# import streamlit as st
# import json
# import ee
# import os
# import pandas as pd
# import geopandas as gpd
# from datetime import datetime
# import leafmap.foliumap as leafmap
# import re
# from shapely.geometry import base
# from xml.etree import ElementTree as XET
# from concurrent.futures import ThreadPoolExecutor, as_completed
# import time
# import matplotlib.pyplot as plt
# import plotly.express as px
# # Set up the page layout
# st.set_page_config(layout="wide")
# # Custom button styling
# m = st.markdown(
# """
# """,
# unsafe_allow_html=True,
# )
# # Logo and Title
# st.write(
# f"""
#
#

#

#
# """,
# unsafe_allow_html=True,
# )
# st.markdown(
# f"""
#
#

#
( Spatial and Temporal Aggregation for Remote-sensing Analysis of GEE Data )
#
#
# """,
# unsafe_allow_html=True,
# )
# # Authenticate and initialize Earth Engine
# earthengine_credentials = os.environ.get("EE_Authentication")
# os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
# with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
# f.write(earthengine_credentials)
# ee.Initialize(project='ee-yashsacisro24')
# # Helper function to get reducer
# def get_reducer(reducer_name):
# reducers = {
# 'mean': ee.Reducer.mean(),
# 'sum': ee.Reducer.sum(),
# 'median': ee.Reducer.median(),
# 'min': ee.Reducer.min(),
# 'max': ee.Reducer.max(),
# 'count': ee.Reducer.count(),
# }
# return reducers.get(reducer_name.lower(), ee.Reducer.mean())
# # Function to convert geometry to Earth Engine format
# def convert_to_ee_geometry(geometry):
# if isinstance(geometry, base.BaseGeometry):
# if geometry.is_valid:
# geojson = geometry.__geo_interface__
# return ee.Geometry(geojson)
# else:
# raise ValueError("Invalid geometry: The polygon geometry is not valid.")
# elif isinstance(geometry, dict) or isinstance(geometry, str):
# try:
# if isinstance(geometry, str):
# geometry = json.loads(geometry)
# if 'type' in geometry and 'coordinates' in geometry:
# return ee.Geometry(geometry)
# else:
# raise ValueError("GeoJSON format is invalid.")
# except Exception as e:
# raise ValueError(f"Error parsing GeoJSON: {e}")
# elif isinstance(geometry, str) and geometry.lower().endswith(".kml"):
# try:
# tree = XET.parse(geometry)
# kml_root = tree.getroot()
# kml_namespace = {'kml': 'http://www.opengis.net/kml/2.2'}
# coordinates = kml_root.findall(".//kml:coordinates", kml_namespace)
# if coordinates:
# coords_text = coordinates[0].text.strip()
# coords = coords_text.split()
# coords = [tuple(map(float, coord.split(','))) for coord in coords]
# geojson = {"type": "Polygon", "coordinates": [coords]}
# return ee.Geometry(geojson)
# else:
# raise ValueError("KML does not contain valid coordinates.")
# except Exception as e:
# raise ValueError(f"Error parsing KML: {e}")
# else:
# raise ValueError("Unsupported geometry input type. Supported types are Shapely, GeoJSON, and KML.")
# # Function to calculate custom formula with dynamic scale handling
# def calculate_custom_formula(image, geometry, selected_bands, custom_formula, reducer_choice, dataset_id, user_scale=None):
# try:
# # Fetch the nominal scales of the selected bands
# band_scales = []
# for band in selected_bands:
# band_scale = image.select(band).projection().nominalScale().getInfo()
# band_scales.append(band_scale)
# # Determine the finest (smallest) scale among the selected bands
# default_scale = min(band_scales) if band_scales else 30 # Default to 30m if no bands are found
# # # Compute the finest scale among all bands
# # band_scales = [
# # first_image.select(band).projection().nominalScale().getInfo()
# # for band in first_image.bandNames().getInfo()
# # ]
# # default_scale = min(band_scales)
# # Use user-defined scale if provided, otherwise use the finest scale
# scale = user_scale if user_scale is not None else default_scale
# # Rescale all bands to the chosen scale
# rescaled_bands = {}
# for band in selected_bands:
# band_image = image.select(band)
# band_scale = band_image.projection().nominalScale().getInfo()
# if band_scale != scale:
# # Resample the band to match the target scale
# rescaled_band = band_image.resample('bilinear').reproject(
# crs=band_image.projection().crs(),
# scale=scale
# )
# rescaled_bands[band] = rescaled_band
# else:
# rescaled_bands[band] = band_image
# # Validate and extract band values
# reduced_values = {}
# reducer = get_reducer(reducer_choice)
# for band in selected_bands:
# value = rescaled_bands[band].reduceRegion(
# reducer=reducer,
# geometry=geometry,
# scale=scale # Use the determined scale here
# ).get(band).getInfo()
# reduced_values[band] = float(value if value is not None else 0)
# # Evaluate the custom formula
# formula = custom_formula
# for band in selected_bands:
# formula = formula.replace(band, str(reduced_values[band]))
# result = eval(formula, {"__builtins__": {}}, reduced_values)
# # Validate the result
# if not isinstance(result, (int, float)):
# raise ValueError("Formula did not result in a numeric value.")
# return ee.Image.constant(result).rename('custom_result')
# except ZeroDivisionError:
# st.error("Error: Division by zero in the formula.")
# return ee.Image(0).rename('custom_result').set('error', 'Division by zero')
# except SyntaxError:
# st.error(f"Error: Invalid syntax in formula '{custom_formula}'.")
# return ee.Image(0).rename('custom_result').set('error', 'Invalid syntax')
# except ValueError as e:
# st.error(f"Error: {str(e)}")
# return ee.Image(0).rename('custom_result').set('error', str(e))
# except Exception as e:
# st.error(f"Unexpected error: {e}")
# return ee.Image(0).rename('custom_result').set('error', str(e))
# # Aggregation functions
# def aggregate_data_custom(collection):
# collection = collection.map(lambda image: image.set('day', ee.Date(image.get('system:time_start')).format('YYYY-MM-dd')))
# grouped_by_day = collection.aggregate_array('day').distinct()
# def calculate_daily_mean(day):
# daily_collection = collection.filter(ee.Filter.eq('day', day))
# daily_mean = daily_collection.mean()
# return daily_mean.set('day', day)
# daily_images = ee.List(grouped_by_day.map(calculate_daily_mean))
# return ee.ImageCollection(daily_images)
# def aggregate_data_daily(collection):
# def set_day_start(image):
# date = ee.Date(image.get('system:time_start'))
# day_start = date.format('YYYY-MM-dd')
# return image.set('day_start', day_start)
# collection = collection.map(set_day_start)
# grouped_by_day = collection.aggregate_array('day_start').distinct()
# def calculate_daily_mean(day_start):
# daily_collection = collection.filter(ee.Filter.eq('day_start', day_start))
# daily_mean = daily_collection.mean()
# return daily_mean.set('day_start', day_start)
# daily_images = ee.List(grouped_by_day.map(calculate_daily_mean))
# return ee.ImageCollection(daily_images)
# def aggregate_data_weekly(collection, start_date_str, end_date_str):
# start_date = ee.Date(start_date_str)
# end_date = ee.Date(end_date_str)
# days_diff = end_date.difference(start_date, 'day')
# num_weeks = days_diff.divide(7).ceil().getInfo()
# weekly_images = []
# for week in range(num_weeks):
# week_start = start_date.advance(week * 7, 'day')
# week_end = week_start.advance(7, 'day')
# weekly_collection = collection.filterDate(week_start, week_end)
# if weekly_collection.size().getInfo() > 0:
# weekly_mean = weekly_collection.mean()
# weekly_mean = weekly_mean.set('week_start', week_start.format('YYYY-MM-dd'))
# weekly_images.append(weekly_mean)
# return ee.ImageCollection.fromImages(weekly_images)
# def aggregate_data_monthly(collection, start_date, end_date):
# collection = collection.filterDate(start_date, end_date)
# collection = collection.map(lambda image: image.set('month', ee.Date(image.get('system:time_start')).format('YYYY-MM')))
