Spaces:
Running
Running
update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,949 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import json
|
3 |
import ee
|
@@ -114,19 +1060,7 @@ def calculate_custom_formula(image, geometry, selected_bands, custom_formula, re
|
|
114 |
for band in selected_bands:
|
115 |
band_scale = image.select(band).projection().nominalScale().getInfo()
|
116 |
band_scales.append(band_scale)
|
117 |
-
|
118 |
-
# Determine the finest (smallest) scale among the selected bands
|
119 |
default_scale = min(band_scales) if band_scales else 30 # Default to 30m if no bands are found
|
120 |
-
|
121 |
-
# # Compute the finest scale among all bands
|
122 |
-
# band_scales = [
|
123 |
-
# first_image.select(band).projection().nominalScale().getInfo()
|
124 |
-
# for band in first_image.bandNames().getInfo()
|
125 |
-
# ]
|
126 |
-
# default_scale = min(band_scales)
|
127 |
-
|
128 |
-
# Use user-defined scale if provided, otherwise use the finest scale
|
129 |
-
|
130 |
scale = user_scale if user_scale is not None else default_scale
|
131 |
|
132 |
# Rescale all bands to the chosen scale
|
@@ -135,7 +1069,6 @@ def calculate_custom_formula(image, geometry, selected_bands, custom_formula, re
|
|
135 |
band_image = image.select(band)
|
136 |
band_scale = band_image.projection().nominalScale().getInfo()
|
137 |
if band_scale != scale:
|
138 |
-
# Resample the band to match the target scale
|
139 |
rescaled_band = band_image.resample('bilinear').reproject(
|
140 |
crs=band_image.projection().crs(),
|
141 |
scale=scale
|
@@ -151,7 +1084,7 @@ def calculate_custom_formula(image, geometry, selected_bands, custom_formula, re
|
|
151 |
value = rescaled_bands[band].reduceRegion(
|
152 |
reducer=reducer,
|
153 |
geometry=geometry,
|
154 |
-
scale=scale
|
155 |
).get(band).getInfo()
|
156 |
reduced_values[band] = float(value if value is not None else 0)
|
157 |
|
@@ -164,9 +1097,7 @@ def calculate_custom_formula(image, geometry, selected_bands, custom_formula, re
|
|
164 |
# Validate the result
|
165 |
if not isinstance(result, (int, float)):
|
166 |
raise ValueError("Formula did not result in a numeric value.")
|
167 |
-
|
168 |
return ee.Image.constant(result).rename('custom_result')
|
169 |
-
|
170 |
except ZeroDivisionError:
|
171 |
st.error("Error: Division by zero in the formula.")
|
172 |
return ee.Image(0).rename('custom_result').set('error', 'Division by zero')
|
@@ -242,37 +1173,29 @@ def aggregate_data_yearly(collection):
|
|
242 |
yearly_images = ee.List(grouped_by_year.map(calculate_yearly_mean))
|
243 |
return ee.ImageCollection(yearly_images)
|
244 |
|
245 |
-
#
|
246 |
def calculate_cloud_percentage(image, cloud_band='QA60'):
|
247 |
-
"""
|
248 |
-
Calculate the percentage of cloud-covered pixels in an image using the QA60 bitmask.
|
249 |
-
Assumes the presence of the QA60 cloud mask band.
|
250 |
-
"""
|
251 |
-
# Decode the QA60 bitmask
|
252 |
qa60 = image.select(cloud_band)
|
253 |
-
opaque_clouds = qa60.bitwiseAnd(1 << 10)
|
254 |
-
cirrus_clouds = qa60.bitwiseAnd(1 << 11)
|
255 |
-
# Combine both cloud types into a single cloud mask
|
256 |
cloud_mask = opaque_clouds.Or(cirrus_clouds)
|
257 |
-
# Count total pixels and cloudy pixels
|
258 |
total_pixels = qa60.reduceRegion(
|
259 |
reducer=ee.Reducer.count(),
|
260 |
geometry=image.geometry(),
|
261 |
-
scale=60,
|
262 |
maxPixels=1e13
|
263 |
).get(cloud_band)
|
264 |
cloudy_pixels = cloud_mask.reduceRegion(
|
265 |
reducer=ee.Reducer.sum(),
|
266 |
geometry=image.geometry(),
|
267 |
-
scale=60,
|
268 |
maxPixels=1e13
|
269 |
).get(cloud_band)
|
270 |
-
# Calculate cloud percentage
|
271 |
if total_pixels == 0:
|
272 |
-
return 0
|
273 |
return ee.Number(cloudy_pixels).divide(ee.Number(total_pixels)).multiply(100)
|
274 |
|
275 |
-
#
|
276 |
def preprocess_collection(collection, tile_cloud_threshold, pixel_cloud_threshold):
|
277 |
def filter_tile(image):
|
278 |
cloud_percentage = calculate_cloud_percentage(image, cloud_band='QA60')
|
@@ -290,6 +1213,7 @@ def preprocess_collection(collection, tile_cloud_threshold, pixel_cloud_threshol
|
|
290 |
masked_collection = filtered_collection.map(mask_cloudy_pixels)
|
291 |
return masked_collection
|
292 |
|
|
|
293 |
def process_single_geometry(row, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, custom_formula, original_lat_col, original_lon_col, kernel_size=None, include_boundary=None, user_scale=None):
|
294 |
if shape_type.lower() == "point":
|
295 |
latitude = row.get('latitude')
|
@@ -314,9 +1238,11 @@ def process_single_geometry(row, start_date_str, end_date_str, dataset_id, selec
|
|
314 |
roi = roi.buffer(-30).bounds()
|
315 |
except ValueError:
|
316 |
return None
|
|
|
317 |
collection = ee.ImageCollection(dataset_id) \
|
318 |
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
|
319 |
.filterBounds(roi)
|
|
|
320 |
if aggregation_period.lower() == 'custom (start date to end date)':
|
321 |
collection = aggregate_data_custom(collection)
|
322 |
elif aggregation_period.lower() == 'daily':
|
@@ -327,6 +1253,7 @@ def process_single_geometry(row, start_date_str, end_date_str, dataset_id, selec
|
|
327 |
collection = aggregate_data_monthly(collection, start_date_str, end_date_str)
|
328 |
elif aggregation_period.lower() == 'yearly':
|
329 |
collection = aggregate_data_yearly(collection)
|
|
|
330 |
image_list = collection.toList(collection.size())
|
331 |
processed_weeks = set()
|
332 |
aggregated_results = []
|
@@ -357,6 +1284,7 @@ def process_single_geometry(row, start_date_str, end_date_str, dataset_id, selec
|
|
357 |
timestamp = image.get('year')
|
358 |
period_label = 'Year'
|
359 |
date = ee.Date(timestamp).format('YYYY').getInfo()
|
|
|
360 |
index_image = calculate_custom_formula(image, roi, selected_bands, custom_formula, reducer_choice, dataset_id, user_scale=user_scale)
|
361 |
try:
|
362 |
index_value = index_image.reduceRegion(
|
@@ -381,18 +1309,23 @@ def process_single_geometry(row, start_date_str, end_date_str, dataset_id, selec
|
|
381 |
st.error(f"Error retrieving value for {location_name}: {e}")
|
382 |
return aggregated_results
|
383 |
|
|
|
384 |
def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, original_lat_col, original_lon_col, custom_formula="", kernel_size=None, include_boundary=None, tile_cloud_threshold=0, pixel_cloud_threshold=0, user_scale=None):
|
385 |
aggregated_results = []
|
386 |
total_steps = len(locations_df)
|
387 |
progress_bar = st.progress(0)
|
388 |
progress_text = st.empty()
|
389 |
start_time = time.time()
|
|
|
390 |
raw_collection = ee.ImageCollection(dataset_id) \
|
391 |
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str))
|
|
|
392 |
st.write(f"Original Collection Size: {raw_collection.size().getInfo()}")
|
|
|
393 |
if tile_cloud_threshold > 0 or pixel_cloud_threshold > 0:
|
394 |
raw_collection = preprocess_collection(raw_collection, tile_cloud_threshold, pixel_cloud_threshold)
|
395 |
st.write(f"Preprocessed Collection Size: {raw_collection.size().getInfo()}")
|
|
|
396 |
with ThreadPoolExecutor(max_workers=10) as executor:
|
397 |
futures = []
|
398 |
for idx, row in locations_df.iterrows():
|
@@ -423,15 +1356,17 @@ def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id,
|
|
423 |
progress_percentage = completed / total_steps
|
424 |
progress_bar.progress(progress_percentage)
|
425 |
progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
|
|
|
426 |
end_time = time.time()
|
427 |
processing_time = end_time - start_time
|
|
|
428 |
if aggregated_results:
|
429 |
result_df = pd.DataFrame(aggregated_results)
|
430 |
if aggregation_period.lower() == 'custom (start date to end date)':
|
431 |
agg_dict = {
|
432 |
'Start Date': 'first',
|
433 |
'End Date': 'first',
|
434 |
-
'Calculated Value': 'mean'
|
435 |
}
|
436 |
if shape_type.lower() == 'point':
|
437 |
agg_dict[original_lat_col] = 'first'
|
@@ -440,8 +1375,8 @@ def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id,
|
|
440 |
aggregated_output['Date Range'] = aggregated_output['Start Date'] + " to " + aggregated_output['End Date']
|
441 |
return aggregated_output.to_dict(orient='records'), processing_time
|
442 |
else:
|
443 |
-
return result_df.to_dict(orient='records'), processing_time
|
444 |
-
return [], processing_time
|
445 |
|
446 |
# Streamlit App Logic
|
447 |
st.markdown("<h5>Image Collection</h5>", unsafe_allow_html=True)
|
@@ -518,12 +1453,10 @@ if main_selection:
|
|
518 |
st.write(f"You selected: {main_selection} -> {sub_options[sub_selection]}")
|
519 |
st.write(f"Dataset ID: {sub_selection}")
|
520 |
dataset_id = sub_selection
|
521 |
-
|
522 |
# Fetch the default scale for the selected dataset
|
523 |
try:
|
524 |
collection = ee.ImageCollection(dataset_id)
|
525 |
first_image = collection.first()
|
526 |
-
# Select the first band to avoid issues with multiple projections
|
527 |
default_scale = first_image.select(0).projection().nominalScale().getInfo()
|
528 |
st.write(f"Default Scale for Selected Dataset: {default_scale} meters")
|
529 |
except Exception as e:
|
@@ -571,23 +1504,25 @@ if main_selection and sub_selection:
|
|
571 |
st.warning("Please enter a custom formula to proceed.")
|
572 |
st.stop()
|
573 |
st.write(f"Custom Formula: {custom_formula}")
|
574 |
-
|
575 |
reducer_choice = st.selectbox(
|
576 |
"Select Reducer (e.g, mean , sum , median , min , max , count)",
|
577 |
['mean', 'sum', 'median', 'min', 'max', 'count'],
|
578 |
index=0
|
579 |
)
|
|
|
580 |
start_date = st.date_input("Start Date", value=pd.to_datetime('2024-11-01'))
|
581 |
end_date = st.date_input("End Date", value=pd.to_datetime('2024-12-01'))
|
582 |
start_date_str = start_date.strftime('%Y-%m-%d')
|
583 |
end_date_str = end_date.strftime('%Y-%m-%d')
|
|
|
584 |
if imagery_base == "Sentinel" and "Sentinel-2" in sub_options[sub_selection]:
|
585 |
st.markdown("<h5>Cloud Filtering</h5>", unsafe_allow_html=True)
|
586 |
tile_cloud_threshold = st.slider(
|
587 |
"Select Maximum Tile-Based Cloud Coverage Threshold (%)",
|
588 |
min_value=0,
|
589 |
max_value=100,
|
590 |
-
value=20
|
591 |
step=5,
|
592 |
help="Tiles with cloud coverage exceeding this threshold will be excluded."
