YashMK89 commited on
Commit
34ec1cb
·
verified ·
1 Parent(s): 6a71e8b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -128
app.py CHANGED
@@ -1,4 +1,3 @@
1
-
2
  import streamlit as st
3
  import json
4
  import ee
@@ -118,7 +117,6 @@ def calculate_custom_formula(image, geometry, selected_bands, custom_formula, re
118
  band_scales.append(band_scale)
119
  default_scale = min(band_scales) if band_scales else 30 # Default to 30m if no bands are found
120
  scale = user_scale if user_scale is not None else default_scale
121
-
122
  # Rescale all bands to the chosen scale
123
  rescaled_bands = {}
124
  for band in selected_bands:
@@ -132,7 +130,6 @@ def calculate_custom_formula(image, geometry, selected_bands, custom_formula, re
132
  rescaled_bands[band] = rescaled_band
133
  else:
134
  rescaled_bands[band] = band_image
135
-
136
  # Validate and extract band values
137
  reduced_values = {}
138
  reducer = get_reducer(reducer_choice)
@@ -143,13 +140,11 @@ def calculate_custom_formula(image, geometry, selected_bands, custom_formula, re
143
  scale=scale
144
  ).get(band).getInfo()
145
  reduced_values[band] = float(value if value is not None else 0)
146
-
147
  # Evaluate the custom formula
148
  formula = custom_formula
149
  for band in selected_bands:
150
  formula = formula.replace(band, str(reduced_values[band]))
151
  result = eval(formula, {"__builtins__": {}}, reduced_values)
152
-
153
  # Validate the result
154
  if not isinstance(result, (int, float)):
155
  raise ValueError("Formula did not result in a numeric value.")
@@ -167,68 +162,6 @@ def calculate_custom_formula(image, geometry, selected_bands, custom_formula, re
167
  st.error(f"Unexpected error: {e}")
168
  return ee.Image(0).rename('custom_result').set('error', str(e))
169
 
