YashMK89 commited on
Commit
68af47c
·
verified ·
1 Parent(s): fa7207c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +108 -12
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import streamlit as st
2
  import json
3
  import ee
@@ -117,6 +118,7 @@ def calculate_custom_formula(image, geometry, selected_bands, custom_formula, re
117
  band_scales.append(band_scale)
118
  default_scale = min(band_scales) if band_scales else 30 # Default to 30m if no bands are found
119
  scale = user_scale if user_scale is not None else default_scale
 
120
  # Rescale all bands to the chosen scale
121
  rescaled_bands = {}
122
  for band in selected_bands:
@@ -130,6 +132,7 @@ def calculate_custom_formula(image, geometry, selected_bands, custom_formula, re
130
  rescaled_bands[band] = rescaled_band
131
  else:
132
  rescaled_bands[band] = band_image
 
133
  # Validate and extract band values
134
  reduced_values = {}
135
  reducer = get_reducer(reducer_choice)
@@ -140,11 +143,13 @@ def calculate_custom_formula(image, geometry, selected_bands, custom_formula, re
140
  scale=scale
141
  ).get(band).getInfo()
142
  reduced_values[band] = float(value if value is not None else 0)
 
143
  # Evaluate the custom formula
144
  formula = custom_formula
145
  for band in selected_bands:
146
  formula = formula.replace(band, str(reduced_values[band]))
147
  result = eval(formula, {"__builtins__": {}}, reduced_values)
 
148
  # Validate the result
149
  if not isinstance(result, (int, float)):
150
  raise ValueError("Formula did not result in a numeric value.")
@@ -162,6 +167,68 @@ def calculate_custom_formula(image, geometry, selected_bands, custom_formula, re
162
  st.error(f"Unexpected error: {e}")
163
  return ee.Image(0).rename('custom_result').set('error', str(e))
164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165
  # Cloud percentage calculation
166
  def calculate_cloud_percentage(image, cloud_band='QA60'):
167
  qa60 = image.select(cloud_band)
@@ -193,6 +260,7 @@ def preprocess_collection(collection, pixel_cloud_threshold):
193
  cloud_mask = opaque_clouds.Or(cirrus_clouds)
194
  clear_pixels = cloud_mask.Not()
195
  return image.updateMask(clear_pixels)
 
196
  if pixel_cloud_threshold > 0:
197
  return collection.map(mask_cloudy_pixels)
198
  return collection
@@ -222,15 +290,20 @@ def process_single_geometry(row, start_date_str, end_date_str, dataset_id, selec
222
  roi = roi.buffer(-30).bounds()
223
  except ValueError:
224
  return None
 
225
  # Filter collection by date and area first
 
226
  collection = ee.ImageCollection(dataset_id) \
227
  .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
228
  .filterBounds(roi)
229
- st.write(f"After initial filtering: {collection.size().getInfo()} images")
230
- # Apply pixel cloud masking if threshold > 0
231
  if pixel_cloud_threshold > 0:
232
  collection = preprocess_collection(collection, pixel_cloud_threshold)
233
  st.write(f"After cloud masking: {collection.size().getInfo()} images")
 
 
 
234
  if aggregation_period.lower() == 'custom (start date to end date)':
235
  collection = aggregate_data_custom(collection)
236
  elif aggregation_period.lower() == 'daily':
@@ -241,6 +314,7 @@ def process_single_geometry(row, start_date_str, end_date_str, dataset_id, selec
241
  collection = aggregate_data_monthly(collection, start_date_str, end_date_str)
242
  elif aggregation_period.lower() == 'yearly':
243
  collection = aggregate_data_yearly(collection)
 
244
  image_list = collection.toList(collection.size())
245
  processed_weeks = set()
246
  aggregated_results = []
@@ -271,6 +345,7 @@ def process_single_geometry(row, start_date_str, end_date_str, dataset_id, selec
271
  timestamp = image.get('year')
272
  period_label = 'Year'
273
  date = ee.Date(timestamp).format('YYYY').getInfo()
 