# grouped_by_month = collection.aggregate_array('month').distinct()
# def calculate_monthly_mean(month):
# monthly_collection = collection.filter(ee.Filter.eq('month', month))
# monthly_mean = monthly_collection.mean()
# return monthly_mean.set('month', month)
# monthly_images = ee.List(grouped_by_month.map(calculate_monthly_mean))
# return ee.ImageCollection(monthly_images)
# def aggregate_data_yearly(collection):
# collection = collection.map(lambda image: image.set('year', ee.Date(image.get('system:time_start')).format('YYYY')))
# grouped_by_year = collection.aggregate_array('year').distinct()
# def calculate_yearly_mean(year):
# yearly_collection = collection.filter(ee.Filter.eq('year', year))
# yearly_mean = yearly_collection.mean()
# return yearly_mean.set('year', year)
# yearly_images = ee.List(grouped_by_year.map(calculate_yearly_mean))
# return ee.ImageCollection(yearly_images)
# # Define the function before using it
# def calculate_cloud_percentage(image, cloud_band='QA60'):
# """
# Calculate the percentage of cloud-covered pixels in an image using the QA60 bitmask.
# Assumes the presence of the QA60 cloud mask band.
# """
# # Decode the QA60 bitmask
# qa60 = image.select(cloud_band)
# opaque_clouds = qa60.bitwiseAnd(1 << 10) # Bit 10: Opaque clouds
# cirrus_clouds = qa60.bitwiseAnd(1 << 11) # Bit 11: Cirrus clouds
# # Combine both cloud types into a single cloud mask
# cloud_mask = opaque_clouds.Or(cirrus_clouds)
# # Count total pixels and cloudy pixels
# total_pixels = qa60.reduceRegion(
# reducer=ee.Reducer.count(),
# geometry=image.geometry(),
# scale=60, # QA60 resolution is 60 meters
# maxPixels=1e13
# ).get(cloud_band)
# cloudy_pixels = cloud_mask.reduceRegion(
# reducer=ee.Reducer.sum(),
# geometry=image.geometry(),
# scale=60, # QA60 resolution is 60 meters
# maxPixels=1e13
# ).get(cloud_band)
# # Calculate cloud percentage
# if total_pixels == 0:
# return 0 # Avoid division by zero
# return ee.Number(cloudy_pixels).divide(ee.Number(total_pixels)).multiply(100)
# # Use the function in preprocessing
# def preprocess_collection(collection, tile_cloud_threshold, pixel_cloud_threshold):
# def filter_tile(image):
# cloud_percentage = calculate_cloud_percentage(image, cloud_band='QA60')
# return image.set('cloud_percentage', cloud_percentage).updateMask(cloud_percentage.lt(tile_cloud_threshold))
# def mask_cloudy_pixels(image):
# qa60 = image.select('QA60')
# opaque_clouds = qa60.bitwiseAnd(1 << 10)
# cirrus_clouds = qa60.bitwiseAnd(1 << 11)
# cloud_mask = opaque_clouds.Or(cirrus_clouds)
# clear_pixels = cloud_mask.Not()
# return image.updateMask(clear_pixels)
# filtered_collection = collection.map(filter_tile)
# masked_collection = filtered_collection.map(mask_cloudy_pixels)
# return masked_collection
# def process_single_geometry(row, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, custom_formula, original_lat_col, original_lon_col, kernel_size=None, include_boundary=None, user_scale=None):
# if shape_type.lower() == "point":
# latitude = row.get('latitude')
# longitude = row.get('longitude')
# if pd.isna(latitude) or pd.isna(longitude):
# return None
# location_name = row.get('name', f"Location_{row.name}")
# if kernel_size == "3x3 Kernel":
# buffer_size = 45
# roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds()
# elif kernel_size == "5x5 Kernel":
# buffer_size = 75
# roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds()
# else:
# roi = ee.Geometry.Point([longitude, latitude])
# elif shape_type.lower() == "polygon":
# polygon_geometry = row.get('geometry')
# location_name = row.get('name', f"Polygon_{row.name}")
# try:
# roi = convert_to_ee_geometry(polygon_geometry)
# if not include_boundary:
# roi = roi.buffer(-30).bounds()
# except ValueError:
# return None
# collection = ee.ImageCollection(dataset_id) \
# .filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
# .filterBounds(roi)
# if aggregation_period.lower() == 'custom (start date to end date)':
# collection = aggregate_data_custom(collection)
# elif aggregation_period.lower() == 'daily':
# collection = aggregate_data_daily(collection)
# elif aggregation_period.lower() == 'weekly':
# collection = aggregate_data_weekly(collection, start_date_str, end_date_str)
# elif aggregation_period.lower() == 'monthly':
# collection = aggregate_data_monthly(collection, start_date_str, end_date_str)
# elif aggregation_period.lower() == 'yearly':
# collection = aggregate_data_yearly(collection)
# image_list = collection.toList(collection.size())
# processed_weeks = set()
# aggregated_results = []
# for i in range(image_list.size().getInfo()):
# image = ee.Image(image_list.get(i))
# if aggregation_period.lower() == 'custom (start date to end date)':
# timestamp = image.get('day')
# period_label = 'Date'
# date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo()
# elif aggregation_period.lower() == 'daily':
# timestamp = image.get('day_start')
# period_label = 'Date'
# date = ee.String(timestamp).getInfo()
# elif aggregation_period.lower() == 'weekly':
# timestamp = image.get('week_start')
# period_label = 'Week'
# date = ee.String(timestamp).getInfo()
# if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or
# pd.to_datetime(date) > pd.to_datetime(end_date_str) or
# date in processed_weeks):
# continue
# processed_weeks.add(date)
# elif aggregation_period.lower() == 'monthly':
# timestamp = image.get('month')
# period_label = 'Month'
# date = ee.Date(timestamp).format('YYYY-MM').getInfo()
# elif aggregation_period.lower() == 'yearly':
# timestamp = image.get('year')
# period_label = 'Year'
# date = ee.Date(timestamp).format('YYYY').getInfo()
# index_image = calculate_custom_formula(image, roi, selected_bands, custom_formula, reducer_choice, dataset_id, user_scale=user_scale)
# try:
# index_value = index_image.reduceRegion(
# reducer=get_reducer(reducer_choice),
# geometry=roi,
# scale=user_scale
# ).get('custom_result')
# calculated_value = index_value.getInfo()
# if isinstance(calculated_value, (int, float)):
# result = {
# 'Location Name': location_name,
# period_label: date,
# 'Start Date': start_date_str,
# 'End Date': end_date_str,
# 'Calculated Value': calculated_value
# }
# if shape_type.lower() == 'point':
# result[original_lat_col] = latitude
# result[original_lon_col] = longitude
# aggregated_results.append(result)
# except Exception as e:
# st.error(f"Error retrieving value for {location_name}: {e}")
# return aggregated_results
# def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, original_lat_col, original_lon_col, custom_formula="", kernel_size=None, include_boundary=None, tile_cloud_threshold=0, pixel_cloud_threshold=0, user_scale=None):
# aggregated_results = []
# total_steps = len(locations_df)
# progress_bar = st.progress(0)
# progress_text = st.empty()
# start_time = time.time()
# raw_collection = ee.ImageCollection(dataset_id) \
# .filterDate(ee.Date(start_date_str), ee.Date(end_date_str))
# st.write(f"Original Collection Size: {raw_collection.size().getInfo()}")
# if tile_cloud_threshold > 0 or pixel_cloud_threshold > 0:
# raw_collection = preprocess_collection(raw_collection, tile_cloud_threshold, pixel_cloud_threshold)
# st.write(f"Preprocessed Collection Size: {raw_collection.size().getInfo()}")
# with ThreadPoolExecutor(max_workers=10) as executor:
# futures = []
# for idx, row in locations_df.iterrows():
# future = executor.submit(
# process_single_geometry,
# row,
# start_date_str,
# end_date_str,
# dataset_id,
# selected_bands,
# reducer_choice,
# shape_type,
# aggregation_period,
# custom_formula,
# original_lat_col,
# original_lon_col,
# kernel_size,
# include_boundary,
# user_scale=user_scale
# )
# futures.append(future)
# completed = 0
# for future in as_completed(futures):
# result = future.result()
# if result:
# aggregated_results.extend(result)
# completed += 1
# progress_percentage = completed / total_steps
# progress_bar.progress(progress_percentage)
# progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
# end_time = time.time()
# processing_time = end_time - start_time
# if aggregated_results:
# result_df = pd.DataFrame(aggregated_results)
# if aggregation_period.lower() == 'custom (start date to end date)':
# agg_dict = {
# 'Start Date': 'first',
# 'End Date': 'first',
# 'Calculated Value': 'mean' # Ensure this column is named 'Calculated Value'
# }
# if shape_type.lower() == 'point':
# agg_dict[original_lat_col] = 'first'
# agg_dict[original_lon_col] = 'first'
# aggregated_output = result_df.groupby('Location Name').agg(agg_dict).reset_index()
# aggregated_output['Date Range'] = aggregated_output['Start Date'] + " to " + aggregated_output['End Date']
# return aggregated_output.to_dict(orient='records'), processing_time
# else:
# return result_df.to_dict(orient='records'), processing_time
# return [], processing_time
# # Streamlit App Logic
# st.markdown("Image Collection
", unsafe_allow_html=True)