|
593 |
)
|
@@ -595,18 +1530,21 @@ if imagery_base == "Sentinel" and "Sentinel-2" in sub_options[sub_selection]:
|
|
595 |
"Select Maximum Pixel-Based Cloud Coverage Threshold (%)",
|
596 |
min_value=0,
|
597 |
max_value=100,
|
598 |
-
value=10
|
599 |
step=5,
|
600 |
help="Individual pixels with cloud coverage exceeding this threshold will be masked."
|
601 |
)
|
|
|
602 |
aggregation_period = st.selectbox(
|
603 |
"Select Aggregation Period (e.g, Custom(Start Date to End Date) , Daily , Weekly , Monthly , Yearly)",
|
604 |
["Custom (Start Date to End Date)", "Daily", "Weekly", "Monthly", "Yearly"],
|
605 |
index=0
|
606 |
)
|
|
|
607 |
shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"])
|
608 |
kernel_size = None
|
609 |
include_boundary = None
|
|
|
610 |
if shape_type.lower() == "point":
|
611 |
kernel_size = st.selectbox(
|
612 |
"Select Calculation Area(e.g, Point , 3x3 Kernel , 5x5 Kernel)",
|
@@ -620,6 +1558,7 @@ elif shape_type.lower() == "polygon":
|
|
620 |
value=True,
|
621 |
help="Check to include pixels on the polygon boundary; uncheck to exclude them."
|
622 |
)
|
|
|
623 |
st.markdown("<h5>Calculation Scale</h5>", unsafe_allow_html=True)
|
624 |
default_scale = ee.ImageCollection(dataset_id).first().select(0).projection().nominalScale().getInfo()
|
625 |
user_scale = st.number_input(
|
@@ -633,6 +1572,7 @@ file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KM
|
|
633 |
locations_df = pd.DataFrame()
|
634 |
original_lat_col = None
|
635 |
original_lon_col = None
|
|
|
636 |
if file_upload is not None:
|
637 |
if shape_type.lower() == "point":
|
638 |
if file_upload.name.endswith('.csv'):
|
@@ -752,7 +1692,6 @@ if st.button(f"Calculate {custom_formula}"):
|
|
752 |
if not locations_df.empty:
|
753 |
with st.spinner("Processing Data..."):
|
754 |
try:
|
755 |
-
# Call the aggregation function with updated parameters
|
756 |
results, processing_time = process_aggregation(
|
757 |
locations_df,
|
758 |
start_date_str,
|
@@ -771,14 +1710,10 @@ if st.button(f"Calculate {custom_formula}"):
|
|
771 |
pixel_cloud_threshold=pixel_cloud_threshold if "pixel_cloud_threshold" in locals() else 0,
|
772 |
user_scale=user_scale
|
773 |
)
|
774 |
-
|
775 |
-
# Process and display results
|
776 |
if results:
|
777 |
result_df = pd.DataFrame(results)
|
778 |
st.write(f"Processed Results Table ({aggregation_period}) for Formula: {custom_formula}")
|
779 |
st.dataframe(result_df)
|
780 |
-
|
781 |
-
# Download button for CSV
|
782 |
filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y%m%d')}_{end_date.strftime('%Y%m%d')}_{aggregation_period.lower()}.csv"
|
783 |
st.download_button(
|
784 |
label="Download results as CSV",
|
@@ -786,14 +1721,8 @@ if st.button(f"Calculate {custom_formula}"):
|
|
786 |
file_name=filename,
|
787 |
mime='text/csv'
|
788 |
)
|
789 |
-
|
790 |
-
# Success message
|
791 |
st.success(f"Processing complete! Total processing time: {processing_time:.2f} seconds.")
|
792 |
-
|
793 |
-
# Graph Visualization Section
|
794 |
st.markdown("<h5>Graph Visualization</h5>", unsafe_allow_html=True)
|
795 |
-
|
796 |
-
# Dynamically identify the time column
|
797 |
if aggregation_period.lower() == 'custom (start date to end date)':
|
798 |
x_column = 'Date Range'
|
799 |
elif 'Date' in result_df.columns:
|
@@ -807,139 +1736,19 @@ if st.button(f"Calculate {custom_formula}"):
|
|
807 |
else:
|
808 |
st.warning("No valid time column found for plotting.")
|
809 |
st.stop()
|
810 |
-
|
811 |
-
|
812 |
-
|
813 |
-
|
814 |
-
y_column
|
815 |
-
|
816 |
-
|
817 |
-
|
818 |
-
|
819 |
-
st.stop()
|
820 |
-
|
821 |
-
# Ensure we have valid data to plot
|
822 |
-
if result_df.empty:
|
823 |
-
st.warning("No data available for plotting.")
|
824 |
-
st.stop()
|
825 |
-
|
826 |
-
# # Line Chart
|
827 |
-
# try:
|
828 |
-
# st.subheader("Line Chart")
|
829 |
-
# if x_column == 'Location Name':
|
830 |
-
# st.line_chart(result_df.set_index(x_column)[y_column])
|
831 |
-
# else:
|
832 |
-
# # Convert to datetime for better sorting
|
833 |
-
# result_df[x_column] = pd.to_datetime(result_df[x_column], errors='ignore')
|
834 |
-
# result_df = result_df.sort_values(x_column)
|
835 |
-
# st.line_chart(result_df.set_index(x_column)[y_column])
|
836 |
-
# except Exception as e:
|
837 |
-
# st.error(f"Error creating line chart: {str(e)}")
|
838 |
-
|
839 |
-
# # Bar Chart
|
840 |
-
# try:
|
841 |
-
# st.subheader("Bar Chart")
|
842 |
-
# if x_column == 'Location Name':
|
843 |
-
# st.bar_chart(result_df.set_index(x_column)[y_column])
|
844 |
-
# else:
|
845 |
-
# result_df[x_column] = pd.to_datetime(result_df[x_column], errors='ignore')
|
846 |
-
# result_df = result_df.sort_values(x_column)
|
847 |
-
# st.bar_chart(result_df.set_index(x_column)[y_column])
|
848 |
-
# except Exception as e:
|
849 |
-
# st.error(f"Error creating bar chart: {str(e)}")
|
850 |
-
|
851 |
-
# Advanced Plot (Plotly)
|
852 |
-
try:
|
853 |
-
st.subheader("Advanced Interactive Plot (Plotly)")
|
854 |
-
if x_column == 'Location Name':
|
855 |
-
fig = px.bar(
|
856 |
-
result_df,
|
857 |
-
x=x_column,
|
858 |
-
y=y_column,
|
859 |
-
color='Location Name',
|
860 |
-
title=f"{custom_formula} by Location"
|
861 |
-
)
|
862 |
-
else:
|
863 |
-
fig = px.line(
|
864 |
-
result_df,
|
865 |
-
x=x_column,
|
866 |
-
y=y_column,
|
867 |
-
color='Location Name',
|
868 |
-
title=f"{custom_formula} Over Time"
|
869 |
-
)
|
870 |
-
st.plotly_chart(fig)
|
871 |
-
except Exception as e:
|
872 |
-
st.error(f"Error creating interactive plot: {str(e)}")
|
873 |
-
|
874 |
else:
|
875 |
st.warning("No results were generated. Check your inputs or formula.")
|
876 |
st.info(f"Total processing time: {processing_time:.2f} seconds.")
|
877 |
-
|
878 |
except Exception as e:
|
879 |
st.error(f"An error occurred during processing: {str(e)}")
|
880 |
else:
|
881 |
-
st.warning("Please upload a valid file to proceed.")
|
882 |
-
# if st.button(f"Calculate {custom_formula}"):
|
883 |
-
# if not locations_df.empty:
|
884 |
-
# with st.spinner("Processing Data..."):
|
885 |
-
# try:
|
886 |
-
# results, processing_time = process_aggregation(
|
887 |
-
# locations_df,
|
888 |
-
# start_date_str,
|
889 |
-
# end_date_str,
|
890 |
-
# dataset_id,
|
891 |
-
# selected_bands,
|
892 |
-
# reducer_choice,
|
893 |
-
# shape_type,
|
894 |
-
# aggregation_period,
|
895 |
-
# original_lat_col,
|
896 |
-
# original_lon_col,
|
897 |
-
# custom_formula,
|
898 |
-
# kernel_size,
|
899 |
-
# include_boundary,
|
900 |
-
# tile_cloud_threshold=tile_cloud_threshold if "tile_cloud_threshold" in locals() else 0,
|
901 |
-
# pixel_cloud_threshold=pixel_cloud_threshold if "pixel_cloud_threshold" in locals() else 0,
|
902 |
-
# user_scale=user_scale
|
903 |
-
# )
|
904 |
-
# if results:
|
905 |
-
# result_df = pd.DataFrame(results)
|
906 |
-
# st.write(f"Processed Results Table ({aggregation_period}) for Formula: {custom_formula}")
|
907 |
-
# st.dataframe(result_df)
|
908 |
-
# filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y%m%d')}_{end_date.strftime('%Y%m%d')}_{aggregation_period.lower()}.csv"