274
  index_image = calculate_custom_formula(image, roi, selected_bands, custom_formula, reducer_choice, dataset_id, user_scale=user_scale)
275
  try:
276
  index_value = index_image.reduceRegion(
@@ -295,6 +370,7 @@ def process_single_geometry(row, start_date_str, end_date_str, dataset_id, selec
295
  st.error(f"Error retrieving value for {location_name}: {e}")
296
  return aggregated_results
297
 
 
298
  # Process aggregation
299
  def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, original_lat_col, original_lon_col, custom_formula="", kernel_size=None, include_boundary=None, tile_cloud_threshold=0, pixel_cloud_threshold=0, user_scale=None):
300
  aggregated_results = []
@@ -302,22 +378,18 @@ def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id,
302
  progress_bar = st.progress(0)
303
  progress_text = st.empty()
304
  start_time = time.time()
 
 
305
  raw_collection = ee.ImageCollection(dataset_id) \
306
  .filterDate(ee.Date(start_date_str), ee.Date(end_date_str))
307
-
308
- # Log the original collection size
309
  st.write(f"Original Collection Size: {raw_collection.size().getInfo()}")
310
 
311
- # # Apply spatial filtering
312
- # if roi is not None:
313
- # raw_collection = raw_collection.filterBounds(roi)
314
- # st.write(f"Filtered Collection Size (After Spatial Filtering): {raw_collection.size().getInfo()}")
315
-
316
- # Apply cloud masking if threshold > 0
317
  if pixel_cloud_threshold > 0:
318
  raw_collection = preprocess_collection(raw_collection, pixel_cloud_threshold)
319
  st.write(f"Filtered Collection Size (After Cloud Masking): {raw_collection.size().getInfo()}")
320
 
 
321
  with ThreadPoolExecutor(max_workers=10) as executor:
322
  futures = []
323
  for idx, row in locations_df.iterrows():
@@ -339,6 +411,7 @@ def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id,
339
  user_scale=user_scale
340
  )
341
  futures.append(future)
 
342
  completed = 0
343
  for future in as_completed(futures):
344
  result = future.result()
@@ -348,8 +421,10 @@ def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id,
348
  progress_percentage = completed / total_steps
349
  progress_bar.progress(progress_percentage)
350
  progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
 
351
  end_time = time.time()
352
  processing_time = end_time - start_time
 
353
  if aggregated_results:
354
  result_df = pd.DataFrame(aggregated_results)
355
  if aggregation_period.lower() == 'custom (start date to end date)':
@@ -367,8 +442,8 @@ def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id,
367
  else:
368
  return result_df.to_dict(orient='records'), processing_time
369
  return [], processing_time
370
-
371
- # Streamlit App Logic
372
  st.markdown("<h5>Image Collection</h5>", unsafe_allow_html=True)
373
  imagery_base = st.selectbox("Select Imagery Base", ["Sentinel", "Landsat", "MODIS", "VIIRS", "Custom Input"], index=0)
374
  data = {}
@@ -431,6 +506,7 @@ elif imagery_base == "Custom Input":
431
  if not data:
432
  st.error("No valid dataset available. Please check your inputs.")
433
  st.stop()
 
434
  st.markdown("<hr><h5><b>{}</b></h5>".format(imagery_base), unsafe_allow_html=True)
435
  main_selection = st.selectbox(f"Select {imagery_base} Dataset Category", list(data.keys()))
436
  sub_selection = None
@@ -450,10 +526,13 @@ if main_selection:
450
  st.write(f"Default Scale for Selected Dataset: {default_scale} meters")
451
  except Exception as e:
452
  st.error(f"Error fetching default scale: {str(e)}")
 
453
  st.markdown("<hr><h5><b>Earth Engine Index Calculator</b></h5>", unsafe_allow_html=True)
454
  if main_selection and sub_selection:
455
  dataset_bands = data[main_selection]["bands"].get(sub_selection, [])
456
  st.write(f"Available Bands for {sub_options[sub_selection]}: {', '.join(dataset_bands)}")
 