# imagery_base = st.selectbox("Select Imagery Base", ["Sentinel", "Landsat", "MODIS", "VIIRS", "Custom Input"], index=0)
# data = {}
# if imagery_base == "Sentinel":
# dataset_file = "sentinel_datasets.json"
# try:
# with open(dataset_file) as f:
# data = json.load(f)
# except FileNotFoundError:
# st.error(f"Dataset file '{dataset_file}' not found.")
# data = {}
# elif imagery_base == "Landsat":
# dataset_file = "landsat_datasets.json"
# try:
# with open(dataset_file) as f:
# data = json.load(f)
# except FileNotFoundError:
# st.error(f"Dataset file '{dataset_file}' not found.")
# data = {}
# elif imagery_base == "MODIS":
# dataset_file = "modis_datasets.json"
# try:
# with open(dataset_file) as f:
# data = json.load(f)
# except FileNotFoundError:
# st.error(f"Dataset file '{dataset_file}' not found.")
# data = {}
# elif imagery_base == "VIIRS":
# dataset_file = "viirs_datasets.json"
# try:
# with open(dataset_file) as f:
# data = json.load(f)
# except FileNotFoundError:
# st.error(f"Dataset file '{dataset_file}' not found.")
# data = {}
# elif imagery_base == "Custom Input":
# custom_dataset_id = st.text_input("Enter Custom Earth Engine Dataset ID (e.g., AHN/AHN4)", value="")
# if custom_dataset_id:
# try:
# if custom_dataset_id.startswith("ee.ImageCollection("):
# custom_dataset_id = custom_dataset_id.replace("ee.ImageCollection('", "").replace("')", "")
# collection = ee.ImageCollection(custom_dataset_id)
# first_image = collection.first()
# default_scale = first_image.projection().nominalScale().getInfo()
# band_names = first_image.bandNames().getInfo()
# data = {
# f"Custom Dataset: {custom_dataset_id}": {
# "sub_options": {custom_dataset_id: f"Custom Dataset ({custom_dataset_id})"},
# "bands": {custom_dataset_id: band_names}
# }
# }
# st.write(f"Fetched bands for {custom_dataset_id}: {', '.join(band_names)}")
# st.write(f"Default Scale for Dataset: {default_scale} meters")
# except Exception as e:
# st.error(f"Error fetching dataset: {str(e)}. Please check the dataset ID and ensure it's valid in Google Earth Engine.")
# data = {}
# else:
# st.warning("Please enter a custom dataset ID to proceed.")
# data = {}
# if not data:
# st.error("No valid dataset available. Please check your inputs.")
# st.stop()
# st.markdown("
{}
".format(imagery_base), unsafe_allow_html=True)
# main_selection = st.selectbox(f"Select {imagery_base} Dataset Category", list(data.keys()))
# sub_selection = None
# dataset_id = None
# if main_selection:
# sub_options = data[main_selection]["sub_options"]
# sub_selection = st.selectbox(f"Select Specific {imagery_base} Dataset ID", list(sub_options.keys()))
# if sub_selection:
# st.write(f"You selected: {main_selection} -> {sub_options[sub_selection]}")
# st.write(f"Dataset ID: {sub_selection}")
# dataset_id = sub_selection
# # Fetch the default scale for the selected dataset
# try:
# collection = ee.ImageCollection(dataset_id)
# first_image = collection.first()
# # Select the first band to avoid issues with multiple projections
# default_scale = first_image.select(0).projection().nominalScale().getInfo()
# st.write(f"Default Scale for Selected Dataset: {default_scale} meters")
# except Exception as e:
# st.error(f"Error fetching default scale: {str(e)}")
# st.markdown("
Earth Engine Index Calculator
", unsafe_allow_html=True)
# if main_selection and sub_selection:
# dataset_bands = data[main_selection]["bands"].get(sub_selection, [])
# st.write(f"Available Bands for {sub_options[sub_selection]}: {', '.join(dataset_bands)}")
# selected_bands = st.multiselect(
# "Select 1 or 2 Bands for Calculation",
# options=dataset_bands,
# default=[dataset_bands[0]] if dataset_bands else [],
# help=f"Select 1 or 2 bands from: {', '.join(dataset_bands)}"
# )
# if len(selected_bands) < 1:
# st.warning("Please select at least one band.")
# st.stop()
# if selected_bands:
# if len(selected_bands) == 1:
# default_formula = f"{selected_bands[0]}"
# example = f"'{selected_bands[0]} * 2' or '{selected_bands[0]} + 1'"
# else:
# default_formula = f"({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})"
# example = f"'{selected_bands[0]} * {selected_bands[1]} / 2' or '({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})'"
# custom_formula = st.text_input(
# "Enter Custom Formula (e.g (B8 - B4) / (B8 + B4) , B4*B3/2)",
# value=default_formula,
# help=f"Use only these bands: {', '.join(selected_bands)}. Examples: {example}"
# )
# def validate_formula(formula, selected_bands):
# allowed_chars = set(" +-*/()0123456789.")
# terms = re.findall(r'[a-zA-Z][a-zA-Z0-9_]*', formula)
# invalid_terms = [term for term in terms if term not in selected_bands]
# if invalid_terms:
# return False, f"Invalid terms in formula: {', '.join(invalid_terms)}. Use only {', '.join(selected_bands)}."
# if not all(char in allowed_chars or char in ''.join(selected_bands) for char in formula):
# return False, "Formula contains invalid characters. Use only bands, numbers, and operators (+, -, *, /, ())"
# return True, ""
# is_valid, error_message = validate_formula(custom_formula, selected_bands)
# if not is_valid:
# st.error(error_message)
# st.stop()
# elif not custom_formula:
# st.warning("Please enter a custom formula to proceed.")
# st.stop()
# st.write(f"Custom Formula: {custom_formula}")
# reducer_choice = st.selectbox(
# "Select Reducer (e.g, mean , sum , median , min , max , count)",
# ['mean', 'sum', 'median', 'min', 'max', 'count'],
# index=0
# )
# start_date = st.date_input("Start Date", value=pd.to_datetime('2024-11-01'))
# end_date = st.date_input("End Date", value=pd.to_datetime('2024-12-01'))
# start_date_str = start_date.strftime('%Y-%m-%d')
# end_date_str = end_date.strftime('%Y-%m-%d')
# if imagery_base == "Sentinel" and "Sentinel-2" in sub_options[sub_selection]:
# st.markdown("Cloud Filtering
", unsafe_allow_html=True)
# tile_cloud_threshold = st.slider(
# "Select Maximum Tile-Based Cloud Coverage Threshold (%)",
# min_value=0,
# max_value=100,
# value=20,
# step=5,
# help="Tiles with cloud coverage exceeding this threshold will be excluded."
# )
# pixel_cloud_threshold = st.slider(
# "Select Maximum Pixel-Based Cloud Coverage Threshold (%)",
# min_value=0,
# max_value=100,
# value=10,
# step=5,
# help="Individual pixels with cloud coverage exceeding this threshold will be masked."
# )
# aggregation_period = st.selectbox(
# "Select Aggregation Period (e.g, Custom(Start Date to End Date) , Daily , Weekly , Monthly , Yearly)",
# ["Custom (Start Date to End Date)", "Daily", "Weekly", "Monthly", "Yearly"],
# index=0
# )
# shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"])
# kernel_size = None
# include_boundary = None
# if shape_type.lower() == "point":
# kernel_size = st.selectbox(
# "Select Calculation Area(e.g, Point , 3x3 Kernel , 5x5 Kernel)",
# ["Point", "3x3 Kernel", "5x5 Kernel"],
# index=0,
# help="Choose 'Point' for exact point calculation, or a kernel size for area averaging."
# )
# elif shape_type.lower() == "polygon":
# include_boundary = st.checkbox(
# "Include Boundary Pixels",
# value=True,
# help="Check to include pixels on the polygon boundary; uncheck to exclude them."
# )
# st.markdown("Calculation Scale
", unsafe_allow_html=True)