170
- # Aggregation functions
171
- def aggregate_data_custom(collection):
172
- collection = collection.map(lambda image: image.set('day', ee.Date(image.get('system:time_start')).format('YYYY-MM-dd')))
173
- grouped_by_day = collection.aggregate_array('day').distinct()
174
- def calculate_daily_mean(day):
175
- daily_collection = collection.filter(ee.Filter.eq('day', day))
176
- daily_mean = daily_collection.mean()
177
- return daily_mean.set('day', day)
178
- daily_images = ee.List(grouped_by_day.map(calculate_daily_mean))
179
- return ee.ImageCollection(daily_images)
180
-
181
- def aggregate_data_daily(collection):
182
- def set_day_start(image):
183
- date = ee.Date(image.get('system:time_start'))
184
- day_start = date.format('YYYY-MM-dd')
185
- return image.set('day_start', day_start)
186
- collection = collection.map(set_day_start)
187
- grouped_by_day = collection.aggregate_array('day_start').distinct()
188
- def calculate_daily_mean(day_start):
189
- daily_collection = collection.filter(ee.Filter.eq('day_start', day_start))
190
- daily_mean = daily_collection.mean()
191
- return daily_mean.set('day_start', day_start)
192
- daily_images = ee.List(grouped_by_day.map(calculate_daily_mean))
193
- return ee.ImageCollection(daily_images)
194
-
195
- def aggregate_data_weekly(collection, start_date_str, end_date_str):
196
- start_date = ee.Date(start_date_str)
197
- end_date = ee.Date(end_date_str)
198
- days_diff = end_date.difference(start_date, 'day')
199
- num_weeks = days_diff.divide(7).ceil().getInfo()
200
- weekly_images = []
201
- for week in range(num_weeks):
202
- week_start = start_date.advance(week * 7, 'day')
203
- week_end = week_start.advance(7, 'day')
204
- weekly_collection = collection.filterDate(week_start, week_end)
205
- if weekly_collection.size().getInfo() > 0:
206
- weekly_mean = weekly_collection.mean()
207
- weekly_mean = weekly_mean.set('week_start', week_start.format('YYYY-MM-dd'))
208
- weekly_images.append(weekly_mean)
209
- return ee.ImageCollection.fromImages(weekly_images)
210
-
211
- def aggregate_data_monthly(collection, start_date, end_date):
212
- collection = collection.filterDate(start_date, end_date)
213
- collection = collection.map(lambda image: image.set('month', ee.Date(image.get('system:time_start')).format('YYYY-MM')))
214
- grouped_by_month = collection.aggregate_array('month').distinct()
215
- def calculate_monthly_mean(month):
216
- monthly_collection = collection.filter(ee.Filter.eq('month', month))
217
- monthly_mean = monthly_collection.mean()
218
- return monthly_mean.set('month', month)
219
- monthly_images = ee.List(grouped_by_month.map(calculate_monthly_mean))
220
- return ee.ImageCollection(monthly_images)
221
-
222
- def aggregate_data_yearly(collection):
223
- collection = collection.map(lambda image: image.set('year', ee.Date(image.get('system:time_start')).format('YYYY')))
224
- grouped_by_year = collection.aggregate_array('year').distinct()
225
- def calculate_yearly_mean(year):
226
- yearly_collection = collection.filter(ee.Filter.eq('year', year))
227
- yearly_mean = yearly_collection.mean()
228
- return yearly_mean.set('year', year)
229
- yearly_images = ee.List(grouped_by_year.map(calculate_yearly_mean))
230
- return ee.ImageCollection(yearly_images)
231
-
232
  # Cloud percentage calculation
233
  def calculate_cloud_percentage(image, cloud_band='QA60'):
234
  qa60 = image.select(cloud_band)
@@ -260,7 +193,6 @@ def preprocess_collection(collection, pixel_cloud_threshold):
260
  cloud_mask = opaque_clouds.Or(cirrus_clouds)
261
  clear_pixels = cloud_mask.Not()
262
  return image.updateMask(clear_pixels)
263
-
264
  if pixel_cloud_threshold > 0:
265
  return collection.map(mask_cloudy_pixels)
266
  return collection
@@ -290,20 +222,15 @@ def process_single_geometry(row, start_date_str, end_date_str, dataset_id, selec
290
  roi = roi.buffer(-30).bounds()
291
  except ValueError:
292
  return None
293
-
294
  # Filter collection by date and area first
295
- # Apply spatial filtering
296
  collection = ee.ImageCollection(dataset_id) \
297
  .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
298
  .filterBounds(roi)
299
-
300
- # Apply cloud filtering if applicable
301
  if pixel_cloud_threshold > 0:
302
  collection = preprocess_collection(collection, pixel_cloud_threshold)
303
  st.write(f"After cloud masking: {collection.size().getInfo()} images")
304
-
305
- st.write(f"After initial filtering: {collection.size().getInfo()} images")
306
-
307
  if aggregation_period.lower() == 'custom (start date to end date)':
308
  collection = aggregate_data_custom(collection)
309
  elif aggregation_period.lower() == 'daily':
@@ -314,7 +241,6 @@ def process_single_geometry(row, start_date_str, end_date_str, dataset_id, selec
314
  collection = aggregate_data_monthly(collection, start_date_str, end_date_str)
315
  elif aggregation_period.lower() == 'yearly':
316
  collection = aggregate_data_yearly(collection)
317
-
318
  image_list = collection.toList(collection.size())
319
  processed_weeks = set()
320
  aggregated_results = []
@@ -345,7 +271,6 @@ def process_single_geometry(row, start_date_str, end_date_str, dataset_id, selec
345
  timestamp = image.get('year')
346
  period_label = 'Year'
347
  date = ee.Date(timestamp).format('YYYY').getInfo()
348
-
349
  index_image = calculate_custom_formula(image, roi, selected_bands, custom_formula, reducer_choice, dataset_id, user_scale=user_scale)
350
  try:
351
  index_value = index_image.reduceRegion(
@@ -377,40 +302,22 @@ def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id,
377
  progress_bar = st.progress(0)
378
  progress_text = st.empty()
379
  start_time = time.time()
 
