with st.spinner("Processing Data..."):
|
679 |
+
try:
|
680 |
+
results, processing_time = process_aggregation(
|
681 |
+
locations_df,
|
682 |
+
start_date_str,
|
683 |
+
end_date_str,
|
684 |
+
dataset_id,
|
685 |
+
selected_bands,
|
686 |
+
reducer_choice,
|
687 |
+
shape_type,
|
688 |
+
aggregation_period,
|
689 |
+
original_lat_col,
|
690 |
+
original_lon_col,
|
691 |
+
custom_formula,
|
692 |
+
kernel_size,
|
693 |
+
include_boundary,
|
694 |
+
tile_cloud_threshold=tile_cloud_threshold if "tile_cloud_threshold" in locals() else 0,
|
695 |
+
pixel_cloud_threshold=pixel_cloud_threshold if "pixel_cloud_threshold" in locals() else 0,
|
696 |
+
user_scale=user_scale
|
697 |
+
)
|
698 |
+
if results:
|
699 |
+
result_df = pd.DataFrame(results)
|
700 |
+
st.write(f"Processed Results Table ({aggregation_period}) for Formula: {custom_formula}")
|
701 |
+
st.dataframe(result_df)
|
702 |
+
filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y%m%d')}_{end_date.strftime('%Y%m%d')}_{aggregation_period.lower()}.csv"
|
703 |
+
st.download_button(
|
704 |
+
label="Download results as CSV",
|
705 |
+
data=result_df.to_csv(index=False).encode('utf-8'),
|
706 |
+
file_name=filename,
|
707 |
+
mime='text/csv'
|
708 |
+
)
|
709 |
+
st.success(f"Processing complete! Total processing time: {processing_time:.2f} seconds.")
|
710 |
+
st.markdown("<h5>Graph Visualization</h5>", unsafe_allow_html=True)
|
711 |
+
if aggregation_period.lower() == 'custom (start date to end date)':
|
712 |
+
x_column = 'Date Range'
|
713 |
+
elif 'Date' in result_df.columns:
|
714 |
+
x_column = 'Date'
|
715 |
+
elif 'Week' in result_df.columns:
|
716 |
+
x_column = 'Week'
|
717 |
+
elif 'Month' in result_df.columns:
|
718 |
+
x_column = 'Month'
|
719 |
+
elif 'Year' in result_df.columns:
|
720 |
+
x_column = 'Year'
|
721 |
+
else:
|
722 |
+
st.warning("No valid time column found for plotting.")
|
723 |
+
st.stop()
|
724 |
+
y_column = 'Calculated Value'
|
725 |
+
fig = px.line(
|
726 |
+
result_df,
|
727 |
+
x=x_column,
|
728 |
+
y=y_column,
|
729 |
+
color='Location Name',
|
730 |
+
title=f"{custom_formula} Over Time"
|
731 |
+
)
|
732 |
+
st.plotly_chart(fig)
|
733 |
+
else:
|
734 |
+
st.warning("No results were generated. Check your inputs or formula.")
|
735 |
+
st.info(f"Total processing time: {processing_time:.2f} seconds.")
|
736 |
+
except Exception as e:
|
737 |
+
st.error(f"An error occurred during processing: {str(e)}")
|
738 |
+
else:
|
739 |
st.warning("Please upload a valid file to proceed.")
|