# default_scale = ee.ImageCollection(dataset_id).first().select(0).projection().nominalScale().getInfo()
# user_scale = st.number_input(
# "Enter Calculation Scale (meters) [Leave blank to use dataset's default scale]",
# min_value=1.0,
# value=float(default_scale),
# help=f"Default scale for this dataset is {default_scale} meters. Adjust if needed."
# )
# file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
# locations_df = pd.DataFrame()
# original_lat_col = None
# original_lon_col = None
# if file_upload is not None:
# if shape_type.lower() == "point":
# if file_upload.name.endswith('.csv'):
# locations_df = pd.read_csv(file_upload)
# st.write("Preview of your uploaded data (first 5 rows):")
# st.dataframe(locations_df.head())
# all_columns = locations_df.columns.tolist()
# col1, col2 = st.columns(2)
# with col1:
# original_lat_col = st.selectbox(
# "Select Latitude Column",
# options=all_columns,
# index=all_columns.index('latitude') if 'latitude' in all_columns else 0,
# help="Select the column containing latitude values"
# )
# with col2:
# original_lon_col = st.selectbox(
# "Select Longitude Column",
# options=all_columns,
# index=all_columns.index('longitude') if 'longitude' in all_columns else 0,
# help="Select the column containing longitude values"
# )
# if not pd.api.types.is_numeric_dtype(locations_df[original_lat_col]) or not pd.api.types.is_numeric_dtype(locations_df[original_lon_col]):
# st.error("Error: Selected Latitude and Longitude columns must contain numeric values")
# st.stop()
# locations_df = locations_df.rename(columns={
# original_lat_col: 'latitude',
# original_lon_col: 'longitude'
# })
# elif file_upload.name.endswith('.geojson'):
# locations_df = gpd.read_file(file_upload)
# if 'geometry' in locations_df.columns:
# locations_df['latitude'] = locations_df['geometry'].y
# locations_df['longitude'] = locations_df['geometry'].x
# original_lat_col = 'latitude'
# original_lon_col = 'longitude'
# else:
# st.error("GeoJSON file doesn't contain geometry column")
# st.stop()
# elif file_upload.name.endswith('.kml'):
# kml_string = file_upload.read().decode('utf-8')
# try:
# root = XET.fromstring(kml_string)
# ns = {'kml': 'http://www.opengis.net/kml/2.2'}
# points = []
# for placemark in root.findall('.//kml:Placemark', ns):
# name = placemark.findtext('kml:name', default=f"Point_{len(points)}", namespaces=ns)
# coords_elem = placemark.find('.//kml:Point/kml:coordinates', ns)
# if coords_elem is not None:
# coords_text = coords_elem.text.strip()
# coords = [c.strip() for c in coords_text.split(',')]
# if len(coords) >= 2:
# lon, lat = float(coords[0]), float(coords[1])
# points.append({'name': name, 'geometry': f"POINT ({lon} {lat})"})
# if not points:
# st.error("No valid Point data found in the KML file.")
# else:
# locations_df = gpd.GeoDataFrame(points, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in points]), crs="EPSG:4326")
# locations_df['latitude'] = locations_df['geometry'].y
# locations_df['longitude'] = locations_df['geometry'].x
# original_lat_col = 'latitude'
# original_lon_col = 'longitude'
# except Exception as e:
# st.error(f"Error parsing KML file: {str(e)}")
# if not locations_df.empty and 'latitude' in locations_df.columns and 'longitude' in locations_df.columns:
# m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
# for _, row in locations_df.iterrows():
# latitude = row['latitude']
# longitude = row['longitude']
# if pd.isna(latitude) or pd.isna(longitude):
# continue
# m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
# st.write("Map of Uploaded Points:")
# m.to_streamlit()
# elif shape_type.lower() == "polygon":
# if file_upload.name.endswith('.csv'):
# st.error("CSV upload not supported for polygons. Please upload a GeoJSON or KML file.")
# elif file_upload.name.endswith('.geojson'):
# locations_df = gpd.read_file(file_upload)
# if 'geometry' not in locations_df.columns:
# st.error("GeoJSON file doesn't contain geometry column")
# st.stop()
# elif file_upload.name.endswith('.kml'):
# kml_string = file_upload.read().decode('utf-8')
# try:
# root = XET.fromstring(kml_string)
# ns = {'kml': 'http://www.opengis.net/kml/2.2'}
# polygons = []
# for placemark in root.findall('.//kml:Placemark', ns):
# name = placemark.findtext('kml:name', default=f"Polygon_{len(polygons)}", namespaces=ns)
# coords_elem = placemark.find('.//kml:Polygon//kml:coordinates', ns)
# if coords_elem is not None:
# coords_text = ' '.join(coords_elem.text.split())
# coord_pairs = [pair.split(',')[:2] for pair in coords_text.split() if pair]
# if len(coord_pairs) >= 4:
# coords_str = " ".join([f"{float(lon)} {float(lat)}" for lon, lat in coord_pairs])
# polygons.append({'name': name, 'geometry': f"POLYGON (({coords_str}))"})
# if not polygons:
# st.error("No valid Polygon data found in the KML file.")
# else:
# locations_df = gpd.GeoDataFrame(polygons, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in polygons]), crs="EPSG:4326")
# except Exception as e:
# st.error(f"Error parsing KML file: {str(e)}")
# if not locations_df.empty and 'geometry' in locations_df.columns:
# centroid_lat = locations_df.geometry.centroid.y.mean()
# centroid_lon = locations_df.geometry.centroid.x.mean()
# m = leafmap.Map(center=[centroid_lat, centroid_lon], zoom=10)
# for _, row in locations_df.iterrows():
# polygon = row['geometry']
# if polygon.is_valid:
# gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=locations_df.crs)
# m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
# st.write("Map of Uploaded Polygons:")
# m.to_streamlit()
# if st.button(f"Calculate {custom_formula}"):
# if not locations_df.empty:
# with st.spinner("Processing Data..."):
# try:
# # Call the aggregation function with updated parameters
# results, processing_time = process_aggregation(
# locations_df,
# start_date_str,
# end_date_str,
# dataset_id,
# selected_bands,
# reducer_choice,
# shape_type,
# aggregation_period,
# original_lat_col,
# original_lon_col,
# custom_formula=custom_formula,
# kernel_size=kernel_size,
# include_boundary=include_boundary,
# tile_cloud_threshold=tile_cloud_threshold if "tile_cloud_threshold" in locals() else 0,
# pixel_cloud_threshold=pixel_cloud_threshold if "pixel_cloud_threshold" in locals() else 0,
# user_scale=user_scale
# )
# # Process and display results
# if results:
# result_df = pd.DataFrame(results)
# st.write(f"Processed Results Table ({aggregation_period}) for Formula: {custom_formula}")
# st.dataframe(result_df)
# # Download button for CSV
# filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y%m%d')}_{end_date.strftime('%Y%m%d')}_{aggregation_period.lower()}.csv"
# st.download_button(
# label="Download results as CSV",
# data=result_df.to_csv(index=False).encode('utf-8'),
# file_name=filename,
# mime='text/csv'
# )
# # Success message
# st.success(f"Processing complete! Total processing time: {processing_time:.2f} seconds.")
# # Graph Visualization Section
# st.markdown("Graph Visualization
", unsafe_allow_html=True)