|
909 |
-
# st.download_button(
|
910 |
-
# label="Download results as CSV",
|
911 |
-
# data=result_df.to_csv(index=False).encode('utf-8'),
|
912 |
-
# file_name=filename,
|
913 |
-
# mime='text/csv'
|
914 |
-
# )
|
915 |
-
# st.success(f"Processing complete! Total processing time: {processing_time:.2f} seconds.")
|
916 |
-
# st.markdown("<h5>Graph Visualization</h5>", unsafe_allow_html=True)
|
917 |
-
# if aggregation_period.lower() == 'custom (start date to end date)':
|
918 |
-
# x_column = 'Date Range'
|
919 |
-
# elif 'Date' in result_df.columns:
|
920 |
-
# x_column = 'Date'
|
921 |
-
# elif 'Week' in result_df.columns:
|
922 |
-
# x_column = 'Week'
|
923 |
-
# elif 'Month' in result_df.columns:
|
924 |
-
# x_column = 'Month'
|
925 |
-
# elif 'Year' in result_df.columns:
|
926 |
-
# x_column = 'Year'
|
927 |
-
# else:
|
928 |
-
# st.warning("No valid time column found for plotting.")
|
929 |
-
# st.stop()
|
930 |
-
# y_column = 'Calculated Value'
|
931 |
-
# fig = px.line(
|
932 |
-
# result_df,
|
933 |
-
# x=x_column,
|
934 |
-
# y=y_column,
|
935 |
-
# color='Location Name',
|
936 |
-
# title=f"{custom_formula} Over Time"
|
937 |
-
# )
|
938 |
-
# st.plotly_chart(fig)
|
939 |
-
# else:
|
940 |
-
# st.warning("No results were generated. Check your inputs or formula.")
|
941 |
-
# st.info(f"Total processing time: {processing_time:.2f} seconds.")
|
942 |
-
# except Exception as e:
|
943 |
-
# st.error(f"An error occurred during processing: {str(e)}")
|
944 |
-
# else:
|
945 |
-
# st.warning("Please upload a valid file to proceed.")
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# import json
|
3 |
+
# import ee
|
4 |
+
# import os
|
5 |
+
# import pandas as pd
|
6 |
+
# import geopandas as gpd
|
7 |
+
# from datetime import datetime
|
8 |
+
# import leafmap.foliumap as leafmap
|
9 |
+
# import re
|
10 |
+
# from shapely.geometry import base
|
11 |
+
# from xml.etree import ElementTree as XET
|
12 |
+
# from concurrent.futures import ThreadPoolExecutor, as_completed
|
13 |
+
# import time
|
14 |
+
# import matplotlib.pyplot as plt
|
15 |
+
# import plotly.express as px
|
16 |
+
|
17 |
+
# # Set up the page layout
|
18 |
+
# st.set_page_config(layout="wide")
|
19 |
+
|
20 |
+
# # Custom button styling
|
21 |
+
# m = st.markdown(
|
22 |
+
# """
|
23 |
+
# <style>
|
24 |
+
# div.stButton > button:first-child {
|
25 |
+
# background-color: #006400;
|
26 |
+
# color:#ffffff;
|
27 |
+
# }
|
28 |
+
# </style>""",
|
29 |
+
# unsafe_allow_html=True,
|
30 |
+
# )
|
31 |
+
|
32 |
+
# # Logo and Title
|
33 |
+
# st.write(
|
34 |
+
# f"""
|
35 |
+
# <div style="display: flex; justify-content: space-between; align-items: center;">
|
36 |
+
# <img src="https://huggingface.co/spaces/YashMK89/SATRANG/resolve/main/ISRO_Logo.png" style="width: 20%; margin-right: auto;">
|
37 |
+
# <img src="https://huggingface.co/spaces/YashMK89/SATRANG/resolve/main/SAC_Logo.png" style="width: 20%; margin-left: auto;">
|
38 |
+
# </div>
|
39 |
+
# """,
|
40 |
+
# unsafe_allow_html=True,
|
41 |
+
# )
|
42 |
+
# st.markdown(
|
43 |
+
# f"""
|
44 |
+
# <div style="display: flex; flex-direction: column; align-items: center;">
|
45 |
+
# <img src="https://huggingface.co/spaces/YashMK89/SATRANG/resolve/main/SATRANG.png" style="width: 30%;">
|
46 |
+
# <h3 style="text-align: center; margin: 0;">( Spatial and Temporal Aggregation for Remote-sensing Analysis of GEE Data )</h3>
|
47 |
+
# </div>
|
48 |
+
# <hr>
|
49 |
+
# """,
|
50 |
+
# unsafe_allow_html=True,
|
51 |
+
# )
|
52 |
+
|
53 |
+
# # Authenticate and initialize Earth Engine
|
54 |
+
# earthengine_credentials = os.environ.get("EE_Authentication")
|
55 |
+
# os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
|
56 |
+
# with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
|
57 |
+
# f.write(earthengine_credentials)
|
58 |
+
# ee.Initialize(project='ee-yashsacisro24')
|
59 |
+
|
60 |
+
# # Helper function to get reducer
|
61 |
+
# def get_reducer(reducer_name):
|
62 |
+
# reducers = {
|
63 |
+
# 'mean': ee.Reducer.mean(),
|
64 |
+
# 'sum': ee.Reducer.sum(),
|
65 |
+
# 'median': ee.Reducer.median(),
|
66 |
+
# 'min': ee.Reducer.min(),
|
67 |
+
# 'max': ee.Reducer.max(),
|
68 |
+
# 'count': ee.Reducer.count(),
|
69 |
+
# }
|
70 |
+
# return reducers.get(reducer_name.lower(), ee.Reducer.mean())
|
71 |
+
|
72 |
+
# # Function to convert geometry to Earth Engine format
|
73 |
+
# def convert_to_ee_geometry(geometry):
|
74 |
+
# if isinstance(geometry, base.BaseGeometry):
|
75 |
+
# if geometry.is_valid:
|
76 |
+
# geojson = geometry.__geo_interface__
|
77 |
+
# return ee.Geometry(geojson)
|
78 |
+
# else:
|
79 |
+
# raise ValueError("Invalid geometry: The polygon geometry is not valid.")
|
80 |
+
# elif isinstance(geometry, dict) or isinstance(geometry, str):
|
81 |
+
# try:
|
82 |
+
# if isinstance(geometry, str):
|
83 |
+
# geometry = json.loads(geometry)
|
84 |
+
# if 'type' in geometry and 'coordinates' in geometry:
|
85 |
+
# return ee.Geometry(geometry)
|
86 |
+
# else:
|
87 |
+
# raise ValueError("GeoJSON format is invalid.")
|
88 |
+
# except Exception as e:
|
89 |
+
# raise ValueError(f"Error parsing GeoJSON: {e}")
|
90 |
+
# elif isinstance(geometry, str) and geometry.lower().endswith(".kml"):
|
91 |
+
# try:
|
92 |
+
# tree = XET.parse(geometry)
|
93 |
+
# kml_root = tree.getroot()
|
94 |
+
# kml_namespace = {'kml': 'http://www.opengis.net/kml/2.2'}
|
95 |
+
# coordinates = kml_root.findall(".//kml:coordinates", kml_namespace)
|
96 |
+
# if coordinates:
|
97 |
+
# coords_text = coordinates[0].text.strip()
|
98 |
+
# coords = coords_text.split()
|
99 |
+
# coords = [tuple(map(float, coord.split(','))) for coord in coords]
|
100 |
+
# geojson = {"type": "Polygon", "coordinates": [coords]}
|
101 |
+
# return ee.Geometry(geojson)
|
102 |
+
# else:
|
103 |
+
# raise ValueError("KML does not contain valid coordinates.")
|
104 |
+
# except Exception as e:
|
105 |
+
# raise ValueError(f"Error parsing KML: {e}")
|
106 |
+
# else:
|
107 |
+
# raise ValueError("Unsupported geometry input type. Supported types are Shapely, GeoJSON, and KML.")
|
108 |
+
|
109 |
+
# # Function to calculate custom formula with dynamic scale handling
|
110 |
+
# def calculate_custom_formula(image, geometry, selected_bands, custom_formula, reducer_choice, dataset_id, user_scale=None):
|
111 |
+
# try:
|
112 |
+
# # Fetch the nominal scales of the selected bands
|
113 |
+
# band_scales = []
|
114 |
+
# for band in selected_bands:
|
115 |
+
# band_scale = image.select(band).projection().nominalScale().getInfo()
|
116 |
+
# band_scales.append(band_scale)
|
117 |
+
|
118 |
+
# # Determine the finest (smallest) scale among the selected bands
|
119 |
+
# default_scale = min(band_scales) if band_scales else 30 # Default to 30m if no bands are found
|
120 |
+
|
121 |
+
# # # Compute the finest scale among all bands
|
122 |
+
# # band_scales = [
|
123 |
+
# # first_image.select(band).projection().nominalScale().getInfo()
|
124 |
+
# # for band in first_image.bandNames().getInfo()
|
125 |
+
# # ]
|
126 |
+
# # default_scale = min(band_scales)
|
127 |
+
|
128 |
+
# # Use user-defined scale if provided, otherwise use the finest scale
|
129 |
+
|
130 |
+
# scale = user_scale if user_scale is not None else default_scale
|
131 |
+
|
132 |
+
# # Rescale all bands to the chosen scale
|
133 |
+
# rescaled_bands = {}
|
134 |
+
# for band in selected_bands:
|
135 |
+
# band_image = image.select(band)
|
136 |
+
# band_scale = band_image.projection().nominalScale().getInfo()
|
137 |
+
# if band_scale != scale:
|
138 |
+
# # Resample the band to match the target scale
|
139 |
+
# rescaled_band = band_image.resample('bilinear').reproject(
|
140 |
+
# crs=band_image.projection().crs(),
|
141 |
+
# scale=scale
|
142 |
+
# )
|
143 |
+
# rescaled_bands[band] = rescaled_band
|
144 |
+
# else:
|
145 |
+
# rescaled_bands[band] = band_image
|
146 |
+
|
147 |
+
# # Validate and extract band values
|
148 |
+
# reduced_values = {}
|
149 |
+
# reducer = get_reducer(reducer_choice)
|
150 |
+
# for band in selected_bands:
|
151 |
+
# value = rescaled_bands[band].reduceRegion(
|
152 |
+
# reducer=reducer,
|
153 |
+
# geometry=geometry,
|
154 |
+
# scale=scale # Use the determined scale here
|
155 |
+
# ).get(band).getInfo()
|
156 |
+
# reduced_values[band] = float(value if value is not None else 0)
|
157 |
+
|
158 |
+
# # Evaluate the custom formula
|
159 |
+
# formula = custom_formula
|
160 |
+
# for band in selected_bands:
|
161 |
+
# formula = formula.replace(band, str(reduced_values[band]))
|
162 |
+
# result = eval(formula, {"__builtins__": {}}, reduced_values)
|
163 |
+
|
164 |
+
# # Validate the result
|
165 |
+
# if not isinstance(result, (int, float)):
|
166 |
+
# raise ValueError("Formula did not result in a numeric value.")
|
167 |
+
|
168 |
+
# return ee.Image.constant(result).rename('custom_result')
|
169 |
+
|
170 |
+
# except ZeroDivisionError:
|
171 |
+
# st.error("Error: Division by zero in the formula.")
|
172 |
+
# return ee.Image(0).rename('custom_result').set('error', 'Division by zero')
|
173 |
+
# except SyntaxError:
|
174 |
+
# st.error(f"Error: Invalid syntax in formula '{custom_formula}'.")
|
175 |
+
# return ee.Image(0).rename('custom_result').set('error', 'Invalid syntax')
|
176 |
+
# except ValueError as e:
|
177 |
+
# st.error(f"Error: {str(e)}")
|
178 |
+
# return ee.Image(0).rename('custom_result').set('error', str(e))
|
179 |
+
# except Exception as e:
|
180 |
+
# st.error(f"Unexpected error: {e}")
|
181 |
+
# return ee.Image(0).rename('custom_result').set('error', str(e))
|
182 |
+
|
183 |
+
# # Aggregation functions
|
184 |
+
# def aggregate_data_custom(collection):
|
185 |
+
# collection = collection.map(lambda image: image.set('day', ee.Date(image.get('system:time_start')).format('YYYY-MM-dd')))
|
186 |
+
# grouped_by_day = collection.aggregate_array('day').distinct()
|
187 |
+
# def calculate_daily_mean(day):
|
188 |
+
# daily_collection = collection.filter(ee.Filter.eq('day', day))
|
189 |
+
# daily_mean = daily_collection.mean()
|
190 |
+
# return daily_mean.set('day', day)
|
191 |
+
# daily_images = ee.List(grouped_by_day.map(calculate_daily_mean))
|
192 |
+
# return ee.ImageCollection(daily_images)
|
193 |
+
|
194 |
+
# def aggregate_data_daily(collection):
|
195 |
+
# def set_day_start(image):
|
196 |
+
# date = ee.Date(image.get('system:time_start'))
|
197 |
+
# day_start = date.format('YYYY-MM-dd')
|
198 |
+
# return image.set('day_start', day_start)
|
199 |
+
# collection = collection.map(set_day_start)
|
200 |
+
# grouped_by_day = collection.aggregate_array('day_start').distinct()
|
201 |
+
# def calculate_daily_mean(day_start):
|
202 |
+
# daily_collection = collection.filter(ee.Filter.eq('day_start', day_start))
|
203 |
+
# daily_mean = daily_collection.mean()
|
204 |
+
# return daily_mean.set('day_start', day_start)
|
205 |
+
# daily_images = ee.List(grouped_by_day.map(calculate_daily_mean))
|
206 |
+
# return ee.ImageCollection(daily_images)
|
207 |
+
|
208 |
+
# def aggregate_data_weekly(collection, start_date_str, end_date_str):
|
209 |
+
# start_date = ee.Date(start_date_str)
|
210 |
+
# end_date = ee.Date(end_date_str)
|
211 |
+
# days_diff = end_date.difference(start_date, 'day')
|
212 |
+
# num_weeks = days_diff.divide(7).ceil().getInfo()
|
213 |
+
# weekly_images = []
|
214 |
+
# for week in range(num_weeks):
|
215 |
+
# week_start = start_date.advance(week * 7, 'day')
|
216 |
+
# week_end = week_start.advance(7, 'day')
|
217 |
+
# weekly_collection = collection.filterDate(week_start, week_end)
|
218 |
+
# if weekly_collection.size().getInfo() > 0:
|
219 |
+
# weekly_mean = weekly_collection.mean()
|
220 |
+
# weekly_mean = weekly_mean.set('week_start', week_start.format('YYYY-MM-dd'))
|
221 |
+
# weekly_images.append(weekly_mean)
|
222 |
+
# return ee.ImageCollection.fromImages(weekly_images)
|
223 |
+
|
224 |
+
# def aggregate_data_monthly(collection, start_date, end_date):
|
225 |
+
# collection = collection.filterDate(start_date, end_date)
|
226 |
+
# collection = collection.map(lambda image: image.set('month', ee.Date(image.get('system:time_start')).format('YYYY-MM')))