 
457
  # Fetch nominal scales for all bands in the selected dataset
458
  if dataset_id:
459
  try:
@@ -461,16 +540,20 @@ if main_selection and sub_selection:
461
  collection = ee.ImageCollection(dataset_id)
462
  first_image = collection.first()
463
  band_names = first_image.bandNames().getInfo()
 
464
  # Extract scales for all bands
465
  band_scales = []
466
  for band in band_names:
467
  band_scale = first_image.select(band).projection().nominalScale().getInfo()
468
  band_scales.append(band_scale)
 
469
  # Identify unique scales using np.unique
470
  unique_scales = np.unique(band_scales)
 
471
  # Display the unique scales to the user
472
  st.write(f"Nominal Scales for Bands: {band_scales}")
473
  st.write(f"Unique Scales in Dataset: {unique_scales}")
 
474
  # If there are multiple unique scales, allow the user to choose one
475
  if len(unique_scales) > 1:
476
  selected_scale = st.selectbox(
@@ -483,9 +566,11 @@ if main_selection and sub_selection:
483
  else:
484
  default_scale = unique_scales[0]
485
  st.write(f"Default Scale for Dataset: {default_scale} meters")
 
486
  except Exception as e:
487
  st.error(f"Error fetching band scales: {str(e)}")
488
  default_scale = 30 # Fallback to 30 meters if an error occurs
 
489
  selected_bands = st.multiselect(
490
  "Select 1 or 2 Bands for Calculation",
491
  options=dataset_bands,
@@ -524,15 +609,18 @@ if main_selection and sub_selection:
524
  st.warning("Please enter a custom formula to proceed.")
525
  st.stop()
526
  st.write(f"Custom Formula: {custom_formula}")
 
527
  reducer_choice = st.selectbox(
528
  "Select Reducer (e.g, mean , sum , median , min , max , count)",
529
  ['mean', 'sum', 'median', 'min', 'max', 'count'],
530
  index=0
531
  )
 
532
  start_date = st.date_input("Start Date", value=pd.to_datetime('2024-11-01'))
533
  end_date = st.date_input("End Date", value=pd.to_datetime('2024-12-01'))
534
  start_date_str = start_date.strftime('%Y-%m-%d')
535
  end_date_str = end_date.strftime('%Y-%m-%d')
 
536
  if imagery_base == "Sentinel" and "Sentinel-2" in sub_options[sub_selection]:
537
  st.markdown("<h5>Cloud Filtering</h5>", unsafe_allow_html=True)
538
  pixel_cloud_threshold = st.slider(
@@ -543,14 +631,17 @@ if imagery_base == "Sentinel" and "Sentinel-2" in sub_options[sub_selection]:
543
  step=5,
544
  help="Individual pixels with cloud coverage exceeding this threshold will be masked."
545
  )
 
546
  aggregation_period = st.selectbox(
547
  "Select Aggregation Period (e.g, Custom(Start Date to End Date) , Daily , Weekly , Monthly , Yearly)",
548
  ["Custom (Start Date to End Date)", "Daily", "Weekly", "Monthly", "Yearly"],
549
  index=0
550
  )
 
551
  shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"])
552
  kernel_size = None
553
  include_boundary = None
 
554
  if shape_type.lower() == "point":
555
  kernel_size = st.selectbox(
556
  "Select Calculation Area(e.g, Point , 3x3 Kernel , 5x5 Kernel)",
@@ -564,6 +655,7 @@ elif shape_type.lower() == "polygon":
564
  value=True,
565
  help="Check to include pixels on the polygon boundary; uncheck to exclude them."
566
  )
 
567
  # st.markdown("<h5>Calculation Scale</h5>", unsafe_allow_html=True)
568
  # default_scale = ee.ImageCollection(dataset_id).first().select(0).projection().nominalScale().getInfo()
569
  # user_scale = st.number_input(
@@ -572,6 +664,7 @@ elif shape_type.lower() == "polygon":
572
  # value=float(default_scale),
573
  # help=f"Default scale for this dataset is {default_scale} meters. Adjust if needed."
574
  # )
 