# # Dynamically identify the time column
# if aggregation_period.lower() == 'custom (start date to end date)':
# x_column = 'Date Range'
# elif 'Date' in result_df.columns:
# x_column = 'Date'
# elif 'Week' in result_df.columns:
# x_column = 'Week'
# elif 'Month' in result_df.columns:
# x_column = 'Month'
# elif 'Year' in result_df.columns:
# x_column = 'Year'
# else:
# st.warning("No valid time column found for plotting.")
# st.stop()
# # Dynamically identify the value column
# y_column = None
# if 'Calculated Value' in result_df.columns:
# y_column = 'Calculated Value'
# elif 'Aggregated Value' in result_df.columns:
# y_column = 'Aggregated Value'
# else:
# st.warning("No value column found for plotting. Available columns: " + ", ".join(result_df.columns))
# st.stop()
# # Ensure we have valid data to plot
# if result_df.empty:
# st.warning("No data available for plotting.")
# st.stop()
# # # Line Chart
# # try:
# # st.subheader("Line Chart")
# # if x_column == 'Location Name':
# # st.line_chart(result_df.set_index(x_column)[y_column])
# # else:
# # # Convert to datetime for better sorting
# # result_df[x_column] = pd.to_datetime(result_df[x_column], errors='ignore')
# # result_df = result_df.sort_values(x_column)
# # st.line_chart(result_df.set_index(x_column)[y_column])
# # except Exception as e:
# # st.error(f"Error creating line chart: {str(e)}")
# # # Bar Chart
# # try:
# # st.subheader("Bar Chart")
# # if x_column == 'Location Name':
# # st.bar_chart(result_df.set_index(x_column)[y_column])
# # else:
# # result_df[x_column] = pd.to_datetime(result_df[x_column], errors='ignore')
# # result_df = result_df.sort_values(x_column)
# # st.bar_chart(result_df.set_index(x_column)[y_column])
# # except Exception as e:
# # st.error(f"Error creating bar chart: {str(e)}")
# # Advanced Plot (Plotly)
# try:
# st.subheader("Advanced Interactive Plot (Plotly)")
# if x_column == 'Location Name':
# fig = px.bar(
# result_df,
# x=x_column,
# y=y_column,
# color='Location Name',
# title=f"{custom_formula} by Location"
# )
# else:
# fig = px.line(
# result_df,
# x=x_column,
# y=y_column,
# color='Location Name',
# title=f"{custom_formula} Over Time"
# )
# st.plotly_chart(fig)
# except Exception as e:
# st.error(f"Error creating interactive plot: {str(e)}")
# else:
# st.warning("No results were generated. Check your inputs or formula.")
# st.info(f"Total processing time: {processing_time:.2f} seconds.")
# except Exception as e:
# st.error(f"An error occurred during processing: {str(e)}")
# else:
# st.warning("Please upload a valid file to proceed.")
# # if st.button(f"Calculate {custom_formula}"):
# # if not locations_df.empty:
# # with st.spinner("Processing Data..."):
# # try:
# # results, processing_time = process_aggregation(
# # locations_df,
# # start_date_str,
# # end_date_str,
# # dataset_id,
# # selected_bands,
# # reducer_choice,
# # shape_type,
# # aggregation_period,
# # original_lat_col,
# # original_lon_col,
# # custom_formula,
# # kernel_size,
# # include_boundary,
# # tile_cloud_threshold=tile_cloud_threshold if "tile_cloud_threshold" in locals() else 0,
# # pixel_cloud_threshold=pixel_cloud_threshold if "pixel_cloud_threshold" in locals() else 0,
# # user_scale=user_scale
# # )
# # if results:
# # result_df = pd.DataFrame(results)
# # st.write(f"Processed Results Table ({aggregation_period}) for Formula: {custom_formula}")
# # st.dataframe(result_df)
# # filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y%m%d')}_{end_date.strftime('%Y%m%d')}_{aggregation_period.lower()}.csv"
# # st.download_button(
# # label="Download results as CSV",
# # data=result_df.to_csv(index=False).encode('utf-8'),
# # file_name=filename,
# # mime='text/csv'
# # )
# # st.success(f"Processing complete! Total processing time: {processing_time:.2f} seconds.")
# # st.markdown("Graph Visualization
", unsafe_allow_html=True)
# # if aggregation_period.lower() == 'custom (start date to end date)':
# # x_column = 'Date Range'
# # elif 'Date' in result_df.columns:
# # x_column = 'Date'
# # elif 'Week' in result_df.columns:
# # x_column = 'Week'
# # elif 'Month' in result_df.columns:
# # x_column = 'Month'
# # elif 'Year' in result_df.columns:
# # x_column = 'Year'
# # else:
# # st.warning("No valid time column found for plotting.")
# # st.stop()
# # y_column = 'Calculated Value'
# # fig = px.line(
# # result_df,
# # x=x_column,
# # y=y_column,
# # color='Location Name',
# # title=f"{custom_formula} Over Time"
# # )
# # st.plotly_chart(fig)
# # else:
# # st.warning("No results were generated. Check your inputs or formula.")
# # st.info(f"Total processing time: {processing_time:.2f} seconds.")
# # except Exception as e:
# # st.error(f"An error occurred during processing: {str(e)}")
# # else:
# # st.warning("Please upload a valid file to proceed.")
import streamlit as st
import json
import ee
import os
import pandas as pd
import geopandas as gpd
from datetime import datetime
import leafmap.foliumap as leafmap
import re
from shapely.geometry import base
from xml.etree import ElementTree as XET
from concurrent.futures import ThreadPoolExecutor, as_completed
import time
import matplotlib.pyplot as plt
import plotly.express as px
# Set up the page layout
st.set_page_config(layout="wide")
# Custom button styling
m = st.markdown(
"""
""",
unsafe_allow_html=True,
)
# Logo and Title
st.write(
f"""
""",
unsafe_allow_html=True,
)
st.markdown(
f"""
( Spatial and Temporal Aggregation for Remote-sensing Analysis of GEE Data )
""",
unsafe_allow_html=True,
)
# Authenticate and initialize Earth Engine
earthengine_credentials = os.environ.get("EE_Authentication")
os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
f.write(earthengine_credentials)
ee.Initialize(project='ee-yashsacisro24')
# Helper function to get reducer
def get_reducer(reducer_name):
reducers = {
'mean': ee.Reducer.mean(),
'sum': ee.Reducer.sum(),
'median': ee.Reducer.median(),
'min': ee.Reducer.min(),
'max': ee.Reducer.max(),
'count': ee.Reducer.count(),
}
return reducers.get(reducer_name.lower(), ee.Reducer.mean())
# Function to convert geometry to Earth Engine format
def convert_to_ee_geometry(geometry):
if isinstance(geometry, base.BaseGeometry):
if geometry.is_valid:
geojson = geometry.__geo_interface__
return ee.Geometry(geojson)
else:
raise ValueError("Invalid geometry: The polygon geometry is not valid.")
elif isinstance(geometry, dict) or isinstance(geometry, str):
try:
if isinstance(geometry, str):
geometry = json.loads(geometry)
if 'type' in geometry and 'coordinates' in geometry:
return ee.Geometry(geometry)
else:
raise ValueError("GeoJSON format is invalid.")
except Exception as e:
raise ValueError(f"Error parsing GeoJSON: {e}")
elif isinstance(geometry, str) and geometry.lower().endswith(".kml"):
try:
tree = XET.parse(geometry)
kml_root = tree.getroot()
kml_namespace = {'kml': 'http://www.opengis.net/kml/2.2'}
coordinates = kml_root.findall(".//kml:coordinates", kml_namespace)
if coordinates:
coords_text = coordinates[0].text.strip()
coords = coords_text.split()
coords = [tuple(map(float, coord.split(','))) for coord in coords]
geojson = {"type": "Polygon", "coordinates": [coords]}
return ee.Geometry(geojson)
else:
raise ValueError("KML does not contain valid coordinates.")
except Exception as e:
raise ValueError(f"Error parsing KML: {e}")
else:
raise ValueError("Unsupported geometry input type. Supported types are Shapely, GeoJSON, and KML.")
# Function to calculate custom formula with dynamic scale handling
def calculate_custom_formula(image, geometry, selected_bands, custom_formula, reducer_choice, dataset_id, user_scale=None):
try:
# Fetch the nominal scales of the selected bands
band_scales = []
for band in selected_bands:
band_scale = image.select(band).projection().nominalScale().getInfo()
band_scales.append(band_scale)
default_scale = min(band_scales) if band_scales else 30 # Default to 30m if no bands are found
scale = user_scale if user_scale is not None else default_scale
# Rescale all bands to the chosen scale
rescaled_bands = {}
for band in selected_bands:
band_image = image.select(band)
band_scale = band_image.projection().nominalScale().getInfo()
if band_scale != scale:
rescaled_band = band_image.resample('bilinear').reproject(
crs=band_image.projection().crs(),
scale=scale
)
rescaled_bands[band] = rescaled_band
else:
rescaled_bands[band] = band_image
# Validate and extract band values
reduced_values = {}
reducer = get_reducer(reducer_choice)
for band in selected_bands:
value = rescaled_bands[band].reduceRegion(
reducer=reducer,
geometry=geometry,
scale=scale
).get(band).getInfo()
reduced_values[band] = float(value if value is not None else 0)
# Evaluate the custom formula
formula = custom_formula
for band in selected_bands:
formula = formula.replace(band, str(reduced_values[band]))
result = eval(formula, {"__builtins__": {}}, reduced_values)
# Validate the result
if not isinstance(result, (int, float)):
raise ValueError("Formula did not result in a numeric value.")
return ee.Image.constant(result).rename('custom_result')
except ZeroDivisionError:
st.error("Error: Division by zero in the formula.")
return ee.Image(0).rename('custom_result').set('error', 'Division by zero')
except SyntaxError:
st.error(f"Error: Invalid syntax in formula '{custom_formula}'.")