|
227 |
+
# grouped_by_month = collection.aggregate_array('month').distinct()
|
228 |
+
# def calculate_monthly_mean(month):
|
229 |
+
# monthly_collection = collection.filter(ee.Filter.eq('month', month))
|
230 |
+
# monthly_mean = monthly_collection.mean()
|
231 |
+
# return monthly_mean.set('month', month)
|
232 |
+
# monthly_images = ee.List(grouped_by_month.map(calculate_monthly_mean))
|
233 |
+
# return ee.ImageCollection(monthly_images)
|
234 |
+
|
235 |
+
# def aggregate_data_yearly(collection):
|
236 |
+
# collection = collection.map(lambda image: image.set('year', ee.Date(image.get('system:time_start')).format('YYYY')))
|
237 |
+
# grouped_by_year = collection.aggregate_array('year').distinct()
|
238 |
+
# def calculate_yearly_mean(year):
|
239 |
+
# yearly_collection = collection.filter(ee.Filter.eq('year', year))
|
240 |
+
# yearly_mean = yearly_collection.mean()
|
241 |
+
# return yearly_mean.set('year', year)
|
242 |
+
# yearly_images = ee.List(grouped_by_year.map(calculate_yearly_mean))
|
243 |
+
# return ee.ImageCollection(yearly_images)
|
244 |
+
|
245 |
+
# # Define the function before using it
|
246 |
+
# def calculate_cloud_percentage(image, cloud_band='QA60'):
|
247 |
+
# """
|
248 |
+
# Calculate the percentage of cloud-covered pixels in an image using the QA60 bitmask.
|
249 |
+
# Assumes the presence of the QA60 cloud mask band.
|
250 |
+
# """
|
251 |
+
# # Decode the QA60 bitmask
|
252 |
+
# qa60 = image.select(cloud_band)
|
253 |
+
# opaque_clouds = qa60.bitwiseAnd(1 << 10) # Bit 10: Opaque clouds
|
254 |
+
# cirrus_clouds = qa60.bitwiseAnd(1 << 11) # Bit 11: Cirrus clouds
|
255 |
+
# # Combine both cloud types into a single cloud mask
|
256 |
+
# cloud_mask = opaque_clouds.Or(cirrus_clouds)
|
257 |
+
# # Count total pixels and cloudy pixels
|
258 |
+
# total_pixels = qa60.reduceRegion(
|
259 |
+
# reducer=ee.Reducer.count(),
|
260 |
+
# geometry=image.geometry(),
|
261 |
+
# scale=60, # QA60 resolution is 60 meters
|
262 |
+
# maxPixels=1e13
|
263 |
+
# ).get(cloud_band)
|
264 |
+
# cloudy_pixels = cloud_mask.reduceRegion(
|
265 |
+
# reducer=ee.Reducer.sum(),
|
266 |
+
# geometry=image.geometry(),
|
267 |
+
# scale=60, # QA60 resolution is 60 meters
|
268 |
+
# maxPixels=1e13
|
269 |
+
# ).get(cloud_band)
|
270 |
+
# # Calculate cloud percentage
|
271 |
+
# if total_pixels == 0:
|
272 |
+
# return 0 # Avoid division by zero
|
273 |
+
# return ee.Number(cloudy_pixels).divide(ee.Number(total_pixels)).multiply(100)
|
274 |
+
|
275 |
+
# # Use the function in preprocessing
|
276 |
+
# def preprocess_collection(collection, tile_cloud_threshold, pixel_cloud_threshold):
|
277 |
+
# def filter_tile(image):
|
278 |
+
# cloud_percentage = calculate_cloud_percentage(image, cloud_band='QA60')
|
279 |
+
# return image.set('cloud_percentage', cloud_percentage).updateMask(cloud_percentage.lt(tile_cloud_threshold))
|
280 |
+
|
281 |
+
# def mask_cloudy_pixels(image):
|
282 |
+
# qa60 = image.select('QA60')
|
283 |
+
# opaque_clouds = qa60.bitwiseAnd(1 << 10)
|
284 |
+
# cirrus_clouds = qa60.bitwiseAnd(1 << 11)
|
285 |
+
# cloud_mask = opaque_clouds.Or(cirrus_clouds)
|
286 |
+
# clear_pixels = cloud_mask.Not()
|
287 |
+
# return image.updateMask(clear_pixels)
|
288 |
+
|
289 |
+
# filtered_collection = collection.map(filter_tile)
|
290 |
+
# masked_collection = filtered_collection.map(mask_cloudy_pixels)
|
291 |
+
# return masked_collection
|
292 |
+
|
293 |
+
# def process_single_geometry(row, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, custom_formula, original_lat_col, original_lon_col, kernel_size=None, include_boundary=None, user_scale=None):
|
294 |
+
# if shape_type.lower() == "point":
|
295 |
+
# latitude = row.get('latitude')
|
296 |
+
# longitude = row.get('longitude')
|
297 |
+
# if pd.isna(latitude) or pd.isna(longitude):
|
298 |
+
# return None
|
299 |
+
# location_name = row.get('name', f"Location_{row.name}")
|
300 |
+
# if kernel_size == "3x3 Kernel":
|
301 |
+
# buffer_size = 45
|
302 |
+
# roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds()
|
303 |
+
# elif kernel_size == "5x5 Kernel":
|
304 |
+
# buffer_size = 75
|
305 |
+
# roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds()
|
306 |
+
# else:
|
307 |
+
# roi = ee.Geometry.Point([longitude, latitude])
|
308 |
+
# elif shape_type.lower() == "polygon":
|
309 |
+
# polygon_geometry = row.get('geometry')
|
310 |
+
# location_name = row.get('name', f"Polygon_{row.name}")
|
311 |
+
# try:
|
312 |
+
# roi = convert_to_ee_geometry(polygon_geometry)
|
313 |
+
# if not include_boundary:
|
314 |
+
# roi = roi.buffer(-30).bounds()
|
315 |
+
# except ValueError:
|
316 |
+
# return None
|
317 |
+
# collection = ee.ImageCollection(dataset_id) \
|
318 |
+
# .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
|
319 |
+
# .filterBounds(roi)
|
320 |
+
# if aggregation_period.lower() == 'custom (start date to end date)':
|
321 |
+
# collection = aggregate_data_custom(collection)
|
322 |
+
# elif aggregation_period.lower() == 'daily':
|
323 |
+
# collection = aggregate_data_daily(collection)
|
324 |
+
# elif aggregation_period.lower() == 'weekly':
|
325 |
+
# collection = aggregate_data_weekly(collection, start_date_str, end_date_str)
|
326 |
+
# elif aggregation_period.lower() == 'monthly':
|
327 |
+
# collection = aggregate_data_monthly(collection, start_date_str, end_date_str)
|
328 |
+
# elif aggregation_period.lower() == 'yearly':
|
329 |
+
# collection = aggregate_data_yearly(collection)
|
330 |
+
# image_list = collection.toList(collection.size())
|
331 |
+
# processed_weeks = set()
|
332 |
+
# aggregated_results = []
|
333 |
+
# for i in range(image_list.size().getInfo()):
|
334 |
+
# image = ee.Image(image_list.get(i))
|
335 |
+
# if aggregation_period.lower() == 'custom (start date to end date)':
|
336 |
+
# timestamp = image.get('day')
|
337 |
+
# period_label = 'Date'
|
338 |
+
# date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo()
|
339 |
+
# elif aggregation_period.lower() == 'daily':
|
340 |
+
# timestamp = image.get('day_start')
|
341 |
+
# period_label = 'Date'
|
342 |
+
# date = ee.String(timestamp).getInfo()
|
343 |
+
# elif aggregation_period.lower() == 'weekly':
|
344 |
+
# timestamp = image.get('week_start')
|
345 |
+
# period_label = 'Week'
|
346 |
+
# date = ee.String(timestamp).getInfo()
|
347 |
+
# if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or
|
348 |
+
# pd.to_datetime(date) > pd.to_datetime(end_date_str) or
|
349 |
+
# date in processed_weeks):
|
350 |
+
# continue
|
351 |
+
# processed_weeks.add(date)
|
352 |
+
# elif aggregation_period.lower() == 'monthly':
|
353 |
+
# timestamp = image.get('month')
|
354 |
+
# period_label = 'Month'
|
355 |
+
# date = ee.Date(timestamp).format('YYYY-MM').getInfo()
|
356 |
+
# elif aggregation_period.lower() == 'yearly':
|
357 |
+
# timestamp = image.get('year')
|
358 |
+
# period_label = 'Year'
|
359 |
+
# date = ee.Date(timestamp).format('YYYY').getInfo()
|
360 |
+
# index_image = calculate_custom_formula(image, roi, selected_bands, custom_formula, reducer_choice, dataset_id, user_scale=user_scale)
|
361 |
+
# try:
|
362 |
+
# index_value = index_image.reduceRegion(
|
363 |
+
# reducer=get_reducer(reducer_choice),
|
364 |
+
# geometry=roi,
|
365 |
+
# scale=user_scale
|
366 |
+
# ).get('custom_result')
|
367 |
+
# calculated_value = index_value.getInfo()
|
368 |
+
# if isinstance(calculated_value, (int, float)):
|
369 |
+
# result = {
|
370 |
+
# 'Location Name': location_name,
|
371 |
+
# period_label: date,
|
372 |
+
# 'Start Date': start_date_str,
|
373 |
+
# 'End Date': end_date_str,
|
374 |
+
# 'Calculated Value': calculated_value
|
375 |
+
# }
|
376 |
+
# if shape_type.lower() == 'point':
|
377 |
+
# result[original_lat_col] = latitude
|
378 |
+
# result[original_lon_col] = longitude
|
379 |
+
# aggregated_results.append(result)
|
380 |
+
# except Exception as e:
|
381 |
+
# st.error(f"Error retrieving value for {location_name}: {e}")
|
382 |
+
# return aggregated_results
|
383 |
+
|
384 |
+
# def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, original_lat_col, original_lon_col, custom_formula="", kernel_size=None, include_boundary=None, tile_cloud_threshold=0, pixel_cloud_threshold=0, user_scale=None):