575
  st.markdown("<h5>Calculation Scale</h5>", unsafe_allow_html=True)
576
  user_scale = st.number_input(
577
  "Enter Calculation Scale (meters) [Leave blank to use dataset's default scale]",
@@ -579,10 +672,12 @@ user_scale = st.number_input(
579
  value=float(default_scale),
580
  help=f"Default scale for this dataset is {default_scale} meters. Adjust if needed."
581
  )
 
582
  file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
583
  locations_df = pd.DataFrame()
584
  original_lat_col = None
585
  original_lon_col = None
 
586
  if file_upload is not None:
587
  if shape_type.lower() == "point":
588
  if file_upload.name.endswith('.csv'):
@@ -697,6 +792,7 @@ if file_upload is not None:
697
  m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
698
  st.write("Map of Uploaded Polygons:")
699
  m.to_streamlit()
 
700
  if st.button(f"Calculate {custom_formula}"):
701
  if not locations_df.empty:
702
  with st.spinner("Processing Data..."):
 
1
+
2
  import streamlit as st
3
  import json
4
  import ee
 
118
  band_scales.append(band_scale)
119
  default_scale = min(band_scales) if band_scales else 30 # Default to 30m if no bands are found
120
  scale = user_scale if user_scale is not None else default_scale
121
+
122
  # Rescale all bands to the chosen scale
123
  rescaled_bands = {}
124
  for band in selected_bands:
 
132
  rescaled_bands[band] = rescaled_band
133
  else:
134
  rescaled_bands[band] = band_image
135
+
136
  # Validate and extract band values
137
  reduced_values = {}
138
  reducer = get_reducer(reducer_choice)
 
143
  scale=scale
144
  ).get(band).getInfo()
145
  reduced_values[band] = float(value if value is not None else 0)
146
+
147
  # Evaluate the custom formula
148
  formula = custom_formula
149
  for band in selected_bands:
150
  formula = formula.replace(band, str(reduced_values[band]))
151
  result = eval(formula, {"__builtins__": {}}, reduced_values)
152
+
153
  # Validate the result
154
  if not isinstance(result, (int, float)):
155
  raise ValueError("Formula did not result in a numeric value.")
 
167
  st.error(f"Unexpected error: {e}")
168
  return ee.Image(0).rename('custom_result').set('error', str(e))
169
 
