Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -265,6 +265,7 @@ def preprocess_collection(collection, pixel_cloud_threshold):
|
|
265 |
return collection.map(mask_cloudy_pixels)
|
266 |
return collection
|
267 |
|
|
|
268 |
# Process single geometry
|
269 |
def process_single_geometry(row, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, custom_formula, original_lat_col, original_lon_col, kernel_size=None, include_boundary=None, user_scale=None, pixel_cloud_threshold=0):
|
270 |
if shape_type.lower() == "point":
|
@@ -290,20 +291,18 @@ def process_single_geometry(row, start_date_str, end_date_str, dataset_id, selec
|
|
290 |
roi = roi.buffer(-30).bounds()
|
291 |
except ValueError:
|
292 |
return None
|
293 |
-
|
294 |
# Filter collection by date and area first
|
295 |
-
# Apply spatial filtering
|
296 |
collection = ee.ImageCollection(dataset_id) \
|
297 |
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
|
298 |
.filterBounds(roi)
|
299 |
-
|
300 |
# Apply cloud filtering if applicable
|
301 |
if pixel_cloud_threshold > 0:
|
302 |
collection = preprocess_collection(collection, pixel_cloud_threshold)
|
303 |
st.write(f"After cloud masking: {collection.size().getInfo()} images")
|
304 |
|
305 |
-
|
306 |
-
|
307 |
if aggregation_period.lower() == 'custom (start date to end date)':
|
308 |
collection = aggregate_data_custom(collection)
|
309 |
elif aggregation_period.lower() == 'daily':
|
@@ -314,7 +313,8 @@ def process_single_geometry(row, start_date_str, end_date_str, dataset_id, selec
|
|
314 |
collection = aggregate_data_monthly(collection, start_date_str, end_date_str)
|
315 |
elif aggregation_period.lower() == 'yearly':
|
316 |
collection = aggregate_data_yearly(collection)
|
317 |
-
|
|
|
318 |
image_list = collection.toList(collection.size())
|
319 |
processed_weeks = set()
|
320 |
aggregated_results = []
|
@@ -345,7 +345,7 @@ def process_single_geometry(row, start_date_str, end_date_str, dataset_id, selec
|
|
345 |
timestamp = image.get('year')
|
346 |
period_label = 'Year'
|
347 |
date = ee.Date(timestamp).format('YYYY').getInfo()
|
348 |
-
|
349 |
index_image = calculate_custom_formula(image, roi, selected_bands, custom_formula, reducer_choice, dataset_id, user_scale=user_scale)
|
350 |
try:
|
351 |
index_value = index_image.reduceRegion(
|
@@ -379,7 +379,7 @@ def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id,
|
|
379 |
progress_text = st.empty()
|
380 |
start_time = time.time()
|
381 |
|
382 |
-
#
|
383 |
raw_collection = ee.ImageCollection(dataset_id) \
|
384 |
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str))
|
385 |
st.write(f"Original Collection Size: {raw_collection.size().getInfo()}")
|
|
|
265 |
return collection.map(mask_cloudy_pixels)
|
266 |
return collection
|
267 |
|
268 |
+
# Process single geometry
|
269 |
# Process single geometry
|
270 |
def process_single_geometry(row, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, custom_formula, original_lat_col, original_lon_col, kernel_size=None, include_boundary=None, user_scale=None, pixel_cloud_threshold=0):
|
271 |
if shape_type.lower() == "point":
|
|
|
291 |
roi = roi.buffer(-30).bounds()
|
292 |
except ValueError:
|
293 |
return None
|
294 |
+
|
295 |
# Filter collection by date and area first
|
|
|
296 |
collection = ee.ImageCollection(dataset_id) \
|
297 |
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
|
298 |
.filterBounds(roi)
|
299 |
+
|
300 |
# Apply cloud filtering if applicable
|
301 |
if pixel_cloud_threshold > 0:
|
302 |
collection = preprocess_collection(collection, pixel_cloud_threshold)
|
303 |
st.write(f"After cloud masking: {collection.size().getInfo()} images")
|
304 |
|
305 |
+
# Apply temporal aggregation
|
|
|
306 |
if aggregation_period.lower() == 'custom (start date to end date)':
|
307 |
collection = aggregate_data_custom(collection)
|
308 |
elif aggregation_period.lower() == 'daily':
|
|
|
313 |
collection = aggregate_data_monthly(collection, start_date_str, end_date_str)
|
314 |
elif aggregation_period.lower() == 'yearly':
|
315 |
collection = aggregate_data_yearly(collection)
|
316 |
+
|
317 |
+
# Process the filtered collection
|
318 |
image_list = collection.toList(collection.size())
|
319 |
processed_weeks = set()
|
320 |
aggregated_results = []
|
|
|
345 |
timestamp = image.get('year')
|
346 |
period_label = 'Year'
|
347 |
date = ee.Date(timestamp).format('YYYY').getInfo()
|
348 |
+
|
349 |
index_image = calculate_custom_formula(image, roi, selected_bands, custom_formula, reducer_choice, dataset_id, user_scale=user_scale)
|
350 |
try:
|
351 |
index_value = index_image.reduceRegion(
|
|
|
379 |
progress_text = st.empty()
|
380 |
start_time = time.time()
|
381 |
|
382 |
+
# Log the original collection size for debugging
|
383 |
raw_collection = ee.ImageCollection(dataset_id) \
|
384 |
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str))
|
385 |
st.write(f"Original Collection Size: {raw_collection.size().getInfo()}")
|