return ee.Image(0).rename('custom_result').set('error', 'Invalid syntax')
except ValueError as e:
st.error(f"Error: {str(e)}")
return ee.Image(0).rename('custom_result').set('error', str(e))
except Exception as e:
st.error(f"Unexpected error: {e}")
return ee.Image(0).rename('custom_result').set('error', str(e))
# Aggregation functions
def aggregate_data_custom(collection):
collection = collection.map(lambda image: image.set('day', ee.Date(image.get('system:time_start')).format('YYYY-MM-dd')))
grouped_by_day = collection.aggregate_array('day').distinct()
def calculate_daily_mean(day):
daily_collection = collection.filter(ee.Filter.eq('day', day))
daily_mean = daily_collection.mean()
return daily_mean.set('day', day)
daily_images = ee.List(grouped_by_day.map(calculate_daily_mean))
return ee.ImageCollection(daily_images)
def aggregate_data_daily(collection):
def set_day_start(image):
date = ee.Date(image.get('system:time_start'))
day_start = date.format('YYYY-MM-dd')
return image.set('day_start', day_start)
collection = collection.map(set_day_start)
grouped_by_day = collection.aggregate_array('day_start').distinct()
def calculate_daily_mean(day_start):
daily_collection = collection.filter(ee.Filter.eq('day_start', day_start))
daily_mean = daily_collection.mean()
return daily_mean.set('day_start', day_start)
daily_images = ee.List(grouped_by_day.map(calculate_daily_mean))
return ee.ImageCollection(daily_images)
def aggregate_data_weekly(collection, start_date_str, end_date_str):
start_date = ee.Date(start_date_str)
end_date = ee.Date(end_date_str)
days_diff = end_date.difference(start_date, 'day')
num_weeks = days_diff.divide(7).ceil().getInfo()
weekly_images = []
for week in range(num_weeks):
week_start = start_date.advance(week * 7, 'day')
week_end = week_start.advance(7, 'day')
weekly_collection = collection.filterDate(week_start, week_end)
if weekly_collection.size().getInfo() > 0:
weekly_mean = weekly_collection.mean()
weekly_mean = weekly_mean.set('week_start', week_start.format('YYYY-MM-dd'))
weekly_images.append(weekly_mean)
return ee.ImageCollection.fromImages(weekly_images)
def aggregate_data_monthly(collection, start_date, end_date):
collection = collection.filterDate(start_date, end_date)
collection = collection.map(lambda image: image.set('month', ee.Date(image.get('system:time_start')).format('YYYY-MM')))
grouped_by_month = collection.aggregate_array('month').distinct()
def calculate_monthly_mean(month):
monthly_collection = collection.filter(ee.Filter.eq('month', month))
monthly_mean = monthly_collection.mean()
return monthly_mean.set('month', month)
monthly_images = ee.List(grouped_by_month.map(calculate_monthly_mean))
return ee.ImageCollection(monthly_images)
def aggregate_data_yearly(collection):
collection = collection.map(lambda image: image.set('year', ee.Date(image.get('system:time_start')).format('YYYY')))
grouped_by_year = collection.aggregate_array('year').distinct()
def calculate_yearly_mean(year):
yearly_collection = collection.filter(ee.Filter.eq('year', year))
yearly_mean = yearly_collection.mean()
return yearly_mean.set('year', year)
yearly_images = ee.List(grouped_by_year.map(calculate_yearly_mean))
return ee.ImageCollection(yearly_images)
# Cloud percentage calculation
def calculate_cloud_percentage(image, cloud_band='QA60'):
qa60 = image.select(cloud_band)
opaque_clouds = qa60.bitwiseAnd(1 << 10)
cirrus_clouds = qa60.bitwiseAnd(1 << 11)
cloud_mask = opaque_clouds.Or(cirrus_clouds)
total_pixels = qa60.reduceRegion(
reducer=ee.Reducer.count(),
geometry=image.geometry(),
scale=60,
maxPixels=1e13
).get(cloud_band)
cloudy_pixels = cloud_mask.reduceRegion(
reducer=ee.Reducer.sum(),
geometry=image.geometry(),
scale=60,
maxPixels=1e13
).get(cloud_band)
if total_pixels == 0:
return 0
return ee.Number(cloudy_pixels).divide(ee.Number(total_pixels)).multiply(100)
# Preprocessing function
def preprocess_collection(collection, tile_cloud_threshold, pixel_cloud_threshold):
def filter_tile(image):
cloud_percentage = calculate_cloud_percentage(image, cloud_band='QA60')
return image.set('cloud_percentage', cloud_percentage).updateMask(cloud_percentage.lt(tile_cloud_threshold))
def mask_cloudy_pixels(image):
qa60 = image.select('QA60')
opaque_clouds = qa60.bitwiseAnd(1 << 10)
cirrus_clouds = qa60.bitwiseAnd(1 << 11)
cloud_mask = opaque_clouds.Or(cirrus_clouds)
clear_pixels = cloud_mask.Not()
return image.updateMask(clear_pixels)
filtered_collection = collection.map(filter_tile)
masked_collection = filtered_collection.map(mask_cloudy_pixels)
return masked_collection
# Process single geometry
def process_single_geometry(row, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, custom_formula, original_lat_col, original_lon_col, kernel_size=None, include_boundary=None, user_scale=None):
if shape_type.lower() == "point":
latitude = row.get('latitude')
longitude = row.get('longitude')
if pd.isna(latitude) or pd.isna(longitude):
return None
location_name = row.get('name', f"Location_{row.name}")
if kernel_size == "3x3 Kernel":
buffer_size = 45
roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds()
elif kernel_size == "5x5 Kernel":
buffer_size = 75
roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds()
else:
roi = ee.Geometry.Point([longitude, latitude])
elif shape_type.lower() == "polygon":
polygon_geometry = row.get('geometry')
location_name = row.get('name', f"Polygon_{row.name}")
try:
roi = convert_to_ee_geometry(polygon_geometry)
if not include_boundary:
roi = roi.buffer(-30).bounds()
except ValueError:
return None
collection = ee.ImageCollection(dataset_id) \
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
.filterBounds(roi)
if aggregation_period.lower() == 'custom (start date to end date)':
collection = aggregate_data_custom(collection)
elif aggregation_period.lower() == 'daily':
collection = aggregate_data_daily(collection)
elif aggregation_period.lower() == 'weekly':
collection = aggregate_data_weekly(collection, start_date_str, end_date_str)
elif aggregation_period.lower() == 'monthly':
collection = aggregate_data_monthly(collection, start_date_str, end_date_str)
elif aggregation_period.lower() == 'yearly':
collection = aggregate_data_yearly(collection)
image_list = collection.toList(collection.size())
processed_weeks = set()
aggregated_results = []
for i in range(image_list.size().getInfo()):
image = ee.Image(image_list.get(i))
if aggregation_period.lower() == 'custom (start date to end date)':
timestamp = image.get('day')
period_label = 'Date'
date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo()
elif aggregation_period.lower() == 'daily':
timestamp = image.get('day_start')
period_label = 'Date'
date = ee.String(timestamp).getInfo()
elif aggregation_period.lower() == 'weekly':
timestamp = image.get('week_start')
period_label = 'Week'
date = ee.String(timestamp).getInfo()
if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or
pd.to_datetime(date) > pd.to_datetime(end_date_str) or
date in processed_weeks):
continue
processed_weeks.add(date)
elif aggregation_period.lower() == 'monthly':
timestamp = image.get('month')
period_label = 'Month'
date = ee.Date(timestamp).format('YYYY-MM').getInfo()
elif aggregation_period.lower() == 'yearly':
timestamp = image.get('year')
period_label = 'Year'
date = ee.Date(timestamp).format('YYYY').getInfo()
index_image = calculate_custom_formula(image, roi, selected_bands, custom_formula, reducer_choice, dataset_id, user_scale=user_scale)
try:
index_value = index_image.reduceRegion(
reducer=get_reducer(reducer_choice),
geometry=roi,
scale=user_scale
).get('custom_result')
calculated_value = index_value.getInfo()
if isinstance(calculated_value, (int, float)):
result = {
'Location Name': location_name,
period_label: date,
'Start Date': start_date_str,
'End Date': end_date_str,
'Calculated Value': calculated_value
}
if shape_type.lower() == 'point':
result[original_lat_col] = latitude
result[original_lon_col] = longitude
aggregated_results.append(result)
except Exception as e:
st.error(f"Error retrieving value for {location_name}: {e}")
return aggregated_results
# Process aggregation
def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, original_lat_col, original_lon_col, custom_formula="", kernel_size=None, include_boundary=None, tile_cloud_threshold=0, pixel_cloud_threshold=0, user_scale=None):
aggregated_results = []
total_steps = len(locations_df)
progress_bar = st.progress(0)
progress_text = st.empty()
start_time = time.time()
raw_collection = ee.ImageCollection(dataset_id) \
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str))
st.write(f"Original Collection Size: {raw_collection.size().getInfo()}")
if tile_cloud_threshold > 0 or pixel_cloud_threshold > 0:
raw_collection = preprocess_collection(raw_collection, tile_cloud_threshold, pixel_cloud_threshold)
st.write(f"Preprocessed Collection Size: {raw_collection.size().getInfo()}")
with ThreadPoolExecutor(max_workers=10) as executor:
futures = []
for idx, row in locations_df.iterrows():
future = executor.submit(
process_single_geometry,
row,
start_date_str,
end_date_str,
dataset_id,
selected_bands,
reducer_choice,
shape_type,
aggregation_period,
custom_formula,
original_lat_col,
original_lon_col,
kernel_size,
include_boundary,
user_scale=user_scale
)
futures.append(future)
completed = 0
for future in as_completed(futures):
result = future.result()
if result:
aggregated_results.extend(result)
completed += 1
progress_percentage = completed / total_steps
progress_bar.progress(progress_percentage)
progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
end_time = time.time()
processing_time = end_time - start_time
if aggregated_results:
result_df = pd.DataFrame(aggregated_results)
if aggregation_period.lower() == 'custom (start date to end date)':
agg_dict = {
'Start Date': 'first',
'End Date': 'first',
'Calculated Value': 'mean'
}
if shape_type.lower() == 'point':
agg_dict[original_lat_col] = 'first'
agg_dict[original_lon_col] = 'first'
aggregated_output = result_df.groupby('Location Name').agg(agg_dict).reset_index()
aggregated_output['Date Range'] = aggregated_output['Start Date'] + " to " + aggregated_output['End Date']
return aggregated_output.to_dict(orient='records'), processing_time
else:
return result_df.to_dict(orient='records'), processing_time
return [], processing_time
# Streamlit App Logic
st.markdown("Image Collection
", unsafe_allow_html=True)
imagery_base = st.selectbox("Select Imagery Base", ["Sentinel", "Landsat", "MODIS", "VIIRS", "Custom Input"], index=0)
data = {}
if imagery_base == "Sentinel":
dataset_file = "sentinel_datasets.json"
try:
with open(dataset_file) as f:
data = json.load(f)
except FileNotFoundError:
st.error(f"Dataset file '{dataset_file}' not found.")
