import spaces import gradio as gr import torch # Use a pipeline as a high-level helper from transformers import pipeline torch.cuda.empty_cache() print("RUNNING PIPE") pipe = pipeline("text-generation", model="NousResearch/Hermes-3-Llama-3.1-8B", max_new_tokens=200, device=0) print("PIPE DONE") @spaces.GPU(duration=120) def llama3_1_8B(question): messages = [ {"role": "user", "content": question}, ] if torch.cuda.is_available(): num_devices = torch.cuda.device_count() print(f"Number of CUDA devices: {num_devices}") for i in range(num_devices): print(f"Device {i}: {torch.cuda.get_device_name(i)}") else: print("CUDA is not available.") print("GATHERING RESPONSES") responses = pipe(messages) return str(responses) def greet(name): return "Hello " + name + "!!???" demo = gr.Interface(fn=llama3_1_8B, inputs="text", outputs="text") demo.launch()