|
385 |
+
# aggregated_results = []
|
386 |
+
# total_steps = len(locations_df)
|
387 |
+
# progress_bar = st.progress(0)
|
388 |
+
# progress_text = st.empty()
|
389 |
+
# start_time = time.time()
|
390 |
+
# raw_collection = ee.ImageCollection(dataset_id) \
|
391 |
+
# .filterDate(ee.Date(start_date_str), ee.Date(end_date_str))
|
392 |
+
# st.write(f"Original Collection Size: {raw_collection.size().getInfo()}")
|
393 |
+
# if tile_cloud_threshold > 0 or pixel_cloud_threshold > 0:
|
394 |
+
# raw_collection = preprocess_collection(raw_collection, tile_cloud_threshold, pixel_cloud_threshold)
|
395 |
+
# st.write(f"Preprocessed Collection Size: {raw_collection.size().getInfo()}")
|
396 |
+
# with ThreadPoolExecutor(max_workers=10) as executor:
|
397 |
+
# futures = []
|
398 |
+
# for idx, row in locations_df.iterrows():
|
399 |
+
# future = executor.submit(
|
400 |
+
# process_single_geometry,
|
401 |
+
# row,
|
402 |
+
# start_date_str,
|
403 |
+
# end_date_str,
|
404 |
+
# dataset_id,
|
405 |
+
# selected_bands,
|
406 |
+
# reducer_choice,
|
407 |
+
# shape_type,
|
408 |
+
# aggregation_period,
|
409 |
+
# custom_formula,
|
410 |
+
# original_lat_col,
|
411 |
+
# original_lon_col,
|
412 |
+
# kernel_size,
|
413 |
+
# include_boundary,
|
414 |
+
# user_scale=user_scale
|
415 |
+
# )
|
416 |
+
# futures.append(future)
|
417 |
+
# completed = 0
|
418 |
+
# for future in as_completed(futures):
|
419 |
+
# result = future.result()
|
420 |
+
# if result:
|
421 |
+
# aggregated_results.extend(result)
|
422 |
+
# completed += 1
|
423 |
+
# progress_percentage = completed / total_steps
|
424 |
+
# progress_bar.progress(progress_percentage)
|
425 |
+
# progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
|
426 |
+
# end_time = time.time()
|
427 |
+
# processing_time = end_time - start_time
|
428 |
+
# if aggregated_results:
|
429 |
+
# result_df = pd.DataFrame(aggregated_results)
|
430 |
+
# if aggregation_period.lower() == 'custom (start date to end date)':
|
431 |
+
# agg_dict = {
|
432 |
+
# 'Start Date': 'first',
|
433 |
+
# 'End Date': 'first',
|
434 |
+
# 'Calculated Value': 'mean' # Ensure this column is named 'Calculated Value'
|
435 |
+
# }
|
436 |
+
# if shape_type.lower() == 'point':
|
437 |
+
# agg_dict[original_lat_col] = 'first'
|
438 |
+
# agg_dict[original_lon_col] = 'first'
|
439 |
+
# aggregated_output = result_df.groupby('Location Name').agg(agg_dict).reset_index()
|
440 |
+
# aggregated_output['Date Range'] = aggregated_output['Start Date'] + " to " + aggregated_output['End Date']
|
441 |
+
# return aggregated_output.to_dict(orient='records'), processing_time
|
442 |
+
# else:
|
443 |
+
# return result_df.to_dict(orient='records'), processing_time
|
444 |
+
# return [], processing_time
|
445 |
+
|
446 |
+
# # Streamlit App Logic
|
447 |
+
# st.markdown("<h5>Image Collection</h5>", unsafe_allow_html=True)
|
448 |
+
# imagery_base = st.selectbox("Select Imagery Base", ["Sentinel", "Landsat", "MODIS", "VIIRS", "Custom Input"], index=0)
|
449 |
+
# data = {}
|
450 |
+
# if imagery_base == "Sentinel":
|
451 |
+
# dataset_file = "sentinel_datasets.json"
|
452 |
+
# try:
|
453 |
+
# with open(dataset_file) as f:
|
454 |
+
# data = json.load(f)
|
455 |
+
# except FileNotFoundError:
|
456 |
+
# st.error(f"Dataset file '{dataset_file}' not found.")
|
457 |
+
# data = {}
|
458 |
+
# elif imagery_base == "Landsat":
|
459 |
+
# dataset_file = "landsat_datasets.json"
|
460 |
+
# try:
|
461 |
+
# with open(dataset_file) as f:
|
462 |
+
# data = json.load(f)
|
463 |
+
# except FileNotFoundError:
|
464 |
+
# st.error(f"Dataset file '{dataset_file}' not found.")
|
465 |
+
# data = {}
|
466 |
+
# elif imagery_base == "MODIS":
|
467 |
+
# dataset_file = "modis_datasets.json"
|
468 |
+
# try:
|
469 |
+
# with open(dataset_file) as f:
|
470 |
+
# data = json.load(f)
|
471 |
+
# except FileNotFoundError:
|
472 |
+
# st.error(f"Dataset file '{dataset_file}' not found.")
|
473 |
+
# data = {}
|
474 |
+
# elif imagery_base == "VIIRS":
|
475 |
+
# dataset_file = "viirs_datasets.json"
|
476 |
+
# try:
|
477 |
+
# with open(dataset_file) as f:
|
478 |
+
# data = json.load(f)
|
479 |
+
# except FileNotFoundError:
|
480 |
+
# st.error(f"Dataset file '{dataset_file}' not found.")
|
481 |
+
# data = {}
|
482 |
+
# elif imagery_base == "Custom Input":
|
483 |
+
# custom_dataset_id = st.text_input("Enter Custom Earth Engine Dataset ID (e.g., AHN/AHN4)", value="")
|
484 |
+
# if custom_dataset_id:
|
485 |
+
# try:
|
486 |
+
# if custom_dataset_id.startswith("ee.ImageCollection("):
|
487 |
+
# custom_dataset_id = custom_dataset_id.replace("ee.ImageCollection('", "").replace("')", "")
|
488 |
+
# collection = ee.ImageCollection(custom_dataset_id)
|
489 |
+
# first_image = collection.first()
|
490 |
+
# default_scale = first_image.projection().nominalScale().getInfo()
|
491 |
+
# band_names = first_image.bandNames().getInfo()
|
492 |
+
# data = {
|
493 |
+
# f"Custom Dataset: {custom_dataset_id}": {
|
494 |
+
# "sub_options": {custom_dataset_id: f"Custom Dataset ({custom_dataset_id})"},
|
495 |
+
# "bands": {custom_dataset_id: band_names}
|
496 |
+
# }
|
497 |
+
# }
|
498 |
+
# st.write(f"Fetched bands for {custom_dataset_id}: {', '.join(band_names)}")
|
499 |
+
# st.write(f"Default Scale for Dataset: {default_scale} meters")
|
500 |
+
# except Exception as e:
|
501 |
+
# st.error(f"Error fetching dataset: {str(e)}. Please check the dataset ID and ensure it's valid in Google Earth Engine.")
|
502 |
+
# data = {}
|
503 |
+
# else:
|
504 |
+
# st.warning("Please enter a custom dataset ID to proceed.")
|
505 |
+
# data = {}
|
506 |
+
# if not data:
|
507 |
+
# st.error("No valid dataset available. Please check your inputs.")
|
508 |
+
# st.stop()
|
509 |
+
|
510 |
+
# st.markdown("<hr><h5><b>{}</b></h5>".format(imagery_base), unsafe_allow_html=True)
|
511 |
+
# main_selection = st.selectbox(f"Select {imagery_base} Dataset Category", list(data.keys()))
|
512 |
+
# sub_selection = None
|
513 |
+
# dataset_id = None
|
514 |
+
# if main_selection:
|
515 |
+
# sub_options = data[main_selection]["sub_options"]
|
516 |
+
# sub_selection = st.selectbox(f"Select Specific {imagery_base} Dataset ID", list(sub_options.keys()))
|
517 |
+
# if sub_selection:
|
518 |
+
# st.write(f"You selected: {main_selection} -> {sub_options[sub_selection]}")
|
519 |
+
# st.write(f"Dataset ID: {sub_selection}")
|
520 |
+
# dataset_id = sub_selection
|
521 |
+
|
522 |
+
# # Fetch the default scale for the selected dataset
|
523 |
+
# try:
|
524 |
+
# collection = ee.ImageCollection(dataset_id)
|
525 |
+
# first_image = collection.first()
|
526 |
+
# # Select the first band to avoid issues with multiple projections
|
527 |
+
# default_scale = first_image.select(0).projection().nominalScale().getInfo()
|
528 |
+
# st.write(f"Default Scale for Selected Dataset: {default_scale} meters")
|
529 |
+
# except Exception as e:
|
530 |
+
# st.error(f"Error fetching default scale: {str(e)}")
|
531 |
+
|
532 |
+
# st.markdown("<hr><h5><b>Earth Engine Index Calculator</b></h5>", unsafe_allow_html=True)
|
533 |
+
# if main_selection and sub_selection:
|
534 |
+
# dataset_bands = data[main_selection]["bands"].get(sub_selection, [])
|
535 |
+
# st.write(f"Available Bands for {sub_options[sub_selection]}: {', '.join(dataset_bands)}")
|
536 |
+
# selected_bands = st.multiselect(
|
537 |
+
# "Select 1 or 2 Bands for Calculation",
|
538 |
+
# options=dataset_bands,
|
539 |
+
# default=[dataset_bands[0]] if dataset_bands else [],
|
540 |
+
# help=f"Select 1 or 2 bands from: {', '.join(dataset_bands)}"
|
541 |
+
# )
|
542 |
+
# if len(selected_bands) < 1:
|
543 |
+
# st.warning("Please select at least one band.")
|
544 |
+
# st.stop()
|
545 |
+
# if selected_bands:
|
546 |
+
# if len(selected_bands) == 1:
|
547 |
+
# default_formula = f"{selected_bands[0]}"
|
548 |
+
# example = f"'{selected_bands[0]} * 2' or '{selected_bands[0]} + 1'"
|
549 |
+
# else:
|
550 |
+
# default_formula = f"({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})"
|
551 |
+
# example = f"'{selected_bands[0]} * {selected_bands[1]} / 2' or '({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})'"