 
380
 
 
 
 
381
  # Apply spatial filtering
382
  if roi is not None:
383
- raw_collection = ee.ImageCollection(dataset_id) \
384
- .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
385
- .filterBounds(roi)
386
- else:
387
- raw_collection = ee.ImageCollection(dataset_id) \
388
- .filterDate(ee.Date(start_date_str), ee.Date(end_date_str))
389
-
390
- st.write(f"Original Collection Size: {raw_collection.size().getInfo()}")
391
- st.write(f"Original Collection Size: {ee.ImageCollection(dataset_id).filterDate(ee.Date(start_date_str), ee.Date(end_date_str)).size().getInfo()}")
392
- st.write(f"Filtered Collection Size (After Spatial Filtering): {raw_collection.size().getInfo()}")
393
-
394
  if pixel_cloud_threshold > 0:
395
  raw_collection = preprocess_collection(raw_collection, pixel_cloud_threshold)
396
  st.write(f"Filtered Collection Size (After Cloud Masking): {raw_collection.size().getInfo()}")
397
-
398
- # if tile_cloud_threshold > 0 or pixel_cloud_threshold > 0:
399
- # raw_collection = preprocess_collection(raw_collection, pixel_cloud_threshold)
400
- # st.write(f"Preprocessed Collection Size: {raw_collection.size().getInfo()}")
401
- # Apply cloud filtering
402
- if imagery_base == "Sentinel" and "Sentinel-2" in sub_options[sub_selection]:
403
- pixel_cloud_threshold = st.slider(
404
- "Select Maximum Pixel-Based Cloud Coverage Threshold (%)",
405
- min_value=0,
406
- max_value=100,
407
- value=5,
408
- step=5,
409
- help="Individual pixels with cloud coverage exceeding this threshold will be masked."
410
- )
411
- raw_collection = preprocess_collection(raw_collection, pixel_cloud_threshold)
412
- st.write(f"Filtered Collection Size (After Cloud Masking): {raw_collection.size().getInfo()}")
413
-
414
  with ThreadPoolExecutor(max_workers=10) as executor:
415
  futures = []
416
  for idx, row in locations_df.iterrows():
@@ -441,10 +348,8 @@ def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id,
441
  progress_percentage = completed / total_steps
442
  progress_bar.progress(progress_percentage)
443
  progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
444
-
445
  end_time = time.time()
446
  processing_time = end_time - start_time
447
-
448
  if aggregated_results:
449
  result_df = pd.DataFrame(aggregated_results)
450
  if aggregation_period.lower() == 'custom (start date to end date)':
@@ -526,7 +431,6 @@ elif imagery_base == "Custom Input":
526
  if not data:
527
  st.error("No valid dataset available. Please check your inputs.")
528
  st.stop()
529
-
530
  st.markdown("<hr><h5><b>{}</b></h5>".format(imagery_base), unsafe_allow_html=True)
531
  main_selection = st.selectbox(f"Select {imagery_base} Dataset Category", list(data.keys()))
532
  sub_selection = None
@@ -546,13 +450,10 @@ if main_selection:
546
  st.write(f"Default Scale for Selected Dataset: {default_scale} meters")
547
  except Exception as e:
548
  st.error(f"Error fetching default scale: {str(e)}")
549
-
550
  st.markdown("<hr><h5><b>Earth Engine Index Calculator</b></h5>", unsafe_allow_html=True)
551
  if main_selection and sub_selection:
552
  dataset_bands = data[main_selection]["bands"].get(sub_selection, [])
553
  st.write(f"Available Bands for {sub_options[sub_selection]}: {', '.join(dataset_bands)}")
554
-
555
-
556
  # Fetch nominal scales for all bands in the selected dataset
557
  if dataset_id:
558
  try:
@@ -560,20 +461,16 @@ if main_selection and sub_selection:
560
  collection = ee.ImageCollection(dataset_id)
561
  first_image = collection.first()
562
  band_names = first_image.bandNames().getInfo()
563
-
564
  # Extract scales for all bands
565
  band_scales = []
566
  for band in band_names:
567
  band_scale = first_image.select(band).projection().nominalScale().getInfo()
568
  band_scales.append(band_scale)
569
-
570
  # Identify unique scales using np.unique
571
  unique_scales = np.unique(band_scales)
572
-
573
  # Display the unique scales to the user
574