data = {}
elif imagery_base == "Landsat":
dataset_file = "landsat_datasets.json"
try:
with open(dataset_file) as f:
data = json.load(f)
except FileNotFoundError:
st.error(f"Dataset file '{dataset_file}' not found.")
data = {}
elif imagery_base == "MODIS":
dataset_file = "modis_datasets.json"
try:
with open(dataset_file) as f:
data = json.load(f)
except FileNotFoundError:
st.error(f"Dataset file '{dataset_file}' not found.")
data = {}
elif imagery_base == "VIIRS":
dataset_file = "viirs_datasets.json"
try:
with open(dataset_file) as f:
data = json.load(f)
except FileNotFoundError:
st.error(f"Dataset file '{dataset_file}' not found.")
data = {}
elif imagery_base == "Custom Input":
custom_dataset_id = st.text_input("Enter Custom Earth Engine Dataset ID (e.g., AHN/AHN4)", value="")
if custom_dataset_id:
try:
if custom_dataset_id.startswith("ee.ImageCollection("):
custom_dataset_id = custom_dataset_id.replace("ee.ImageCollection('", "").replace("')", "")
collection = ee.ImageCollection(custom_dataset_id)
first_image = collection.first()
default_scale = first_image.projection().nominalScale().getInfo()
band_names = first_image.bandNames().getInfo()
data = {
f"Custom Dataset: {custom_dataset_id}": {
"sub_options": {custom_dataset_id: f"Custom Dataset ({custom_dataset_id})"},
"bands": {custom_dataset_id: band_names}
}
}
st.write(f"Fetched bands for {custom_dataset_id}: {', '.join(band_names)}")
st.write(f"Default Scale for Dataset: {default_scale} meters")
except Exception as e:
st.error(f"Error fetching dataset: {str(e)}. Please check the dataset ID and ensure it's valid in Google Earth Engine.")
data = {}
else:
st.warning("Please enter a custom dataset ID to proceed.")
data = {}
if not data:
st.error("No valid dataset available. Please check your inputs.")
st.stop()
st.markdown("
{}
".format(imagery_base), unsafe_allow_html=True)
main_selection = st.selectbox(f"Select {imagery_base} Dataset Category", list(data.keys()))
sub_selection = None
dataset_id = None
if main_selection:
sub_options = data[main_selection]["sub_options"]
sub_selection = st.selectbox(f"Select Specific {imagery_base} Dataset ID", list(sub_options.keys()))
if sub_selection:
st.write(f"You selected: {main_selection} -> {sub_options[sub_selection]}")
st.write(f"Dataset ID: {sub_selection}")
dataset_id = sub_selection
# Fetch the default scale for the selected dataset
try:
collection = ee.ImageCollection(dataset_id)
first_image = collection.first()
default_scale = first_image.select(0).projection().nominalScale().getInfo()
st.write(f"Default Scale for Selected Dataset: {default_scale} meters")
except Exception as e:
st.error(f"Error fetching default scale: {str(e)}")
st.markdown("
Earth Engine Index Calculator
", unsafe_allow_html=True)
if main_selection and sub_selection:
dataset_bands = data[main_selection]["bands"].get(sub_selection, [])
st.write(f"Available Bands for {sub_options[sub_selection]}: {', '.join(dataset_bands)}")
selected_bands = st.multiselect(
"Select 1 or 2 Bands for Calculation",
options=dataset_bands,
default=[dataset_bands[0]] if dataset_bands else [],
help=f"Select 1 or 2 bands from: {', '.join(dataset_bands)}"
)
if len(selected_bands) < 1:
st.warning("Please select at least one band.")
st.stop()
if selected_bands:
if len(selected_bands) == 1:
default_formula = f"{selected_bands[0]}"
example = f"'{selected_bands[0]} * 2' or '{selected_bands[0]} + 1'"
else:
default_formula = f"({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})"
example = f"'{selected_bands[0]} * {selected_bands[1]} / 2' or '({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})'"
custom_formula = st.text_input(
"Enter Custom Formula (e.g (B8 - B4) / (B8 + B4) , B4*B3/2)",
value=default_formula,
help=f"Use only these bands: {', '.join(selected_bands)}. Examples: {example}"
)
def validate_formula(formula, selected_bands):
allowed_chars = set(" +-*/()0123456789.")
terms = re.findall(r'[a-zA-Z][a-zA-Z0-9_]*', formula)
invalid_terms = [term for term in terms if term not in selected_bands]
if invalid_terms:
return False, f"Invalid terms in formula: {', '.join(invalid_terms)}. Use only {', '.join(selected_bands)}."
if not all(char in allowed_chars or char in ''.join(selected_bands) for char in formula):
return False, "Formula contains invalid characters. Use only bands, numbers, and operators (+, -, *, /, ())"
return True, ""
is_valid, error_message = validate_formula(custom_formula, selected_bands)
if not is_valid:
st.error(error_message)
st.stop()
elif not custom_formula:
st.warning("Please enter a custom formula to proceed.")
st.stop()
st.write(f"Custom Formula: {custom_formula}")
reducer_choice = st.selectbox(
"Select Reducer (e.g, mean , sum , median , min , max , count)",
['mean', 'sum', 'median', 'min', 'max', 'count'],
index=0
)
start_date = st.date_input("Start Date", value=pd.to_datetime('2024-11-01'))
end_date = st.date_input("End Date", value=pd.to_datetime('2024-12-01'))
start_date_str = start_date.strftime('%Y-%m-%d')
end_date_str = end_date.strftime('%Y-%m-%d')
if imagery_base == "Sentinel" and "Sentinel-2" in sub_options[sub_selection]:
st.markdown("Cloud Filtering
", unsafe_allow_html=True)
tile_cloud_threshold = st.slider(
"Select Maximum Tile-Based Cloud Coverage Threshold (%)",
min_value=0,
max_value=100,
value=10, # Reduced from 20
step=5,
help="Tiles with cloud coverage exceeding this threshold will be excluded."
)
pixel_cloud_threshold = st.slider(
"Select Maximum Pixel-Based Cloud Coverage Threshold (%)",
min_value=0,
max_value=100,
value=5, # Reduced from 10
step=5,
help="Individual pixels with cloud coverage exceeding this threshold will be masked."