|
552 |
+
# custom_formula = st.text_input(
|
553 |
+
# "Enter Custom Formula (e.g (B8 - B4) / (B8 + B4) , B4*B3/2)",
|
554 |
+
# value=default_formula,
|
555 |
+
# help=f"Use only these bands: {', '.join(selected_bands)}. Examples: {example}"
|
556 |
+
# )
|
557 |
+
# def validate_formula(formula, selected_bands):
|
558 |
+
# allowed_chars = set(" +-*/()0123456789.")
|
559 |
+
# terms = re.findall(r'[a-zA-Z][a-zA-Z0-9_]*', formula)
|
560 |
+
# invalid_terms = [term for term in terms if term not in selected_bands]
|
561 |
+
# if invalid_terms:
|
562 |
+
# return False, f"Invalid terms in formula: {', '.join(invalid_terms)}. Use only {', '.join(selected_bands)}."
|
563 |
+
# if not all(char in allowed_chars or char in ''.join(selected_bands) for char in formula):
|
564 |
+
# return False, "Formula contains invalid characters. Use only bands, numbers, and operators (+, -, *, /, ())"
|
565 |
+
# return True, ""
|
566 |
+
# is_valid, error_message = validate_formula(custom_formula, selected_bands)
|
567 |
+
# if not is_valid:
|
568 |
+
# st.error(error_message)
|
569 |
+
# st.stop()
|
570 |
+
# elif not custom_formula:
|
571 |
+
# st.warning("Please enter a custom formula to proceed.")
|
572 |
+
# st.stop()
|
573 |
+
# st.write(f"Custom Formula: {custom_formula}")
|
574 |
+
|
575 |
+
# reducer_choice = st.selectbox(
|
576 |
+
# "Select Reducer (e.g, mean , sum , median , min , max , count)",
|
577 |
+
# ['mean', 'sum', 'median', 'min', 'max', 'count'],
|
578 |
+
# index=0
|
579 |
+
# )
|
580 |
+
# start_date = st.date_input("Start Date", value=pd.to_datetime('2024-11-01'))
|
581 |
+
# end_date = st.date_input("End Date", value=pd.to_datetime('2024-12-01'))
|
582 |
+
# start_date_str = start_date.strftime('%Y-%m-%d')
|
583 |
+
# end_date_str = end_date.strftime('%Y-%m-%d')
|
584 |
+
# if imagery_base == "Sentinel" and "Sentinel-2" in sub_options[sub_selection]:
|
585 |
+
# st.markdown("<h5>Cloud Filtering</h5>", unsafe_allow_html=True)
|
586 |
+
# tile_cloud_threshold = st.slider(
|
587 |
+
# "Select Maximum Tile-Based Cloud Coverage Threshold (%)",
|
588 |
+
# min_value=0,
|
589 |
+
# max_value=100,
|
590 |
+
# value=20,
|
591 |
+
# step=5,
|
592 |
+
# help="Tiles with cloud coverage exceeding this threshold will be excluded."
|
593 |
+
# )
|
594 |
+
# pixel_cloud_threshold = st.slider(
|
595 |
+
# "Select Maximum Pixel-Based Cloud Coverage Threshold (%)",
|
596 |
+
# min_value=0,
|
597 |
+
# max_value=100,
|
598 |
+
# value=10,
|
599 |
+
# step=5,
|
600 |
+
# help="Individual pixels with cloud coverage exceeding this threshold will be masked."
|
601 |
+
# )
|
602 |
+
# aggregation_period = st.selectbox(
|
603 |
+
# "Select Aggregation Period (e.g, Custom(Start Date to End Date) , Daily , Weekly , Monthly , Yearly)",
|
604 |
+
# ["Custom (Start Date to End Date)", "Daily", "Weekly", "Monthly", "Yearly"],
|
605 |
+
# index=0
|
606 |
+
# )
|
607 |
+
# shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"])
|
608 |
+
# kernel_size = None
|
609 |
+
# include_boundary = None
|
610 |
+
# if shape_type.lower() == "point":
|
611 |
+
# kernel_size = st.selectbox(
|
612 |
+
# "Select Calculation Area(e.g, Point , 3x3 Kernel , 5x5 Kernel)",
|
613 |
+
# ["Point", "3x3 Kernel", "5x5 Kernel"],
|
614 |
+
# index=0,
|
615 |
+
# help="Choose 'Point' for exact point calculation, or a kernel size for area averaging."
|
616 |
+
# )
|
617 |
+
# elif shape_type.lower() == "polygon":
|
618 |
+
# include_boundary = st.checkbox(
|
619 |
+
# "Include Boundary Pixels",
|
620 |
+
# value=True,
|
621 |
+
# help="Check to include pixels on the polygon boundary; uncheck to exclude them."
|
622 |
+
# )
|
623 |
+
# st.markdown("<h5>Calculation Scale</h5>", unsafe_allow_html=True)
|
624 |
+
# default_scale = ee.ImageCollection(dataset_id).first().select(0).projection().nominalScale().getInfo()
|
625 |
+
# user_scale = st.number_input(
|
626 |
+
# "Enter Calculation Scale (meters) [Leave blank to use dataset's default scale]",
|
627 |
+
# min_value=1.0,
|
628 |
+
# value=float(default_scale),
|
629 |
+
# help=f"Default scale for this dataset is {default_scale} meters. Adjust if needed."
|
630 |
+
# )
|
631 |
+
|
632 |
+
# file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
|
633 |
+
# locations_df = pd.DataFrame()
|
634 |
+
# original_lat_col = None
|
635 |
+
# original_lon_col = None
|
636 |
+
# if file_upload is not None:
|
637 |
+
# if shape_type.lower() == "point":
|
638 |
+
# if file_upload.name.endswith('.csv'):
|
639 |
+
# locations_df = pd.read_csv(file_upload)
|
640 |
+
# st.write("Preview of your uploaded data (first 5 rows):")
|
641 |
+
# st.dataframe(locations_df.head())
|
642 |
+
# all_columns = locations_df.columns.tolist()
|
643 |
+
# col1, col2 = st.columns(2)
|
644 |
+
# with col1:
|
645 |
+
# original_lat_col = st.selectbox(
|
646 |
+
# "Select Latitude Column",
|
647 |
+
# options=all_columns,
|
648 |
+
# index=all_columns.index('latitude') if 'latitude' in all_columns else 0,
|
649 |
+
# help="Select the column containing latitude values"
|
650 |
+
# )
|
651 |
+
# with col2:
|
652 |
+
# original_lon_col = st.selectbox(
|
653 |
+
# "Select Longitude Column",
|
654 |
+
# options=all_columns,
|
655 |
+
# index=all_columns.index('longitude') if 'longitude' in all_columns else 0,
|
656 |
+
# help="Select the column containing longitude values"
|
657 |
+
# )
|
658 |
+
# if not pd.api.types.is_numeric_dtype(locations_df[original_lat_col]) or not pd.api.types.is_numeric_dtype(locations_df[original_lon_col]):
|
659 |
+
# st.error("Error: Selected Latitude and Longitude columns must contain numeric values")
|
660 |
+
# st.stop()
|
661 |
+
# locations_df = locations_df.rename(columns={
|
662 |
+
# original_lat_col: 'latitude',
|
663 |
+
# original_lon_col: 'longitude'
|
664 |
+
# })
|
665 |
+
# elif file_upload.name.endswith('.geojson'):
|
666 |
+
# locations_df = gpd.read_file(file_upload)
|
667 |
+
# if 'geometry' in locations_df.columns:
|
668 |
+
# locations_df['latitude'] = locations_df['geometry'].y
|
669 |
+
# locations_df['longitude'] = locations_df['geometry'].x
|
670 |
+
# original_lat_col = 'latitude'
|
671 |
+
# original_lon_col = 'longitude'
|
672 |
+
# else:
|
673 |
+
# st.error("GeoJSON file doesn't contain geometry column")
|
674 |
+
# st.stop()
|
675 |
+
# elif file_upload.name.endswith('.kml'):
|
676 |
+
# kml_string = file_upload.read().decode('utf-8')
|
677 |
+
# try:
|
678 |
+
# root = XET.fromstring(kml_string)
|
679 |
+
# ns = {'kml': 'http://www.opengis.net/kml/2.2'}
|
680 |
+
# points = []
|
681 |
+
# for placemark in root.findall('.//kml:Placemark', ns):
|
682 |
+
# name = placemark.findtext('kml:name', default=f"Point_{len(points)}", namespaces=ns)
|
683 |
+
# coords_elem = placemark.find('.//kml:Point/kml:coordinates', ns)
|
684 |
+
# if coords_elem is not None:
|
685 |
+
# coords_text = coords_elem.text.strip()
|
686 |
+
# coords = [c.strip() for c in coords_text.split(',')]
|
687 |
+
# if len(coords) >= 2:
|
688 |
+
# lon, lat = float(coords[0]), float(coords[1])
|
689 |
+
# points.append({'name': name, 'geometry': f"POINT ({lon} {lat})"})
|
690 |
+
# if not points:
|
691 |
+
# st.error("No valid Point data found in the KML file.")
|
692 |
+
# else:
|
693 |
+
# locations_df = gpd.GeoDataFrame(points, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in points]), crs="EPSG:4326")
|
694 |
+
# locations_df['latitude'] = locations_df['geometry'].y
|
695 |
+
# locations_df['longitude'] = locations_df['geometry'].x
|
696 |
+
# original_lat_col = 'latitude'
|
697 |
+
# original_lon_col = 'longitude'
|
698 |
+
# except Exception as e:
|
699 |
+
# st.error(f"Error parsing KML file: {str(e)}")
|
700 |
+
# if not locations_df.empty and 'latitude' in locations_df.columns and 'longitude' in locations_df.columns:
|
701 |
+
# m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
|
702 |
+
# for _, row in locations_df.iterrows():
|
703 |
+
# latitude = row['latitude']
|
704 |
+
# longitude = row['longitude']
|
705 |
+
# if pd.isna(latitude) or pd.isna(longitude):
|
706 |
+
# continue
|
707 |
+
# m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
|
708 |
+
# st.write("Map of Uploaded Points:")
|
709 |
+
# m.to_streamlit()
|
710 |
+
# elif shape_type.lower() == "polygon":
|
711 |
+
# if file_upload.name.endswith('.csv'):
|
712 |
+
# st.error("CSV upload not supported for polygons. Please upload a GeoJSON or KML file.")
|
713 |
+
# elif file_upload.name.endswith('.geojson'):
|
714 |
+
# locations_df = gpd.read_file(file_upload)
|
715 |
+
# if 'geometry' not in locations_df.columns:
|
716 |
+
# st.error("GeoJSON file doesn't contain geometry column")
|
717 |
+
# st.stop()
|
718 |
+
# elif file_upload.name.endswith('.kml'):
|
719 |
+
# kml_string = file_upload.read().decode('utf-8')
|
720 |
+
# try:
|
721 |
+
# root = XET.fromstring(kml_string)
|
722 |
+
# ns = {'kml': 'http://www.opengis.net/kml/2.2'}
|
723 |
+
# polygons = []
|
724 |
+
# for placemark in root.findall('.//kml:Placemark', ns):
|
725 |
+
# name = placemark.findtext('kml:name', default=f"Polygon_{len(polygons)}", namespaces=ns)
|
726 |
+
# coords_elem = placemark.find('.//kml:Polygon//kml:coordinates', ns)
|
727 |
+
# if coords_elem is not None:
|
728 |
+
# coords_text = ' '.join(coords_elem.text.split())
|
729 |
+
# coord_pairs = [pair.split(',')[:2] for pair in coords_text.split() if pair]
|
730 |
+
# if len(coord_pairs) >= 4:
|
731 |
+
# coords_str = " ".join([f"{float(lon)} {float(lat)}" for lon, lat in coord_pairs])
|
732 |
+
# polygons.append({'name': name, 'geometry': f"POLYGON (({coords_str}))"})
|
733 |
+
# if not polygons:
|
734 |
+
# st.error("No valid Polygon data found in the KML file.")
|
735 |
+
# else:
|
736 |
+
# locations_df = gpd.GeoDataFrame(polygons, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in polygons]), crs="EPSG:4326")
|
737 |
+
# except Exception as e:
|
738 |
+
# st.error(f"Error parsing KML file: {str(e)}")
|
739 |
+
# if not locations_df.empty and 'geometry' in locations_df.columns:
|
740 |
+
# centroid_lat = locations_df.geometry.centroid.y.mean()
|
741 |
+
# centroid_lon = locations_df.geometry.centroid.x.mean()
|
742 |
+
# m = leafmap.Map(center=[centroid_lat, centroid_lon], zoom=10)
|
743 |
+
# for _, row in locations_df.iterrows():
|
744 |
+
# polygon = row['geometry']
|
745 |
+
# if polygon.is_valid:
|
746 |
+
# gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=locations_df.crs)
|
747 |
+
# m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
|
748 |
+
# st.write("Map of Uploaded Polygons:")
|
749 |
+
# m.to_streamlit()
|
750 |
+
|
751 |
+
# if st.button(f"Calculate {custom_formula}"):
|
752 |
+
# if not locations_df.empty:
|
753 |
+
# with st.spinner("Processing Data..."):
|
754 |
+
# try:
|
755 |
+
# # Call the aggregation function with updated parameters
|
756 |
+
# results, processing_time = process_aggregation(
|
757 |
+
# locations_df,
|
758 |
+
# start_date_str,
|
759 |
+
# end_date_str,
|
760 |
+
# dataset_id,
|
761 |
+
# selected_bands,
|
762 |
+
# reducer_choice,
|
763 |
+
# shape_type,
|
764 |
+
# aggregation_period,
|
765 |
+
# original_lat_col,
|
766 |
+
# original_lon_col,
|
767 |
+
# custom_formula=custom_formula,
|
768 |
+
# kernel_size=kernel_size,
|
769 |
+
# include_boundary=include_boundary,
|
770 |
+
# tile_cloud_threshold=tile_cloud_threshold if "tile_cloud_threshold" in locals() else 0,
|
771 |
+
# pixel_cloud_threshold=pixel_cloud_threshold if "pixel_cloud_threshold" in locals() else 0,
|
772 |
+
# user_scale=user_scale
|
773 |
+
# )
|
774 |
+
|
775 |
+
# # Process and display results
|
776 |
+
# if results:
|
777 |
+
# result_df = pd.DataFrame(results)
|
778 |
+
# st.write(f"Processed Results Table ({aggregation_period}) for Formula: {custom_formula}")
|
779 |
+
# st.dataframe(result_df)
|
780 |
+
|
781 |
+
# # Download button for CSV
|
782 |
+
# filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y%m%d')}_{end_date.strftime('%Y%m%d')}_{aggregation_period.lower()}.csv"