  st.write(f"Nominal Scales for Bands: {band_scales}")
575
  st.write(f"Unique Scales in Dataset: {unique_scales}")
576
-
577
  # If there are multiple unique scales, allow the user to choose one
578
  if len(unique_scales) > 1:
579
  selected_scale = st.selectbox(
@@ -586,11 +483,9 @@ if main_selection and sub_selection:
586
  else:
587
  default_scale = unique_scales[0]
588
  st.write(f"Default Scale for Dataset: {default_scale} meters")
589
-
590
  except Exception as e:
591
  st.error(f"Error fetching band scales: {str(e)}")
592
  default_scale = 30 # Fallback to 30 meters if an error occurs
593
-
594
  selected_bands = st.multiselect(
595
  "Select 1 or 2 Bands for Calculation",
596
  options=dataset_bands,
@@ -629,18 +524,15 @@ if main_selection and sub_selection:
629
  st.warning("Please enter a custom formula to proceed.")
630
  st.stop()
631
  st.write(f"Custom Formula: {custom_formula}")
632
-
633
  reducer_choice = st.selectbox(
634
  "Select Reducer (e.g, mean , sum , median , min , max , count)",
635
  ['mean', 'sum', 'median', 'min', 'max', 'count'],
636
  index=0
637
  )
638
-
639
  start_date = st.date_input("Start Date", value=pd.to_datetime('2024-11-01'))
640
  end_date = st.date_input("End Date", value=pd.to_datetime('2024-12-01'))
641
  start_date_str = start_date.strftime('%Y-%m-%d')
642
  end_date_str = end_date.strftime('%Y-%m-%d')
643
-
644
  if imagery_base == "Sentinel" and "Sentinel-2" in sub_options[sub_selection]:
645
  st.markdown("<h5>Cloud Filtering</h5>", unsafe_allow_html=True)
646
  pixel_cloud_threshold = st.slider(
@@ -651,17 +543,14 @@ if imagery_base == "Sentinel" and "Sentinel-2" in sub_options[sub_selection]:
651
  step=5,
652
  help="Individual pixels with cloud coverage exceeding this threshold will be masked."
653
  )
654
-
655
  aggregation_period = st.selectbox(
656
  "Select Aggregation Period (e.g, Custom(Start Date to End Date) , Daily , Weekly , Monthly , Yearly)",
657
  ["Custom (Start Date to End Date)", "Daily", "Weekly", "Monthly", "Yearly"],
658
  index=0
659
  )
660
-
661
  shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"])
662
  kernel_size = None
663
  include_boundary = None
664
-
665
  if shape_type.lower() == "point":
666
  kernel_size = st.selectbox(
667
  "Select Calculation Area(e.g, Point , 3x3 Kernel , 5x5 Kernel)",
@@ -675,7 +564,6 @@ elif shape_type.lower() == "polygon":
675
  value=True,
676
  help="Check to include pixels on the polygon boundary; uncheck to exclude them."
677
  )
678
-
679
  # st.markdown("<h5>Calculation Scale</h5>", unsafe_allow_html=True)
680
  # default_scale = ee.ImageCollection(dataset_id).first().select(0).projection().nominalScale().getInfo()
681
  # user_scale = st.number_input(
@@ -684,7 +572,6 @@ elif shape_type.lower() == "polygon":
684
  # value=float(default_scale),
685
  # help=f"Default scale for this dataset is {default_scale} meters. Adjust if needed."
686
  # )
687
-
688
  st.markdown("<h5>Calculation Scale</h5>", unsafe_allow_html=True)
689
  user_scale = st.number_input(
690
  "Enter Calculation Scale (meters) [Leave blank to use dataset's default scale]",
@@ -692,12 +579,10 @@ user_scale = st.number_input(
692
  value=float(default_scale),
693
  help=f"Default scale for this dataset is {default_scale} meters. Adjust if needed."
694
  )
695
-
696
  file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
697
  locations_df = pd.DataFrame()
698
  original_lat_col = None
699
  original_lon_col = None
700
-
701
  if file_upload is not None:
702
  if shape_type.lower() == "point":
703
  if file_upload.name.endswith('.csv'):
@@ -812,7 +697,6 @@ if file_upload is not None:
812
  m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
813
  st.write("Map of Uploaded Polygons:")
814
  m.to_streamlit()
815
-
816
  if st.button(f"Calculate {custom_formula}"):
817
  if not locations_df.empty:
818
  with st.spinner("Processing Data..."):
 