170
+ # Aggregation functions
171
+ def aggregate_data_custom(collection):
172
+ collection = collection.map(lambda image: image.set('day', ee.Date(image.get('system:time_start')).format('YYYY-MM-dd')))
173
+ grouped_by_day = collection.aggregate_array('day').distinct()
174
+ def calculate_daily_mean(day):
175
+ daily_collection = collection.filter(ee.Filter.eq('day', day))
176
+ daily_mean = daily_collection.mean()
177
+ return daily_mean.set('day', day)
178
+ daily_images = ee.List(grouped_by_day.map(calculate_daily_mean))
179
+ return ee.ImageCollection(daily_images)
180
+
181
+ def aggregate_data_daily(collection):
182
+ def set_day_start(image):
183
+ date = ee.Date(image.get('system:time_start'))
184
+ day_start = date.format('YYYY-MM-dd')
185
+ return image.set('day_start', day_start)
186
+ collection = collection.map(set_day_start)
187
+ grouped_by_day = collection.aggregate_array('day_start').distinct()
188
+ def calculate_daily_mean(day_start):
189
+ daily_collection = collection.filter(ee.Filter.eq('day_start', day_start))
190
+ daily_mean = daily_collection.mean()
191
+ return daily_mean.set('day_start', day_start)
192
+ daily_images = ee.List(grouped_by_day.map(calculate_daily_mean))
193
+ return ee.ImageCollection(daily_images)
194
+
195
+ def aggregate_data_weekly(collection, start_date_str, end_date_str):
196
+ start_date = ee.Date(start_date_str)
197
+ end_date = ee.Date(end_date_str)
198
+ days_diff = end_date.difference(start_date, 'day')
199
+ num_weeks = days_diff.divide(7).ceil().getInfo()
200
+ weekly_images = []
201
+ for week in range(num_weeks):
202
+ week_start = start_date.advance(week * 7, 'day')
203
+ week_end = week_start.advance(7, 'day')
204
+ weekly_collection = collection.filterDate(week_start, week_end)
205
+ if weekly_collection.size().getInfo() > 0:
206
+ weekly_mean = weekly_collection.mean()
207
+ weekly_mean = weekly_mean.set('week_start', week_start.format('YYYY-MM-dd'))
208
+ weekly_images.append(weekly_mean)
209
+ return ee.ImageCollection.fromImages(weekly_images)
210
+
211
+ def aggregate_data_monthly(collection, start_date, end_date):
212
+ collection = collection.filterDate(start_date, end_date)
213
+ collection = collection.map(lambda image: image.set('month', ee.Date(image.get('system:time_start')).format('YYYY-MM')))
214
+ grouped_by_month = collection.aggregate_array('month').distinct()
215
+ def calculate_monthly_mean(month):
216
+ monthly_collection = collection.filter(ee.Filter.eq('month', month))
217
+ monthly_mean = monthly_collection.mean()
218
+ return monthly_mean.set('month', month)
219
+ monthly_images = ee.List(grouped_by_month.map(calculate_monthly_mean))
220
+ return ee.ImageCollection(monthly_images)
221
+
222
+ def aggregate_data_yearly(collection):
223
+ collection = collection.map(lambda image: image.set('year', ee.Date(image.get('system:time_start')).format('YYYY')))
224
+ grouped_by_year = collection.aggregate_array('year').distinct()
225
+ def calculate_yearly_mean(year):
226
+ yearly_collection = collection.filter(ee.Filter.eq('year', year))
227
+ yearly_mean = yearly_collection.mean()
228
+ return yearly_mean.set('year', year)
229
+ yearly_images = ee.List(grouped_by_year.map(calculate_yearly_mean))
230
+ return ee.ImageCollection(yearly_images)
231
+
232
  # Cloud percentage calculation
233
  def calculate_cloud_percentage(image, cloud_band='QA60'):
234
  qa60 = image.select(cloud_band)
 
260
  cloud_mask = opaque_clouds.Or(cirrus_clouds)
261
  clear_pixels = cloud_mask.Not()
262
  return image.updateMask(clear_pixels)
263
+
264
  if pixel_cloud_threshold > 0:
265
  return collection.map(mask_cloudy_pixels)
266
  return collection
 
290
  roi = roi.buffer(-30).bounds()
291
  except ValueError:
292
  return None
293
+
294
  # Filter collection by date and area first
295
+ # Apply spatial filtering
296
  collection = ee.ImageCollection(dataset_id) \
297
  .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
298
  .filterBounds(roi)
299
+
300
+ # Apply cloud filtering if applicable
301
  if pixel_cloud_threshold > 0:
302
  collection = preprocess_collection(collection, pixel_cloud_threshold)
303
  st.write(f"After cloud masking: {collection.size().getInfo()} images")
304
+
305
+ st.write(f"After initial filtering: {collection.size().getInfo()} images")
306
+
307
  if aggregation_period.lower() == 'custom (start date to end date)':
308
  collection = aggregate_data_custom(collection)
309
  elif aggregation_period.lower() == 'daily':
 
314
  collection = aggregate_data_monthly(collection, start_date_str, end_date_str)
315
  elif aggregation_period.lower() == 'yearly':
316
  collection = aggregate_data_yearly(collection)
317
+
318
  image_list = collection.toList(collection.size())
319
  processed_weeks = set()
320
  aggregated_results = []
 
345
  timestamp = image.get('year')
346
  period_label = 'Year'
347
  date = ee.Date(timestamp).format('YYYY').getInfo()
348
+
349
  index_image = calculate_custom_formula(image, roi, selected_bands, custom_formula, reducer_choice, dataset_id, user_scale=user_scale)
350
  try:
351
  index_value = index_image.reduceRegion(
 