|
783 |
+
# st.download_button(
|
784 |
+
# label="Download results as CSV",
|
785 |
+
# data=result_df.to_csv(index=False).encode('utf-8'),
|
786 |
+
# file_name=filename,
|
787 |
+
# mime='text/csv'
|
788 |
+
# )
|
789 |
+
|
790 |
+
# # Success message
|
791 |
+
# st.success(f"Processing complete! Total processing time: {processing_time:.2f} seconds.")
|
792 |
+
|
793 |
+
# # Graph Visualization Section
|
794 |
+
# st.markdown("<h5>Graph Visualization</h5>", unsafe_allow_html=True)
|
795 |
+
|
796 |
+
# # Dynamically identify the time column
|
797 |
+
# if aggregation_period.lower() == 'custom (start date to end date)':
|
798 |
+
# x_column = 'Date Range'
|
799 |
+
# elif 'Date' in result_df.columns:
|
800 |
+
# x_column = 'Date'
|
801 |
+
# elif 'Week' in result_df.columns:
|
802 |
+
# x_column = 'Week'
|
803 |
+
# elif 'Month' in result_df.columns:
|
804 |
+
# x_column = 'Month'
|
805 |
+
# elif 'Year' in result_df.columns:
|
806 |
+
# x_column = 'Year'
|
807 |
+
# else:
|
808 |
+
# st.warning("No valid time column found for plotting.")
|
809 |
+
# st.stop()
|
810 |
+
|
811 |
+
# # Dynamically identify the value column
|
812 |
+
# y_column = None
|
813 |
+
# if 'Calculated Value' in result_df.columns:
|
814 |
+
# y_column = 'Calculated Value'
|
815 |
+
# elif 'Aggregated Value' in result_df.columns:
|
816 |
+
# y_column = 'Aggregated Value'
|
817 |
+
# else:
|
818 |
+
# st.warning("No value column found for plotting. Available columns: " + ", ".join(result_df.columns))
|
819 |
+
# st.stop()
|
820 |
+
|
821 |
+
# # Ensure we have valid data to plot
|
822 |
+
# if result_df.empty:
|
823 |
+
# st.warning("No data available for plotting.")
|
824 |
+
# st.stop()
|
825 |
+
|
826 |
+
# # # Line Chart
|
827 |
+
# # try:
|
828 |
+
# # st.subheader("Line Chart")
|
829 |
+
# # if x_column == 'Location Name':
|
830 |
+
# # st.line_chart(result_df.set_index(x_column)[y_column])
|
831 |
+
# # else:
|
832 |
+
# # # Convert to datetime for better sorting
|
833 |
+
# # result_df[x_column] = pd.to_datetime(result_df[x_column], errors='ignore')
|
834 |
+
# # result_df = result_df.sort_values(x_column)
|
835 |
+
# # st.line_chart(result_df.set_index(x_column)[y_column])
|
836 |
+
# # except Exception as e:
|
837 |
+
# # st.error(f"Error creating line chart: {str(e)}")
|
838 |
+
|
839 |
+
# # # Bar Chart
|
840 |
+
# # try:
|
841 |
+
# # st.subheader("Bar Chart")
|
842 |
+
# # if x_column == 'Location Name':
|
843 |
+
# # st.bar_chart(result_df.set_index(x_column)[y_column])
|
844 |
+
# # else:
|
845 |
+
# # result_df[x_column] = pd.to_datetime(result_df[x_column], errors='ignore')
|
846 |
+
# # result_df = result_df.sort_values(x_column)
|
847 |
+
# # st.bar_chart(result_df.set_index(x_column)[y_column])
|
848 |
+
# # except Exception as e:
|
849 |
+
# # st.error(f"Error creating bar chart: {str(e)}")
|
850 |
+
|
851 |
+
# # Advanced Plot (Plotly)
|
852 |
+
# try:
|
853 |
+
# st.subheader("Advanced Interactive Plot (Plotly)")
|
854 |
+
# if x_column == 'Location Name':
|
855 |
+
# fig = px.bar(
|
856 |
+
# result_df,
|
857 |
+
# x=x_column,
|
858 |
+
# y=y_column,
|
859 |
+
# color='Location Name',
|
860 |
+
# title=f"{custom_formula} by Location"
|
861 |
+
# )
|
862 |
+
# else:
|
863 |
+
# fig = px.line(
|
864 |
+
# result_df,
|
865 |
+
# x=x_column,
|
866 |
+
# y=y_column,
|
867 |
+
# color='Location Name',
|
868 |
+
# title=f"{custom_formula} Over Time"
|
869 |
+
# )
|
870 |
+
# st.plotly_chart(fig)
|
871 |
+
# except Exception as e:
|
872 |
+
# st.error(f"Error creating interactive plot: {str(e)}")
|
873 |
+
|
874 |
+
# else:
|
875 |
+
# st.warning("No results were generated. Check your inputs or formula.")
|
876 |
+
# st.info(f"Total processing time: {processing_time:.2f} seconds.")
|
877 |
+
|
878 |
+
# except Exception as e:
|
879 |
+
# st.error(f"An error occurred during processing: {str(e)}")
|
880 |
+
# else:
|
881 |
+
# st.warning("Please upload a valid file to proceed.")
|
882 |
+
# # if st.button(f"Calculate {custom_formula}"):
|
883 |
+
# # if not locations_df.empty:
|
884 |
+
# # with st.spinner("Processing Data..."):
|
885 |
+
# # try:
|
886 |
+
# # results, processing_time = process_aggregation(
|
887 |
+
# # locations_df,
|
888 |
+
# # start_date_str,
|
889 |
+
# # end_date_str,
|
890 |
+
# # dataset_id,
|
891 |
+
# # selected_bands,
|
892 |
+
# # reducer_choice,
|
893 |
+
# # shape_type,
|
894 |
+
# # aggregation_period,
|
895 |
+
# # original_lat_col,
|
896 |
+
# # original_lon_col,
|
897 |
+
# # custom_formula,
|
898 |
+
# # kernel_size,
|
899 |
+
# # include_boundary,
|
900 |
+
# # tile_cloud_threshold=tile_cloud_threshold if "tile_cloud_threshold" in locals() else 0,
|
901 |
+
# # pixel_cloud_threshold=pixel_cloud_threshold if "pixel_cloud_threshold" in locals() else 0,
|
902 |
+
# # user_scale=user_scale
|
903 |
+
# # )
|
904 |
+
# # if results:
|
905 |
+
# # result_df = pd.DataFrame(results)
|
906 |
+
# # st.write(f"Processed Results Table ({aggregation_period}) for Formula: {custom_formula}")
|
907 |
+
# # st.dataframe(result_df)
|
908 |
+
# # filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y%m%d')}_{end_date.strftime('%Y%m%d')}_{aggregation_period.lower()}.csv"
|
909 |
+
# # st.download_button(
|
910 |
+
# # label="Download results as CSV",
|
911 |
+
# # data=result_df.to_csv(index=False).encode('utf-8'),
|
912 |
+
# # file_name=filename,
|
913 |
+
# # mime='text/csv'
|
914 |
+
# # )
|
915 |
+
# # st.success(f"Processing complete! Total processing time: {processing_time:.2f} seconds.")
|
916 |
+
# # st.markdown("<h5>Graph Visualization</h5>", unsafe_allow_html=True)
|
917 |
+
# # if aggregation_period.lower() == 'custom (start date to end date)':
|
918 |
+
# # x_column = 'Date Range'
|
919 |
+
# # elif 'Date' in result_df.columns:
|
920 |
+
# # x_column = 'Date'
|
921 |
+
# # elif 'Week' in result_df.columns:
|
922 |
+
# # x_column = 'Week'
|
923 |
+
# # elif 'Month' in result_df.columns:
|
924 |
+
# # x_column = 'Month'
|
925 |
+
# # elif 'Year' in result_df.columns:
|
926 |
+
# # x_column = 'Year'
|
927 |
+
# # else:
|
928 |
+
# # st.warning("No valid time column found for plotting.")
|
929 |
+
# # st.stop()
|
930 |
+
# # y_column = 'Calculated Value'
|
931 |
+
# # fig = px.line(
|
932 |
+
# # result_df,
|
933 |
+
# # x=x_column,
|
934 |
+
# # y=y_column,
|
935 |
+
# # color='Location Name',
|
936 |
+
# # title=f"{custom_formula} Over Time"
|
937 |
+
# # )
|
938 |
+
# # st.plotly_chart(fig)
|
939 |
+
# # else:
|
940 |
+
# # st.warning("No results were generated. Check your inputs or formula.")
|
941 |
+
# # st.info(f"Total processing time: {processing_time:.2f} seconds.")
|
942 |
+
# # except Exception as e:
|
943 |
+
# # st.error(f"An error occurred during processing: {str(e)}")
|
944 |
+
# # else:
|
945 |
+
# # st.warning("Please upload a valid file to proceed.")
|
946 |
+
|
947 |
import streamlit as st
|
948 |
import json
|
949 |
import ee
|
|
|
1060 |
for band in selected_bands:
|
1061 |
band_scale = image.select(band).projection().nominalScale().getInfo()
|
1062 |
band_scales.append(band_scale)
|
|
|
|
|
1063 |
default_scale = min(band_scales) if band_scales else 30 # Default to 30m if no bands are found
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1064 |
scale = user_scale if user_scale is not None else default_scale
|
1065 |
|
1066 |
# Rescale all bands to the chosen scale
|
|
|
1069 |
band_image = image.select(band)
|
1070 |
band_scale = band_image.projection().nominalScale().getInfo()
|
1071 |
if band_scale != scale:
|
|
|
1072 |
rescaled_band = band_image.resample('bilinear').reproject(
|
1073 |
crs=band_image.projection().crs(),
|
1074 |
scale=scale
|
|
|
1084 |
value = rescaled_bands[band].reduceRegion(
|
1085 |
reducer=reducer,
|
1086 |
geometry=geometry,
|
1087 |
+
scale=scale
|
1088 |
).get(band).getInfo()
|
1089 |
reduced_values[band] = float(value if value is not None else 0)
|
1090 |
|
|
|
1097 |
# Validate the result
|
1098 |
if not isinstance(result, (int, float)):
|
1099 |
raise ValueError("Formula did not result in a numeric value.")
|
|
|
1100 |
return ee.Image.constant(result).rename('custom_result')
|
|
|
1101 |
except ZeroDivisionError:
|
1102 |
st.error("Error: Division by zero in the formula.")