 
1
  import streamlit as st
2
  import json
3
  import ee
 
117
  band_scales.append(band_scale)
118
  default_scale = min(band_scales) if band_scales else 30 # Default to 30m if no bands are found
119
  scale = user_scale if user_scale is not None else default_scale
 
120
  # Rescale all bands to the chosen scale
121
  rescaled_bands = {}
122
  for band in selected_bands:
 
130
  rescaled_bands[band] = rescaled_band
131
  else:
132
  rescaled_bands[band] = band_image
 
133
  # Validate and extract band values
134
  reduced_values = {}
135
  reducer = get_reducer(reducer_choice)
 
140
  scale=scale
141
  ).get(band).getInfo()
142
  reduced_values[band] = float(value if value is not None else 0)
 
143
  # Evaluate the custom formula
144
  formula = custom_formula
145
  for band in selected_bands:
146
  formula = formula.replace(band, str(reduced_values[band]))
147
  result = eval(formula, {"__builtins__": {}}, reduced_values)
 
148
  # Validate the result
149
  if not isinstance(result, (int, float)):
150
  raise ValueError("Formula did not result in a numeric value.")
 
162
  st.error(f"Unexpected error: {e}")
163
  return ee.Image(0).rename('custom_result').set('error', str(e))
164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165
  # Cloud percentage calculation
166
  def calculate_cloud_percentage(image, cloud_band='QA60'):
167
  qa60 = image.select(cloud_band)
 
193
  cloud_mask = opaque_clouds.Or(cirrus_clouds)
194
  clear_pixels = cloud_mask.Not()
195
  return image.updateMask(clear_pixels)
 
196
  if pixel_cloud_threshold > 0:
197
  return collection.map(mask_cloudy_pixels)
198
  return collection
 
222
  roi = roi.buffer(-30).bounds()
223
  except ValueError:
224
  return None
 
225
  # Filter collection by date and area first
 
226
  collection = ee.ImageCollection(dataset_id) \
227
  .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
228
  .filterBounds(roi)
229
+ st.write(f"After initial filtering: {collection.size().getInfo()} images")
230
+ # Apply pixel cloud masking if threshold > 0
231
  if pixel_cloud_threshold > 0:
232
  collection = preprocess_collection(collection, pixel_cloud_threshold)
233
  st.write(f"After cloud masking: {collection.size().getInfo()} images")
 
 
 