370
  st.error(f"Error retrieving value for {location_name}: {e}")
371
  return aggregated_results
372
 
373
+ # Process aggregation
374
  # Process aggregation
375
  def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, original_lat_col, original_lon_col, custom_formula="", kernel_size=None, include_boundary=None, tile_cloud_threshold=0, pixel_cloud_threshold=0, user_scale=None):
376
  aggregated_results = []
 
378
  progress_bar = st.progress(0)
379
  progress_text = st.empty()
380
  start_time = time.time()
381
+
382
+ # Fetch the original collection size
383
  raw_collection = ee.ImageCollection(dataset_id) \
384
  .filterDate(ee.Date(start_date_str), ee.Date(end_date_str))
 
 
385
  st.write(f"Original Collection Size: {raw_collection.size().getInfo()}")
386
 
387
+ # Apply cloud filtering globally if applicable
 
 
 
 
 
388
  if pixel_cloud_threshold > 0:
389
  raw_collection = preprocess_collection(raw_collection, pixel_cloud_threshold)
390
  st.write(f"Filtered Collection Size (After Cloud Masking): {raw_collection.size().getInfo()}")
391
 
392
+ # Use ThreadPoolExecutor to process each geometry
393
  with ThreadPoolExecutor(max_workers=10) as executor:
394
  futures = []
395
  for idx, row in locations_df.iterrows():
 
411
  user_scale=user_scale
412
  )
413
  futures.append(future)
414
+
415
  completed = 0
416
  for future in as_completed(futures):
417
  result = future.result()
 
421
  progress_percentage = completed / total_steps
422
  progress_bar.progress(progress_percentage)
423
  progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
424
+
425
  end_time = time.time()
426
  processing_time = end_time - start_time
427
+
428
  if aggregated_results:
429
  result_df = pd.DataFrame(aggregated_results)
430
  if aggregation_period.lower() == 'custom (start date to end date)':
 
442
  else:
443
  return result_df.to_dict(orient='records'), processing_time
444
  return [], processing_time
445
+
446
+ #streamlit logic
447
  st.markdown("<h5>Image Collection</h5>", unsafe_allow_html=True)
448
  imagery_base = st.selectbox("Select Imagery Base", ["Sentinel", "Landsat", "MODIS", "VIIRS", "Custom Input"], index=0)
449
  data = {}
 
506
  if not data:
507
  st.error("No valid dataset available. Please check your inputs.")
508
  st.stop()
509
+
510
  st.markdown("<hr><h5><b>{}</b></h5>".format(imagery_base), unsafe_allow_html=True)
511
  main_selection = st.selectbox(f"Select {imagery_base} Dataset Category", list(data.keys()))
512
  sub_selection = None
 
526
  st.write(f"Default Scale for Selected Dataset: {default_scale} meters")
527
  except Exception as e:
528
  st.error(f"Error fetching default scale: {str(e)}")
529
+
530
  st.markdown("<hr><h5><b>Earth Engine Index Calculator</b></h5>", unsafe_allow_html=True)
531
  if main_selection and sub_selection:
532
  dataset_bands = data[main_selection]["bands"].get(sub_selection, [])
533
  st.write(f"Available Bands for {sub_options[sub_selection]}: {', '.join(dataset_bands)}")
534
+
535
+
536
  # Fetch nominal scales for all bands in the selected dataset
537
  if dataset_id:
538
  try:
 
540
  collection = ee.ImageCollection(dataset_id)
541
  first_image = collection.first()
542
  band_names = first_image.bandNames().getInfo()
543
+
544
  # Extract scales for all bands
545
  band_scales = []
546
  for band in band_names:
547
  band_scale = first_image.select(band).projection().nominalScale().getInfo()
548
  band_scales.append(band_scale)
549
+
550
  # Identify unique scales using np.unique
551
  unique_scales = np.unique(band_scales)
552
+
553
  # Display the unique scales to the user
554
  st.write(f"Nominal Scales for Bands: {band_scales}")
555
  st.write(f"Unique Scales in Dataset: {unique_scales}")
556
+
557
  # If there are multiple unique scales, allow the user to choose one
558
  if len(unique_scales) > 1:
559
  selected_scale = st.selectbox(
 