|
1103 |
return ee.Image(0).rename('custom_result').set('error', 'Division by zero')
|
|
|
1173 |
yearly_images = ee.List(grouped_by_year.map(calculate_yearly_mean))
|
1174 |
return ee.ImageCollection(yearly_images)
|
1175 |
|
1176 |
+
# Cloud percentage calculation
|
1177 |
def calculate_cloud_percentage(image, cloud_band='QA60'):
|
|
|
|
|
|
|
|
|
|
|
1178 |
qa60 = image.select(cloud_band)
|
1179 |
+
opaque_clouds = qa60.bitwiseAnd(1 << 10)
|
1180 |
+
cirrus_clouds = qa60.bitwiseAnd(1 << 11)
|
|
|
1181 |
cloud_mask = opaque_clouds.Or(cirrus_clouds)
|
|
|
1182 |
total_pixels = qa60.reduceRegion(
|
1183 |
reducer=ee.Reducer.count(),
|
1184 |
geometry=image.geometry(),
|
1185 |
+
scale=60,
|
1186 |
maxPixels=1e13
|
1187 |
).get(cloud_band)
|
1188 |
cloudy_pixels = cloud_mask.reduceRegion(
|
1189 |
reducer=ee.Reducer.sum(),
|
1190 |
geometry=image.geometry(),
|
1191 |
+
scale=60,
|
1192 |
maxPixels=1e13
|
1193 |
).get(cloud_band)
|
|
|
1194 |
if total_pixels == 0:
|
1195 |
+
return 0
|
1196 |
return ee.Number(cloudy_pixels).divide(ee.Number(total_pixels)).multiply(100)
|
1197 |
|
1198 |
+
# Preprocessing function
|
1199 |
def preprocess_collection(collection, tile_cloud_threshold, pixel_cloud_threshold):
|
1200 |
def filter_tile(image):
|
1201 |
cloud_percentage = calculate_cloud_percentage(image, cloud_band='QA60')
|
|
|
1213 |
masked_collection = filtered_collection.map(mask_cloudy_pixels)
|
1214 |
return masked_collection
|
1215 |
|
1216 |
+
# Process single geometry
|
1217 |
def process_single_geometry(row, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, custom_formula, original_lat_col, original_lon_col, kernel_size=None, include_boundary=None, user_scale=None):
|
1218 |
if shape_type.lower() == "point":
|
1219 |
latitude = row.get('latitude')
|
|
|
1238 |
roi = roi.buffer(-30).bounds()
|
1239 |
except ValueError:
|
1240 |
return None
|
1241 |
+
|
1242 |
collection = ee.ImageCollection(dataset_id) \
|
1243 |
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
|
1244 |
.filterBounds(roi)
|
1245 |
+
|
1246 |
if aggregation_period.lower() == 'custom (start date to end date)':
|
1247 |
collection = aggregate_data_custom(collection)
|
1248 |
elif aggregation_period.lower() == 'daily':
|
|
|
1253 |
collection = aggregate_data_monthly(collection, start_date_str, end_date_str)
|
1254 |
elif aggregation_period.lower() == 'yearly':
|
1255 |
collection = aggregate_data_yearly(collection)
|
1256 |
+
|
1257 |
image_list = collection.toList(collection.size())
|
1258 |
processed_weeks = set()
|
1259 |
aggregated_results = []
|
|
|
1284 |
timestamp = image.get('year')
|
1285 |
period_label = 'Year'
|
1286 |
date = ee.Date(timestamp).format('YYYY').getInfo()
|
1287 |
+
|
1288 |
index_image = calculate_custom_formula(image, roi, selected_bands, custom_formula, reducer_choice, dataset_id, user_scale=user_scale)
|
1289 |
try:
|
1290 |
index_value = index_image.reduceRegion(
|
|
|
1309 |
st.error(f"Error retrieving value for {location_name}: {e}")
|
1310 |
return aggregated_results
|
1311 |
|
1312 |
+
# Process aggregation
|
1313 |
def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, original_lat_col, original_lon_col, custom_formula="", kernel_size=None, include_boundary=None, tile_cloud_threshold=0, pixel_cloud_threshold=0, user_scale=None):
|
1314 |
aggregated_results = []
|
1315 |
total_steps = len(locations_df)
|
1316 |
progress_bar = st.progress(0)
|
1317 |
progress_text = st.empty()
|
1318 |
start_time = time.time()
|
1319 |
+
|
1320 |
raw_collection = ee.ImageCollection(dataset_id) \
|
1321 |
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str))
|
1322 |
+
|
1323 |
st.write(f"Original Collection Size: {raw_collection.size().getInfo()}")
|
1324 |
+
|
1325 |
if tile_cloud_threshold > 0 or pixel_cloud_threshold > 0:
|
1326 |
raw_collection = preprocess_collection(raw_collection, tile_cloud_threshold, pixel_cloud_threshold)
|
1327 |
st.write(f"Preprocessed Collection Size: {raw_collection.size().getInfo()}")
|
1328 |
+
|
1329 |
with ThreadPoolExecutor(max_workers=10) as executor:
|
1330 |
futures = []
|
1331 |
for idx, row in locations_df.iterrows():
|
|
|
1356 |
progress_percentage = completed / total_steps
|
1357 |
progress_bar.progress(progress_percentage)
|
1358 |
progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
|
1359 |
+
|
1360 |
end_time = time.time()
|
1361 |
processing_time = end_time - start_time
|
1362 |
+
|
1363 |
if aggregated_results:
|
1364 |
result_df = pd.DataFrame(aggregated_results)
|
1365 |
if aggregation_period.lower() == 'custom (start date to end date)':
|
1366 |
agg_dict = {
|
1367 |
'Start Date': 'first',
|
1368 |
'End Date': 'first',
|
1369 |
+
'Calculated Value': 'mean'
|
1370 |
}
|
1371 |
if shape_type.lower() == 'point':
|
1372 |
agg_dict[original_lat_col] = 'first'
|
|
|
1375 |
aggregated_output['Date Range'] = aggregated_output['Start Date'] + " to " + aggregated_output['End Date']
|
1376 |
return aggregated_output.to_dict(orient='records'), processing_time
|
1377 |
else:
|
1378 |
+
return result_df.to_dict(orient='records'), processing_time
|
1379 |
+
return [], processing_time
|
1380 |
|
1381 |
# Streamlit App Logic
|
1382 |
st.markdown("<h5>Image Collection</h5>", unsafe_allow_html=True)
|
|
|
1453 |
st.write(f"You selected: {main_selection} -> {sub_options[sub_selection]}")
|
1454 |
st.write(f"Dataset ID: {sub_selection}")
|
1455 |
dataset_id = sub_selection
|
|
|
1456 |
# Fetch the default scale for the selected dataset
|
1457 |
try:
|
1458 |
collection = ee.ImageCollection(dataset_id)
|
1459 |
first_image = collection.first()
|
|
|
1460 |
default_scale = first_image.select(0).projection().nominalScale().getInfo()
|
1461 |
st.write(f"Default Scale for Selected Dataset: {default_scale} meters")
|
1462 |
except Exception as e:
|
|
|
1504 |
st.warning("Please enter a custom formula to proceed.")
|
1505 |
st.stop()
|
1506 |
st.write(f"Custom Formula: {custom_formula}")
|
1507 |
+
|
1508 |
reducer_choice = st.selectbox(
|
1509 |
"Select Reducer (e.g, mean , sum , median , min , max , count)",
|
1510 |
['mean', 'sum', 'median', 'min', 'max', 'count'],
|
1511 |
index=0
|
1512 |
)
|
1513 |
+
|
1514 |
start_date = st.date_input("Start Date", value=pd.to_datetime('2024-11-01'))
|
1515 |
end_date = st.date_input("End Date", value=pd.to_datetime('2024-12-01'))
|
1516 |
start_date_str = start_date.strftime('%Y-%m-%d')
|
1517 |
end_date_str = end_date.strftime('%Y-%m-%d')
|
1518 |
+
|
1519 |
if imagery_base == "Sentinel" and "Sentinel-2" in sub_options[sub_selection]:
|
1520 |
st.markdown("<h5>Cloud Filtering</h5>", unsafe_allow_html=True)
|
1521 |
tile_cloud_threshold = st.slider(
|
1522 |
"Select Maximum Tile-Based Cloud Coverage Threshold (%)",
|
1523 |
min_value=0,
|
1524 |
max_value=100,
|
1525 |
+
value=10, # Reduced from 20
|
1526 |
step=5,
|
1527 |
help="Tiles with cloud coverage exceeding this threshold will be excluded."
|
1528 |
)
|
|
|
1530 |
"Select Maximum Pixel-Based Cloud Coverage Threshold (%)",
|
1531 |
min_value=0,
|
1532 |
max_value=100,
|
1533 |
+
value=5, # Reduced from 10
|
1534 |
step=5,
|
1535 |
help="Individual pixels with cloud coverage exceeding this threshold will be masked."
|
1536 |
)
|
1537 |
+
|
1538 |
aggregation_period = st.selectbox(
|
1539 |
"Select Aggregation Period (e.g, Custom(Start Date to End Date) , Daily , Weekly , Monthly , Yearly)",
|
1540 |
["Custom (Start Date to End Date)", "Daily", "Weekly", "Monthly", "Yearly"],
|
1541 |
index=0
|
1542 |
)
|
1543 |
+
|
1544 |
shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"])
|
1545 |
kernel_size = None
|
1546 |
include_boundary = None
|
1547 |
+
|
1548 |
if shape_type.lower() == "point":
|
1549 |
kernel_size = st.selectbox(
|
1550 |
"Select Calculation Area(e.g, Point , 3x3 Kernel , 5x5 Kernel)",
|
|
|
1558 |
value=True,
|
1559 |
help="Check to include pixels on the polygon boundary; uncheck to exclude them."
|
1560 |
)
|
1561 |
+
|
1562 |
st.markdown("<h5>Calculation Scale</h5>", unsafe_allow_html=True)
|
1563 |
default_scale = ee.ImageCollection(dataset_id).first().select(0).projection().nominalScale().getInfo()
|
1564 |
user_scale = st.number_input(
|
|
|
1572 |
locations_df = pd.DataFrame()
|
1573 |
original_lat_col = None
|
1574 |
original_lon_col = None
|
1575 |
+
|
1576 |
if file_upload is not None:
|
1577 |
if shape_type.lower() == "point":
|
1578 |
if file_upload.name.endswith('.csv'):
|
|
|
1692 |
if not locations_df.empty:
|
1693 |
with st.spinner("Processing Data..."):
|
1694 |
try:
|
|
|
1695 |
results, processing_time = process_aggregation(
|
1696 |
locations_df,
|
1697 |
start_date_str,
|
|
|
1710 |
pixel_cloud_threshold=pixel_cloud_threshold if "pixel_cloud_threshold" in locals() else 0,
|
1711 |
user_scale=user_scale
|
1712 |
)
|
|
|
|
|
1713 |
if results:
|
1714 |
result_df = pd.DataFrame(results)
|
1715 |
st.write(f"Processed Results Table ({aggregation_period}) for Formula: {custom_formula}")
|
1716 |
st.dataframe(result_df)
|
|
|
|
|
1717 |
filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y%m%d')}_{end_date.strftime('%Y%m%d')}_{aggregation_period.lower()}.csv"
|
1718 |
st.download_button(
|
1719 |
label="Download results as CSV",
|
|
|
1721 |
file_name=filename,
|
1722 |
mime='text/csv'
|
1723 |
)
|
|
|
|
|
1724 |
st.success(f"Processing complete! Total processing time: {processing_time:.2f} seconds.")
|
|
|
|
|
1725 |
st.markdown("<h5>Graph Visualization</h5>", unsafe_allow_html=True)
|
|
|
|
|
1726 |
if aggregation_period.lower() == 'custom (start date to end date)':
|
1727 |
x_column = 'Date Range'
|
1728 |
elif 'Date' in result_df.columns:
|
|
|
1736 |
else:
|
1737 |
st.warning("No valid time column found for plotting.")
|
1738 |
st.stop()
|
1739 |
+
y_column = 'Calculated Value'
|
1740 |
+
fig = px.line(
|
1741 |
+
result_df,
|
1742 |
+
x=x_column,
|
1743 |
+
y=y_column,
|
1744 |
+
color='Location Name',
|
1745 |
+
title=f"{custom_formula} Over Time"
|
1746 |
+
)
|
1747 |
+
st.plotly_chart(fig)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1748 |
else:
|
1749 |
st.warning("No results were generated. Check your inputs or formula.")
|
1750 |
st.info(f"Total processing time: {processing_time:.2f} seconds.")
|
|
|
1751 |
except Exception as e:
|
1752 |
st.error(f"An error occurred during processing: {str(e)}")
|
1753 |
else:
|
1754 |
+
st.warning("Please upload a valid file to proceed.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|