234
  if aggregation_period.lower() == 'custom (start date to end date)':
235
  collection = aggregate_data_custom(collection)
236
  elif aggregation_period.lower() == 'daily':
 
241
  collection = aggregate_data_monthly(collection, start_date_str, end_date_str)
242
  elif aggregation_period.lower() == 'yearly':
243
  collection = aggregate_data_yearly(collection)
 
244
  image_list = collection.toList(collection.size())
245
  processed_weeks = set()
246
  aggregated_results = []
 
271
  timestamp = image.get('year')
272
  period_label = 'Year'
273
  date = ee.Date(timestamp).format('YYYY').getInfo()
 
274
  index_image = calculate_custom_formula(image, roi, selected_bands, custom_formula, reducer_choice, dataset_id, user_scale=user_scale)
275
  try:
276
  index_value = index_image.reduceRegion(
 
302
  progress_bar = st.progress(0)
303
  progress_text = st.empty()
304
  start_time = time.time()
305
+ raw_collection = ee.ImageCollection(dataset_id) \
306
+ .filterDate(ee.Date(start_date_str), ee.Date(end_date_str))
307
 
308
+ # Log the original collection size
309
+ st.write(f"Original Collection Size: {raw_collection.size().getInfo()}")
310
+
311
  # Apply spatial filtering
312
  if roi is not None:
313
+ raw_collection = raw_collection.filterBounds(roi)
314
+ st.write(f"Filtered Collection Size (After Spatial Filtering): {raw_collection.size().getInfo()}")
315
+
316
+ # Apply cloud masking if threshold > 0
 
 
 
 
 
 
 
317
  if pixel_cloud_threshold > 0:
318
  raw_collection = preprocess_collection(raw_collection, pixel_cloud_threshold)
319
  st.write(f"Filtered Collection Size (After Cloud Masking): {raw_collection.size().getInfo()}")
320
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
321
  with ThreadPoolExecutor(max_workers=10) as executor:
322
  futures = []
323
  for idx, row in locations_df.iterrows():
 
348
  progress_percentage = completed / total_steps
349
  progress_bar.progress(progress_percentage)
350
  progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
 
351
  end_time = time.time()
352
  processing_time = end_time - start_time
 
353
  if aggregated_results:
354
  result_df = pd.DataFrame(aggregated_results)
355
  if aggregation_period.lower() == 'custom (start date to end date)':
 
431
  if not data:
432
  st.error("No valid dataset available. Please check your inputs.")
433
  st.stop()
 
434
  st.markdown("<hr><h5><b>{}</b></h5>".format(imagery_base), unsafe_allow_html=True)
435
  main_selection = st.selectbox(f"Select {imagery_base} Dataset Category", list(data.keys()))
436
  sub_selection = None
 
450
  st.write(f"Default Scale for Selected Dataset: {default_scale} meters")
451
  except Exception as e:
452
  st.error(f"Error fetching default scale: {str(e)}")
 
453
  st.markdown("<hr><h5><b>Earth Engine Index Calculator</b></h5>", unsafe_allow_html=True)
454
  if main_selection and sub_selection:
455
  dataset_bands = data[main_selection]["bands"].get(sub_selection, [])
456
  st.write(f"Available Bands for {sub_options[sub_selection]}: {', '.join(dataset_bands)}")
 
 
457
  # Fetch nominal scales for all bands in the selected dataset
458
  if dataset_id:
459
  try:
 
461
  collection = ee.ImageCollection(dataset_id)
462
  first_image = collection.first()
463
  band_names = first_image.bandNames().getInfo()
 
464
  # Extract scales for all bands
465
  band_scales = []
466
  for band in band_names:
467
  band_scale = first_image.select(band).projection().nominalScale().getInfo()
468
  band_scales.append(band_scale)
 
469
  # Identify unique scales using np.unique
470
  unique_scales = np.unique(band_scales)
 