566
  else:
567
  default_scale = unique_scales[0]
568
  st.write(f"Default Scale for Dataset: {default_scale} meters")
569
+
570
  except Exception as e:
571
  st.error(f"Error fetching band scales: {str(e)}")
572
  default_scale = 30 # Fallback to 30 meters if an error occurs
573
+
574
  selected_bands = st.multiselect(
575
  "Select 1 or 2 Bands for Calculation",
576
  options=dataset_bands,
 
609
  st.warning("Please enter a custom formula to proceed.")
610
  st.stop()
611
  st.write(f"Custom Formula: {custom_formula}")
612
+
613
  reducer_choice = st.selectbox(
614
  "Select Reducer (e.g, mean , sum , median , min , max , count)",
615
  ['mean', 'sum', 'median', 'min', 'max', 'count'],
616
  index=0
617
  )
618
+
619
  start_date = st.date_input("Start Date", value=pd.to_datetime('2024-11-01'))
620
  end_date = st.date_input("End Date", value=pd.to_datetime('2024-12-01'))
621
  start_date_str = start_date.strftime('%Y-%m-%d')
622
  end_date_str = end_date.strftime('%Y-%m-%d')
623
+
624
  if imagery_base == "Sentinel" and "Sentinel-2" in sub_options[sub_selection]:
625
  st.markdown("<h5>Cloud Filtering</h5>", unsafe_allow_html=True)
626
  pixel_cloud_threshold = st.slider(
 
631
  step=5,
632
  help="Individual pixels with cloud coverage exceeding this threshold will be masked."
633
  )
634
+
635
  aggregation_period = st.selectbox(
636
  "Select Aggregation Period (e.g, Custom(Start Date to End Date) , Daily , Weekly , Monthly , Yearly)",
637
  ["Custom (Start Date to End Date)", "Daily", "Weekly", "Monthly", "Yearly"],
638
  index=0
639
  )
640
+
641
  shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"])
642
  kernel_size = None
643
  include_boundary = None
644
+
645
  if shape_type.lower() == "point":
646
  kernel_size = st.selectbox(
647
  "Select Calculation Area(e.g, Point , 3x3 Kernel , 5x5 Kernel)",
 
655
  value=True,
656
  help="Check to include pixels on the polygon boundary; uncheck to exclude them."
657
  )
658
+
659
  # st.markdown("<h5>Calculation Scale</h5>", unsafe_allow_html=True)
660
  # default_scale = ee.ImageCollection(dataset_id).first().select(0).projection().nominalScale().getInfo()
661
  # user_scale = st.number_input(
 
664
  # value=float(default_scale),
665
  # help=f"Default scale for this dataset is {default_scale} meters. Adjust if needed."
666
  # )
667
+
668
  st.markdown("<h5>Calculation Scale</h5>", unsafe_allow_html=True)
669
  user_scale = st.number_input(
670
  "Enter Calculation Scale (meters) [Leave blank to use dataset's default scale]",
 
672
  value=float(default_scale),
673
  help=f"Default scale for this dataset is {default_scale} meters. Adjust if needed."
674
  )
675
+
676
  file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
677
  locations_df = pd.DataFrame()
678
  original_lat_col = None
679
  original_lon_col = None
680
+
681
  if file_upload is not None:
682
  if shape_type.lower() == "point":
683
  if file_upload.name.endswith('.csv'):
 
792
  m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
793
  st.write("Map of Uploaded Polygons:")
794
  m.to_streamlit()
795
+
796
  if st.button(f"Calculate {custom_formula}"):
797
  if not locations_df.empty:
798
  with st.spinner("Processing Data..."):