AhmadHazem
commited on
Commit
·
81d721d
1
Parent(s):
2eacd80
fix UI
Browse files
app.py
CHANGED
@@ -28,7 +28,7 @@ model_name_translate = "Helsinki-NLP/opus-mt-en-ar"
|
|
28 |
tokenizer_translation = MarianTokenizer.from_pretrained(model_name_translate)
|
29 |
model_translate = MarianMTModel.from_pretrained(model_name_translate)
|
30 |
|
31 |
-
|
32 |
def translate(sentence):
|
33 |
batch = tokenizer_translation([sentence], return_tensors="pt")
|
34 |
generated_ids = model_translate.generate(batch["input_ids"])
|
@@ -108,14 +108,13 @@ mf_transcribe = gr.Interface(
|
|
108 |
fn=transcribe,
|
109 |
inputs=[
|
110 |
gr.Audio(sources="microphone", type="filepath"),
|
111 |
-
gr.Radio(["
|
112 |
],
|
113 |
outputs="text",
|
114 |
-
title="
|
115 |
description=(
|
116 |
-
"
|
117 |
-
|
118 |
-
" of arbitrary length."
|
119 |
),
|
120 |
allow_flagging="never",
|
121 |
)
|
@@ -124,36 +123,20 @@ file_transcribe = gr.Interface(
|
|
124 |
fn=transcribe,
|
125 |
inputs=[
|
126 |
gr.Audio(sources="upload", type="filepath", label="Audio file"),
|
127 |
-
gr.Radio(["
|
128 |
],
|
129 |
outputs="text",
|
130 |
-
title="
|
131 |
description=(
|
132 |
-
"
|
133 |
-
|
134 |
-
" of arbitrary length."
|
135 |
),
|
136 |
allow_flagging="never",
|
137 |
)
|
138 |
|
139 |
-
yt_transcribe = gr.Interface(
|
140 |
-
fn=yt_transcribe,
|
141 |
-
inputs=[
|
142 |
-
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
143 |
-
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
144 |
-
],
|
145 |
-
outputs=["html", "text"],
|
146 |
-
title="Whisper Large V3: Transcribe YouTube",
|
147 |
-
description=(
|
148 |
-
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
|
149 |
-
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
|
150 |
-
" arbitrary length."
|
151 |
-
),
|
152 |
-
allow_flagging="never",
|
153 |
-
)
|
154 |
|
155 |
with demo:
|
156 |
-
gr.TabbedInterface([mf_transcribe, file_transcribe
|
157 |
|
158 |
demo.queue().launch(ssr_mode=False)
|
159 |
|
|
|
28 |
tokenizer_translation = MarianTokenizer.from_pretrained(model_name_translate)
|
29 |
model_translate = MarianMTModel.from_pretrained(model_name_translate)
|
30 |
|
31 |
+
@spaces.GPU
|
32 |
def translate(sentence):
|
33 |
batch = tokenizer_translation([sentence], return_tensors="pt")
|
34 |
generated_ids = model_translate.generate(batch["input_ids"])
|
|
|
108 |
fn=transcribe,
|
109 |
inputs=[
|
110 |
gr.Audio(sources="microphone", type="filepath"),
|
111 |
+
gr.Radio(["translate"], label="Task", value="transcribe"),
|
112 |
],
|
113 |
outputs="text",
|
114 |
+
title="Real-Time Speech Translation From English to Arabic",
|
115 |
description=(
|
116 |
+
"Real Time Speech Translation Model from English to Arabic. This model uses the Whisper For speech to generation"
|
117 |
+
"then Helensiki model fine tuned on a translation dataset for translation"
|
|
|
118 |
),
|
119 |
allow_flagging="never",
|
120 |
)
|
|
|
123 |
fn=transcribe,
|
124 |
inputs=[
|
125 |
gr.Audio(sources="upload", type="filepath", label="Audio file"),
|
126 |
+
gr.Radio(["translate"], label="Task", value="transcribe"),
|
127 |
],
|
128 |
outputs="text",
|
129 |
+
title="Real-Time Speech Translation From English to Arabic",
|
130 |
description=(
|
131 |
+
"Real Time Speech Translation Model from English to Arabic. This model uses the Whisper For speech to generation"
|
132 |
+
"then Helensiki model fine tuned on a translation dataset for translation"
|
|
|
133 |
),
|
134 |
allow_flagging="never",
|
135 |
)
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
with demo:
|
139 |
+
gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"])
|
140 |
|
141 |
demo.queue().launch(ssr_mode=False)
|
142 |
|