Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -18,43 +18,63 @@ def detect_emotion(face_landmarks):
|
|
18 |
A simple mock-up function for detecting emotions based on landmarks.
|
19 |
Replace with a more sophisticated model as needed.
|
20 |
"""
|
21 |
-
# Example: Arbitrarily assign "Happy" if eyes are close together
|
22 |
if face_landmarks:
|
|
|
23 |
return "Happy"
|
24 |
return "Neutral"
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
# Process the uploaded image
|
27 |
if uploaded_file is not None:
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
# Convert image to RGB
|
32 |
-
rgb_image = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
|
33 |
-
|
34 |
-
# Detect faces in the image
|
35 |
-
face_locations = face_recognition.face_locations(rgb_image)
|
36 |
-
face_landmarks_list = face_recognition.face_landmarks(rgb_image)
|
37 |
-
|
38 |
-
if face_locations:
|
39 |
-
for face_location, face_landmarks in zip(face_locations, face_landmarks_list):
|
40 |
-
# Draw a rectangle around the face
|
41 |
-
top, right, bottom, left = face_location
|
42 |
-
cv2.rectangle(image_np, (left, top), (right, bottom), (0, 255, 0), 2)
|
43 |
-
|
44 |
-
# Detect emotion based on landmarks
|
45 |
-
emotion = detect_emotion(face_landmarks)
|
46 |
-
|
47 |
-
# Display emotion above the face
|
48 |
-
cv2.putText(
|
49 |
-
image_np,
|
50 |
-
emotion,
|
51 |
-
(left, top - 10),
|
52 |
-
cv2.FONT_HERSHEY_SIMPLEX,
|
53 |
-
0.9,
|
54 |
-
(255, 0, 0),
|
55 |
-
2,
|
56 |
-
)
|
57 |
-
|
58 |
-
st.image(image_np, caption="Processed Image", use_column_width=True)
|
59 |
else:
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
A simple mock-up function for detecting emotions based on landmarks.
|
19 |
Replace with a more sophisticated model as needed.
|
20 |
"""
|
|
|
21 |
if face_landmarks:
|
22 |
+
# Example: Assign "Happy" if eyes are close together
|
23 |
return "Happy"
|
24 |
return "Neutral"
|
25 |
|
26 |
+
# Resize image to reduce memory usage
|
27 |
+
def resize_image(image, max_size=(800, 800)):
|
28 |
+
"""
|
29 |
+
Resizes the image to the specified maximum size while maintaining aspect ratio.
|
30 |
+
"""
|
31 |
+
image.thumbnail(max_size, Image.ANTIALIAS)
|
32 |
+
return image
|
33 |
+
|
34 |
# Process the uploaded image
|
35 |
if uploaded_file is not None:
|
36 |
+
# Check file size to prevent loading large images
|
37 |
+
if uploaded_file.size > 10 * 1024 * 1024: # 10 MB limit
|
38 |
+
st.error("File too large. Please upload an image smaller than 10 MB.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
else:
|
40 |
+
# Open and resize the image
|
41 |
+
image = Image.open(uploaded_file)
|
42 |
+
image = resize_image(image)
|
43 |
+
|
44 |
+
# Convert image to numpy array
|
45 |
+
image_np = np.array(image)
|
46 |
+
|
47 |
+
# Convert image to RGB (ensure compatibility with face_recognition)
|
48 |
+
if len(image_np.shape) == 3 and image_np.shape[2] == 4: # RGBA to RGB
|
49 |
+
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGBA2RGB)
|
50 |
+
elif len(image_np.shape) == 3 and image_np.shape[2] == 3: # BGR to RGB
|
51 |
+
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
|
52 |
+
|
53 |
+
# Detect faces and landmarks
|
54 |
+
face_locations = face_recognition.face_locations(image_np)
|
55 |
+
face_landmarks_list = face_recognition.face_landmarks(image_np)
|
56 |
+
|
57 |
+
if face_locations:
|
58 |
+
for face_location, face_landmarks in zip(face_locations, face_landmarks_list):
|
59 |
+
# Draw a rectangle around the face
|
60 |
+
top, right, bottom, left = face_location
|
61 |
+
cv2.rectangle(image_np, (left, top), (right, bottom), (0, 255, 0), 2)
|
62 |
+
|
63 |
+
# Detect emotion based on landmarks
|
64 |
+
emotion = detect_emotion(face_landmarks)
|
65 |
+
|
66 |
+
# Display emotion above the face
|
67 |
+
cv2.putText(
|
68 |
+
image_np,
|
69 |
+
emotion,
|
70 |
+
(left, top - 10),
|
71 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
72 |
+
0.9,
|
73 |
+
(255, 0, 0),
|
74 |
+
2,
|
75 |
+
)
|
76 |
+
|
77 |
+
# Display the processed image
|
78 |
+
st.image(image_np, caption="Processed Image", use_column_width=True)
|
79 |
+
else:
|
80 |
+
st.warning("No faces detected in the image.")
|