471
  # Display the unique scales to the user
472
  st.write(f"Nominal Scales for Bands: {band_scales}")
473
  st.write(f"Unique Scales in Dataset: {unique_scales}")
 
474
  # If there are multiple unique scales, allow the user to choose one
475
  if len(unique_scales) > 1:
476
  selected_scale = st.selectbox(
 
483
  else:
484
  default_scale = unique_scales[0]
485
  st.write(f"Default Scale for Dataset: {default_scale} meters")
 
486
  except Exception as e:
487
  st.error(f"Error fetching band scales: {str(e)}")
488
  default_scale = 30 # Fallback to 30 meters if an error occurs
 
489
  selected_bands = st.multiselect(
490
  "Select 1 or 2 Bands for Calculation",
491
  options=dataset_bands,
 
524
  st.warning("Please enter a custom formula to proceed.")
525
  st.stop()
526
  st.write(f"Custom Formula: {custom_formula}")
 
527
  reducer_choice = st.selectbox(
528
  "Select Reducer (e.g, mean , sum , median , min , max , count)",
529
  ['mean', 'sum', 'median', 'min', 'max', 'count'],
530
  index=0
531
  )
 
532
  start_date = st.date_input("Start Date", value=pd.to_datetime('2024-11-01'))
533
  end_date = st.date_input("End Date", value=pd.to_datetime('2024-12-01'))
534
  start_date_str = start_date.strftime('%Y-%m-%d')
535
  end_date_str = end_date.strftime('%Y-%m-%d')
 
536
  if imagery_base == "Sentinel" and "Sentinel-2" in sub_options[sub_selection]:
537
  st.markdown("<h5>Cloud Filtering</h5>", unsafe_allow_html=True)
538
  pixel_cloud_threshold = st.slider(
 
543
  step=5,
544
  help="Individual pixels with cloud coverage exceeding this threshold will be masked."
545
  )
 
546
  aggregation_period = st.selectbox(
547
  "Select Aggregation Period (e.g, Custom(Start Date to End Date) , Daily , Weekly , Monthly , Yearly)",
548
  ["Custom (Start Date to End Date)", "Daily", "Weekly", "Monthly", "Yearly"],
549
  index=0
550
  )
 
551
  shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"])
552
  kernel_size = None
553
  include_boundary = None
 
554
  if shape_type.lower() == "point":
555
  kernel_size = st.selectbox(
556
  "Select Calculation Area(e.g, Point , 3x3 Kernel , 5x5 Kernel)",
 
564
  value=True,
565
  help="Check to include pixels on the polygon boundary; uncheck to exclude them."
566
  )
 
567
  # st.markdown("<h5>Calculation Scale</h5>", unsafe_allow_html=True)
568
  # default_scale = ee.ImageCollection(dataset_id).first().select(0).projection().nominalScale().getInfo()
569
  # user_scale = st.number_input(
 
572
  # value=float(default_scale),
573
  # help=f"Default scale for this dataset is {default_scale} meters. Adjust if needed."
574
  # )
 
575
  st.markdown("<h5>Calculation Scale</h5>", unsafe_allow_html=True)
576
  user_scale = st.number_input(
577
  "Enter Calculation Scale (meters) [Leave blank to use dataset's default scale]",
 
579
  value=float(default_scale),
580
  help=f"Default scale for this dataset is {default_scale} meters. Adjust if needed."
581
  )
 
582
  file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
583
  locations_df = pd.DataFrame()
584
  original_lat_col = None
585
  original_lon_col = None
 
586
  if file_upload is not None:
587
  if shape_type.lower() == "point":
588
  if file_upload.name.endswith('.csv'):
 
697
  m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
698
  st.write("Map of Uploaded Polygons:")
699
  m.to_streamlit()
 
700
  if st.button(f"Calculate {custom_formula}"):
701
  if not locations_df.empty:
702
  with st.spinner("Processing Data..."):