)
aggregation_period = st.selectbox(
"Select Aggregation Period (e.g, Custom(Start Date to End Date) , Daily , Weekly , Monthly , Yearly)",
["Custom (Start Date to End Date)", "Daily", "Weekly", "Monthly", "Yearly"],
index=0
)
shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"])
kernel_size = None
include_boundary = None
if shape_type.lower() == "point":
kernel_size = st.selectbox(
"Select Calculation Area(e.g, Point , 3x3 Kernel , 5x5 Kernel)",
["Point", "3x3 Kernel", "5x5 Kernel"],
index=0,
help="Choose 'Point' for exact point calculation, or a kernel size for area averaging."
)
elif shape_type.lower() == "polygon":
include_boundary = st.checkbox(
"Include Boundary Pixels",
value=True,
help="Check to include pixels on the polygon boundary; uncheck to exclude them."
)
st.markdown("Calculation Scale
", unsafe_allow_html=True)
default_scale = ee.ImageCollection(dataset_id).first().select(0).projection().nominalScale().getInfo()
user_scale = st.number_input(
"Enter Calculation Scale (meters) [Leave blank to use dataset's default scale]",
min_value=1.0,
value=float(default_scale),
help=f"Default scale for this dataset is {default_scale} meters. Adjust if needed."
)
file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
locations_df = pd.DataFrame()
original_lat_col = None
original_lon_col = None
if file_upload is not None:
if shape_type.lower() == "point":
if file_upload.name.endswith('.csv'):
locations_df = pd.read_csv(file_upload)
st.write("Preview of your uploaded data (first 5 rows):")
st.dataframe(locations_df.head())
all_columns = locations_df.columns.tolist()
col1, col2 = st.columns(2)
with col1:
original_lat_col = st.selectbox(
"Select Latitude Column",
options=all_columns,
index=all_columns.index('latitude') if 'latitude' in all_columns else 0,
help="Select the column containing latitude values"
)
with col2:
original_lon_col = st.selectbox(
"Select Longitude Column",
options=all_columns,
index=all_columns.index('longitude') if 'longitude' in all_columns else 0,
help="Select the column containing longitude values"
)
if not pd.api.types.is_numeric_dtype(locations_df[original_lat_col]) or not pd.api.types.is_numeric_dtype(locations_df[original_lon_col]):
st.error("Error: Selected Latitude and Longitude columns must contain numeric values")
st.stop()
locations_df = locations_df.rename(columns={
original_lat_col: 'latitude',
original_lon_col: 'longitude'
})
elif file_upload.name.endswith('.geojson'):
locations_df = gpd.read_file(file_upload)
if 'geometry' in locations_df.columns:
locations_df['latitude'] = locations_df['geometry'].y
locations_df['longitude'] = locations_df['geometry'].x
original_lat_col = 'latitude'
original_lon_col = 'longitude'
else:
st.error("GeoJSON file doesn't contain geometry column")
st.stop()
elif file_upload.name.endswith('.kml'):
kml_string = file_upload.read().decode('utf-8')
try:
root = XET.fromstring(kml_string)
ns = {'kml': 'http://www.opengis.net/kml/2.2'}
points = []
for placemark in root.findall('.//kml:Placemark', ns):
name = placemark.findtext('kml:name', default=f"Point_{len(points)}", namespaces=ns)
coords_elem = placemark.find('.//kml:Point/kml:coordinates', ns)
if coords_elem is not None:
coords_text = coords_elem.text.strip()
coords = [c.strip() for c in coords_text.split(',')]
if len(coords) >= 2:
lon, lat = float(coords[0]), float(coords[1])
points.append({'name': name, 'geometry': f"POINT ({lon} {lat})"})
if not points:
st.error("No valid Point data found in the KML file.")
else:
locations_df = gpd.GeoDataFrame(points, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in points]), crs="EPSG:4326")
locations_df['latitude'] = locations_df['geometry'].y
locations_df['longitude'] = locations_df['geometry'].x
original_lat_col = 'latitude'
original_lon_col = 'longitude'
except Exception as e:
st.error(f"Error parsing KML file: {str(e)}")
if not locations_df.empty and 'latitude' in locations_df.columns and 'longitude' in locations_df.columns:
m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
for _, row in locations_df.iterrows():
latitude = row['latitude']
longitude = row['longitude']
if pd.isna(latitude) or pd.isna(longitude):
continue
m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
st.write("Map of Uploaded Points:")
m.to_streamlit()
elif shape_type.lower() == "polygon":
if file_upload.name.endswith('.csv'):
st.error("CSV upload not supported for polygons. Please upload a GeoJSON or KML file.")
elif file_upload.name.endswith('.geojson'):
locations_df = gpd.read_file(file_upload)
if 'geometry' not in locations_df.columns:
st.error("GeoJSON file doesn't contain geometry column")
st.stop()
elif file_upload.name.endswith('.kml'):
kml_string = file_upload.read().decode('utf-8')
try:
root = XET.fromstring(kml_string)
ns = {'kml': 'http://www.opengis.net/kml/2.2'}
polygons = []
for placemark in root.findall('.//kml:Placemark', ns):
name = placemark.findtext('kml:name', default=f"Polygon_{len(polygons)}", namespaces=ns)
coords_elem = placemark.find('.//kml:Polygon//kml:coordinates', ns)
if coords_elem is not None:
coords_text = ' '.join(coords_elem.text.split())
coord_pairs = [pair.split(',')[:2] for pair in coords_text.split() if pair]
if len(coord_pairs) >= 4:
coords_str = " ".join([f"{float(lon)} {float(lat)}" for lon, lat in coord_pairs])
polygons.append({'name': name, 'geometry': f"POLYGON (({coords_str}))"})
if not polygons:
st.error("No valid Polygon data found in the KML file.")
else:
locations_df = gpd.GeoDataFrame(polygons, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in polygons]), crs="EPSG:4326")
except Exception as e:
st.error(f"Error parsing KML file: {str(e)}")
if not locations_df.empty and 'geometry' in locations_df.columns:
centroid_lat = locations_df.geometry.centroid.y.mean()
centroid_lon = locations_df.geometry.centroid.x.mean()
m = leafmap.Map(center=[centroid_lat, centroid_lon], zoom=10)
for _, row in locations_df.iterrows():
polygon = row['geometry']
if polygon.is_valid:
gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=locations_df.crs)
m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
st.write("Map of Uploaded Polygons:")
m.to_streamlit()
if st.button(f"Calculate {custom_formula}"):
if not locations_df.empty:
with st.spinner("Processing Data..."):
try:
results, processing_time = process_aggregation(
locations_df,
start_date_str,
end_date_str,
dataset_id,
selected_bands,
reducer_choice,
shape_type,
aggregation_period,
original_lat_col,
original_lon_col,
custom_formula=custom_formula,
kernel_size=kernel_size,
include_boundary=include_boundary,
tile_cloud_threshold=tile_cloud_threshold if "tile_cloud_threshold" in locals() else 0,
pixel_cloud_threshold=pixel_cloud_threshold if "pixel_cloud_threshold" in locals() else 0,
user_scale=user_scale
)
if results:
result_df = pd.DataFrame(results)
st.write(f"Processed Results Table ({aggregation_period}) for Formula: {custom_formula}")
st.dataframe(result_df)
filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y%m%d')}_{end_date.strftime('%Y%m%d')}_{aggregation_period.lower()}.csv"
st.download_button(
label="Download results as CSV",
data=result_df.to_csv(index=False).encode('utf-8'),
file_name=filename,
mime='text/csv'
)
st.success(f"Processing complete! Total processing time: {processing_time:.2f} seconds.")
st.markdown("Graph Visualization
", unsafe_allow_html=True)
if aggregation_period.lower() == 'custom (start date to end date)':
x_column = 'Date Range'
elif 'Date' in result_df.columns:
x_column = 'Date'
elif 'Week' in result_df.columns:
x_column = 'Week'
elif 'Month' in result_df.columns:
x_column = 'Month'
elif 'Year' in result_df.columns:
x_column = 'Year'
else:
st.warning("No valid time column found for plotting.")
st.stop()
y_column = 'Calculated Value'
fig = px.line(
result_df,
x=x_column,
y=y_column,
color='Location Name',
title=f"{custom_formula} Over Time"
)
st.plotly_chart(fig)
else:
st.warning("No results were generated. Check your inputs or formula.")
st.info(f"Total processing time: {processing_time:.2f} seconds.")
except Exception as e:
st.error(f"An error occurred during processing: {str(e)}")
else:
st.warning("Please upload a valid file to proceed.")